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Abstract

In solving complex visual learning tasks, adopting multiple descriptors to more
precisely characterize the data has been a feasible way for improving performance.
These representations are typically high dimensional and assume diverse forms.
Thus finding a way to transform them into a unified space of lower dimension
generally facilitates the underlying tasks, such as object recognition or cluster-
ing. We describe an approach that incorporates multiple kernel learning with
dimensionality reduction (MKL-DR). While the proposed framework is flexible
in simultaneously tackling data in various feature representations, the formulation
itself is general in that it is established upon graph embedding. It follows that
any dimensionality reduction techniques explainable by graph embedding can be
generalized by our method to consider data in multiple feature representations.

1 Introduction

The fact that most visual learning problems deal with high dimensional data has made dimension-
ality reduction an inherent part of the current research. Besides having the potential for a more
efficient approach, working with a new space of lower dimension often can gain the advantage of
better analyzing the intrinsic structures in the data for various applications, e.g., [3, 7]. However,
despite the great applicability, the existing dimensionality reduction methods suffer from two main
restrictions. First, many of them, especially the linear ones, require data to be represented in the
form of feature vectors. The limitation may eventually reduce the effectiveness of the overall al-
gorithms when the data of interest could be more precisely characterized in other forms, such as
bag-of-features [1, 11] or high order tensors [19]. Second, there seems to be lacking a systematic
way of integrating multiple image features for dimensionality reduction. When addressing applica-
tions that no single descriptor can appropriately depict the whole dataset, this shortcoming becomes
even more evident. Alas, it is usually the case for addressing complex visual learning tasks [4].

Aiming to relax the two above-mentioned restrictions, we introduce an approach called MKL-DR
that incorporates multiple kernel learning (MKL) into the training process of dimensionality reduc-
tion (DR) algorithms. Our approach is inspired by the work of Kim et al. [8], in which learning an
optimal kernel over a given convex set of kernels is coupled with kernel Fisher discriminant anal-
ysis (KFDA), but their method only considers binary-class data. Without the restriction, MKL-DR
manifests its flexibility in two aspects. First, it works with multiple base kernels, each of which
is created based on a specific kind of visual feature, and combines these features in the domain of
kernel matrices. Second, the formulation is illustrated with the framework of graph embedding [19],
which presents a unified view for a large family of DR methods. Therefore the proposed MKL-DR
is ready to generalize any DR methods if they are expressible by graph embedding. Note that these
DR methods include supervised, semisupervised and unsupervised ones.



2 Related work

This section describes some of the key concepts used in the establishment of the proposed approach,
including graph embedding and multiple kernel learning.

2.1 Graph embedding

Many dimensionality reduction methods focus on modeling the pairwise relationships among data,
and utilize graph-based structures. In particular, the framework of graph embedding [19] provides
a unified formulation for a set of DR algorithms. Let Ω = {xi ∈ R

d}Ni=1 be the dataset. A DR
scheme accounted for by graph embedding involves a complete graph G whose vertices are over
Ω. An affinity matrix W = [wij ] ∈ R

N×N is used to record the edge weights that characterize the

similarity relationships between training sample pairs. Then the optimal linear embedding v
∗ ∈ R

d

can be obtained by solving

v
∗ = arg min

v
⊤XDX⊤

v=1, or
v
⊤XL′X⊤

v=1

v
⊤XLX⊤

v, (1)

where X = [x1 x2 · · · xN ] is the data matrix, and L = diag(W · 1) −W is the graph Laplacian
of G. Depending on the property of a problem, one of the two constraints in (1) will be used in the
optimization. If the first constraint is chosen, a diagonal matrix D = [dij ] ∈ R

N×N is included
for scale normalization. Otherwise another complete graph G′ over Ω is required for the second
constraint, where L′ and W ′ = [w′

ij ] ∈ R
N×N are respectively the graph Laplacian and affinity

matrix of G′. The meaning of (1) can be better understood with the following equivalent problem:

min
v

∑N
i,j=1 ||v

⊤
xi − v

⊤
xj ||2wij (2)

subject to
∑N

i=1 ||v
⊤
xi||2dii = 1, or (3)

∑N

i,j=1 ||v
⊤
xi − v

⊤
xj ||2w′

ij = 1. (4)

The constrained optimization problem (2) implies that pairwise distances or distances to the origin
of projected data (in the form of v

⊤
x) are modeled by one or two graphs in the framework. By

specifying W and D (or W and W ′), Yan et al. [19] show that a set of dimensionality reduction
methods, such as PCA, LPP [7], LDA, and MFA [19] can be expressed by (1).

2.2 Multiple kernel learning

MKL refers to the process of learning a kernel machine with multiple kernel functions or kernel
matrices. Recent research efforts on MKL, e.g., [9, 14, 16] have shown that learning SVMs with
multiple kernels not only increases the accuracy but also enhances the interpretability of the resulting
classifier. Our MKL formulation is to find an optimal way to linearly combine the given kernels.
Suppose we have a set of base kernel functions {km}Mm=1 (or base kernel matrices {Km}Mm=1). An
ensemble kernel function k (or an ensemble kernel matrix K) is then defined by

k(xi,xj) =
∑M

m=1 βmkm(xi,xj), βm ≥ 0 , (5)

K =
∑M

m=1 βmKm, βm ≥ 0 . (6)

Consequently, the learned model from binary-class data {(xi, yi ∈ ±1)} will be of the form:

f(x) =
∑N

i=1 αiyik(xi,x) + b =
∑N

i=1 αiyi

∑M

m=1 βmkm(xi,x) + b. (7)

Optimizing both the coefficients {αi}
N
i=1 and {βm}

M
m=1 is one particular form of the MKL prob-

lems. Our approach leverages such an MKL optimization to yield more flexible dimensionality
reduction schemes for data in different feature representations.

3 The MKL-DR framework

To establish the proposed method, we first discuss the construction of a set of base kernels from mul-
tiple features, and then explain how to integrate these kernels for dimensionality reduction. Finally,
we design an optimization procedure to learn the projection for dimensionality reduction.



3.1 Kernel as a unified feature representation

Consider a dataset Ω of N samples, and M kinds of descriptors to characterize each sample. Let
Ω = {xi}

N
i=1, xi = {xi,m ∈ Xm}

M
m=1, and dm : Xm ×Xm → 0 ∪ R

+ be the distance function for
data representation under the mth descriptor. The domains resulting from distinct descriptors, e.g.
feature vectors, histograms, or bags of features, are in general different. To eliminate these varieties
in representation, we represent data under each descriptor as a kernel matrix. There are several ways
to accomplish this goal, such as using RBF kernel for data in the form of vector, or pyramid match
kernel [6] for data in the form of bag-of-features. We may also convert pairwise distances between
data samples to a kernel matrix [18, 20]. By coupling each representation and its corresponding
distance function, we obtain a set of M dissimilarity-based kernel matrices {Km}Mm=1 with

Km(i, j) = km(xi,xj) = exp
{(

−d2
m(xi,m,xj,m)/σ2

m

)}

(8)

where σm is a positive constant. As several well-designed descriptors and their associated distance
functions have been introduced over the years, the use of dissimilarity-based kernel is convenient in
solving visual learning tasks. Nonetheless, care must be taken in that the resulting Km is not guar-
anteed to be positive semidefinite. Zhang et al. [20] have suggested a solution to resolve this issue.
It follows from (5) and (6) that determining a set of optimal ensemble coefficients {β1, β2, . . . , βM}
can be interpreted as finding appropriate weights for best fusing the M feature representations.

3.2 The MKL-DR algorithm

Instead of designing a specific dimensionality reduction algorithm, we choose to describe MKL-DR
upon graph embedding. This way we can derive a general framework: If a dimensionality reduction
scheme is explained by graph embedding, then it will also be extendible by MKL-DR to handle
data in multiple feature representations. In graph embedding (2), there are two possible types of
constraints. For the ease of presentation, we discuss how to develop MKL-DR subject to constraint
(4). However, the derivation can be analogously applied when using constraint (3).

It has been shown that a set of linear dimensionality reduction methods can be kernelized to nonlinear
ones via kernel trick. The procedure of kernelization in MKL-DR is mostly accomplished in a
similar way, but with the key difference in using multiple kernels {Km}Mm=1. Suppose the ensemble
kernel K in MKL-DR is generated by linearly combining the base kernels {Km}Mm=1 as in (6).
Let φ : X → F denote the feature mapping induced by K . Through φ, the training data can be
implicitly mapped to a high dimensional Hilbert space, i.e.,

xi 7→ φ(xi), for i = 1, 2, ..., N . (9)

By assuming the optimal projection v lies in the span of training data in the feature space, we have

v =
∑N

n=1 αnφ(xn). (10)

To show that the underlying algorithm can be reformulated in the form of inner product and accom-
plished in the new feature space F , we observe that plugging into (2) each mapped sample φ(xi)
and projection v would appear exclusively in the form of v

T φ(xi). Hence, it suffices to show that
in MKL-DR, vT φ(xi) can be evaluated via the kernel trick:

v
T φ(xi) =

∑N

n=1

∑M

m=1 αnβmkm(xn,xi) = αT
K

(i)β where (11)

α =







α1

...
αN






∈ R

N , β =







β1

...
βM






∈ R

M , K(i) =







K1(1, i) · · · KM (1, i)
...

. . .
...

K1(N, i) · · · KM (N, i)






∈ R

N×M .

With (2) and (11), we define the constrained optimization problem for 1-D MKL-DR as follows:

min
α,β

∑N

i,j=1 ||α
T

K
(i)β −αT

K
(j)β||2wij (12)

subject to
∑N

i,j=1 ||α
T

K
(i)β −αT

K
(j)β||2w′

ij = 1, (13)

βm ≥ 0, m = 1, 2, ..., M . (14)

The additional constraints in (14) are included to ensure the the resulting kernel K in MKL-DR is a
non-negative combination of base kernels. We leave the details of how to solve (12) until the next
section, where using MKL-DR for finding a multi-dimensional projection V is considered.
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Figure 1: Four kinds of spaces in MKL-DR: the input space of each feature representation, the
RKHS induced by each base kernel, the RKHS by the ensemble kernel, and the projected space.

3.3 Optimization

Observe from (11) that the one-dimensional projection v of MKL-DR is specified by a sample coef-
ficient vector α and a kernel weight vector β. The two vectors respectively account for the relative
importance among the samples and the base kernels. To generalize the formulation to uncover a
multi-dimensional projection, we consider a set of P sample coefficient vectors, denoted by

A = [α1 α2 · · · αP ]. (15)

With A and β, each 1-D projection vi is determined by a specific sample coefficient vector αi and
the (shared) kernel weight vector β. The resulting projection V = [v1 v2 · · · vP ] will map samples
to a P -dimensional space. Analogous to the 1-D case, a projected sample xi can be written as

V ⊤φ(xi) = A⊤
K

(i)β ∈ R
P . (16)

The optimization problem (12) can now be extended to accommodate multi-dimensional projection:

min
A,β

∑N

i,j=1 ||A
⊤

K
(i)β −A⊤

K
(j)β||2wij (17)

subject to
∑N

i,j=1 ||A
⊤

K
(i)β −A⊤

K
(j)β||2w′

ij = 1,

βm ≥ 0, m = 1, 2, ..., M .

In Figure 1, we give an illustration of the four kinds of spaces related to MKL-DR, including the
input space of each feature representation, the RKHS induced by each base kernel and the ensemble
kernel, and the projected Euclidean space.

Since direct optimization to (17) is difficult, we instead adopt an iterative, two-step strategy to
alternately optimize A and β. At each iteration, one of A and β is optimized while the other is
fixed, and then the roles of A and β are switched. Iterations are repeated until convergence or a
maximum number of iterations is reached.

On optimizing A: By fixing β, the optimization problem (17) is reduced to

min
A

trace(A⊤Sβ
W A)

subject to trace(A⊤Sβ
W ′A) = 1

(18)

where

Sβ
W =

∑N

i,j=1 wij(K
(i) −K

(j))ββ⊤(K(i) −K
(j))⊤, (19)

Sβ
W ′ =

∑N

i,j=1 w′
ij(K

(i) −K
(j))ββ⊤(K(i) −K

(j))⊤. (20)

The problem (18) is a trace ratio problem, i.e., minA trace(A⊤Sβ
W A)/trace(A⊤Sβ

W ′A). A closed-
form solution can be obtained by transforming (18) into the corresponding ratio trace prob-

lem, i.e., minA trace[(A⊤Sβ
W ′A)−1(A⊤Sβ

W A)]. Consequently, the columns of the optimal A∗ =
[α1 α2 · · ·αP ] are the eigenvectors corresponding to the first P smallest eigenvalues in

Sβ
W α = λSβ

W ′α. (21)



Algorithm 1: MKL-DR

Input : A DR method specified by two affinity matrices W and W ′ (cf. (2));
Various visual features expressed by base kernels {Km}Mm=1 (cf. (8));

Output: Sample coefficient vectors A = [α1 α2 · · ·αP ]; Kernel weight vector β;
Make an initial guess for A or β;
for t← 1, 2, . . . , T do

1. Compute Sβ
W in (19) and Sβ

W ′ in (20);
2. A is optimized by solving the generalized eigenvalue problem (21);
3. Compute SA

W in (23) and SA
W ′ in (24);

4. β is optimized by solving optimization problem (25) via semidefinite programming;

return A and β;

On optimizing β: By fixing A, the optimization problem (17) becomes

min
β

β⊤SA
W β

subject to β⊤SA
W ′β = 1 and β ≥ 0

(22)

where

SA
W =

∑N

i,j=1 wij(K
(i) −K

(j))⊤AA⊤(K(i) −K
(j)), (23)

SA
W ′ =

∑N

i,j=1 w′
ij(K

(i) −K
(j))⊤AA⊤(K(i) −K

(j)). (24)

The additional constraints β ≥ 0 cause that the optimization to (22) can no longer be formulated as
a generalized eigenvalue problem. Indeed it now becomes a nonconvex quadratically constrained
quadratic programming (QCQP) problem, and is known to be very difficult to solve. We instead
consider solving its convex relaxation by adding an auxiliary variable B of size M ×M :

min
β,B

trace(SA
W B) (25)

subject to trace(SA
W ′B) = 1, (26)

e
T
mβ ≥ 0, m = 1, 2, ..., M, (27)

[

1 βT

β B

]

� 0, (28)

where em in (27) is a column vector whose elements are 0 except that its mth element is 1, and the
constraint in (28) means that the square matrix is positive semidefinite. The optimization problem
(25) is an SDP relaxation of the nonconvex QCQP problem (22), and can be efficiently solved
by semidefinite programming (SDP). One can verify the equivalence between the two optimization

problems (22) and (25) by replacing the constraint (28) with B = ββT . In view of that the constraint

B = ββT is nonconvex, it is relaxed to B � ββT . Applying the Schur complement lemma,

B � ββT can be equivalently expressed by the constraint in (28). (Refer to [17] for further details.)
Note that the numbers of constraints and variables in (25) are respectively linear and quadratic to
M , the number of the adopted descriptors. In practice the value of M is often small. (M = 7 in
our experiments.) Thus like most of the other DR methods, the computational bottleneck of our
approach is still in solving the generalized eigenvalue problems.

Listed in Algorithm 1, the procedure of MKL-DR requires an initial guess to either A or β in the
alternating optimization. We have tried two possibilities: 1) β is initialized by setting all of its
elements as 1 to equally weight each base kernel; 2) A is initialized by assuming AA⊤ = I . In
our empirical testing, the second initialization strategy gives more stable performances, and is thus
adopted in the experiments. Pertaining to the convergence of the optimization procedure, since
SDP relaxation has been used, the values of objective function are not guaranteed to monotonically
decrease throughout the iterations. Still, the optimization procedures rapidly converge after only a
few iterations in all our experiments.

Novel sample embedding. Given a testing sample z, it is projected to the learned space of lower
dimension by

z 7→ AT
K

(z)β, where K
(z) ∈ R

N×M and K
(z)(n, m) = km(xn, z). (29)



4 Experimental results

To evaluate the effectiveness of MKL-DR, we test the technique with the supervised visual learn-
ing task of object category recognition. In the application, two (base) DR methods and a set of
descriptors are properly chosen to serve as the input to MKL-DR.

4.1 Dataset

The Caltech-101 image dataset [4] consists of 101 object categories and one additional class of
background images. The total number of categories is 102, and each category contains roughly 40
to 800 images. Although each target object often appears in the central region of an image, the large
class number and substantial intraclass variations still make the dataset very challenging. Still, the
dataset provides a good test bed to demonstrate the advantage of using multiple image descriptors
for complex recognition tasks. Since the images in the dataset are not of the same size, we resize
them to around 60,000 pixels, without changing their aspect ratio.

To implement MKL-DR for recognition, we need to select some proper graph-based DR method to
be generalized and a set of image descriptors, and then derive (in our case) a pair of affinity matrices
and a set of base kernels. The details are described as follows.

4.2 Image descriptors

For the Caltech-101 dataset, we consider seven kinds of image descriptors that result in the seven
base kernels (denoted below in bold and in abbreviation):

GB-1/GB-2: From a given image, we randomly sample 300 edge pixels, and apply geometric blur
descriptor [1] to them. With these image features, we adopt the distance function, as is suggested in
equation (2) of the work by Zhang et al. [20], to obtain the two dissimilarity-based kernels, each of
which is constructed with a specific descriptor radius.

SIFT-Dist: The base kernel is analogously constructed as in GB-2, except now the SIFT descriptor
[11] is used to extract features.

SIFT-Grid: We apply SIFT with three different scales to an evenly sampled grid of each image,
and use k-means clustering to generate visual words from the resulting local features of all images.
Each image can then be represented by a histogram over the visual words. The χ2 distance is used
to derive this base kernel via (8).

C2-SWP/C2-ML: Biologically inspired features are also considered here. Specifically, both the C2
features derived by Serre et al. [15] and by Mutch and Lowe [13] have been chosen. For each of the
two kinds of C2 features, an RBF kernel is respectively constructed.

PHOG: We adopt the PHOG descriptor [2] to capture image features, and limit the pyramid level
up to 2. Together with χ2 distance, the base kernel is established.

4.3 Dimensionality reduction methods

We consider two supervised DR schemes, namely, linear discriminant analysis (LDA) and local
discriminant embedding (LDE), and show how MKL-DR can generalize them. Both LDA and
LDE perform discriminant learning on a fully labeled dataset Ω = {(xi, yi)}Ni=1, but make different
assumptions about data distribution: LDA assumes data of each class can be modeled by a Gaussian,
while LDE assumes they spread as a submanifold. Each of the two methods can be specified by
a pair of affinity matrices to fit the formulation of graph embedding (2), and the resulting MKL
dimensionality reduction schemes are respectively termed as MKL-LDA and MKL-LDE.

Affinity matrices for LDA: The two affinity matrices W = [wij ] and W ′ = [w′

ij ] are defined as

wij =

{

1/nyi
, if yi = yj,

0, otherwise,
and w′

ij =
1

N
, (30)

where nyi
is the number of data points with label yi. See [19] for the derivation.



Table 1: Recognition rates (mean ± std %) for Caltech-101 dataset

number of classes number of classes
kernel(s) method

102 101
method

102 101

GB-1 57.3 ± 2.5 57.7 ± 0.7 57.1 ± 1.4 57.7 ± 0.8
GB-2 60.0 ± 1.5 60.6 ± 1.5 60.9 ± 1.4 61.3 ± 2.1

SIFT-Dist 53.0 ± 1.4 53.2 ± 0.8 54.2 ± 0.5 54.6 ± 1.5
SIFT-Grid 48.8 ± 1.9 49.6 ± 0.7 49.5 ± 1.3 50.1 ± 0.3
C2-SWP 30.3 ± 1.2 30.7 ± 1.5 31.1 ± 1.5 31.3 ± 0.7
C2-ML 46.0 ± 0.6 46.8 ± 0.9 45.8 ± 0.2 46.7 ± 1.5
PHOG

KFD

41.8 ± 0.6 42.1 ± 1.3

KLDE

42.2 ± 0.6 42.6 ± 1.3
- KFD-Voting 68.4 ± 1.5 68.9 ± 0.3 KLDE-Voting 68.4 ± 1.4 68.7 ± 0.8
- KFD-SAMME 71.2 ± 1.4 72.1 ± 0.7 KLDE-SAMME 71.1 ± 1.9 71.3 ± 1.2

All MKL-LDA 74.6 ± 2.2 75.3 ± 1.7 MKL-LDE 75.3 ± 1.5 75.5 ± 1.7

Affinity matrices for LDE: In LDE, not only the data labels but also the neighborhood relationships
are simultaneously considered to construct the affinity matrices W = [wij ] and W ′ = [w′

ij ]:

wij =

{

1, if yi = yj ∧ [i ∈ Nk(j) ∨ j ∈ Nk(i)],

0, otherwise,
(31)

w′

ij =

{

1, if yi 6= yj ∧ [i ∈ Nk′(j) ∨ j ∈ Nk′(i)],

0, otherwise.
(32)

where i ∈ Nk(j) means that sample xi is one of the k nearest neighbors for sample xj . The
definitions of the affinity matrices are faithful to those in LDE [3]. However, since there are now
multiple image descriptors, we need to construct an affinity matrix for data under each descriptor,
and average the resulting affinity matrices from all the descriptors.

4.4 Quantitative results

Our experiment setting follows the one described by Zhang et al. [20]. From each of the 102 classes,
we randomly pick 30 images where 15 of them are included for training and the other 15 images
are used for testing. To avoid a biased implementation, we redo the whole process of learning
by switching the roles of training and testing data. In addition, we also carry out the experiments
without using the data from the the background class, since such setting is adopted in some of the
related works, e.g., [5]. Via MKL-DR, the data are projected to the learned space, and the recognition
task is accomplished there by enforcing the nearest-neighbor rule.

Coupling the seven base kernels with the affinity matrices of LDA and LDE, we can respectively de-
rive MKL-LDA and MKL-LDE using Algorithm 1. Their effectiveness is investigated by comparing
with KFD (kernel Fisher discriminant) [12] and KLDE (kernel LDE) [3]. Since KFD considers only
one base kernel at a time, we implement two strategies to take account of the classification outcomes
from the seven resulting KFD classifiers. The first is named as KFD-Voting. It is constructed based
on the voting result of the seven KFD classifiers. If there is any ambiguity in the voting result, the
next nearest neighbor in each KFD classifier will be considered, and the process is continued until
a decision on the class label can be made. The second is termed as KFD-SAMME. By viewing each
KFD classifier as a multi-class weak learner, we boost them by SAMME [21], which is a multi-class
generalization of AdaBoost. Analogously, we also have KLDE-Voting and KLDE-SAMME.

We report the mean recognition rates and the standard deviation in Table 1. First of all, MKL-LDA
achieves a considerable performance gain of 14.6% over the best recognition rate by the seven KFD
classifiers. On the other hand, while KFD-Voting and KFD-SAMME try to combine the separately
trained KFD classifiers, MKL-LDA jointly integrates the seven kernels into the learning process. The
quantitative results show that MKL-LDA can make the most of fusing various feature descriptors,
and improves the recognition rates from 68.4% and 71.2% to 74.6%. Similar improvements can
also be observed for MKL-LDE.

The recognition rates 74.6% in MKL-LDA and 75.3% in MKL-LDE are favorably comparable to
those by most of the existing approaches. In [6], Grauman and Darrell report a 50% recognition



rate based on the pyramid matching kernel over data in bag-of-features representation. By combing
shape and spatial information, SVM-KNN of Zhang et al. [20] achieves 59.05%. In Frome et al. [5],
the accuracy rate derived by learning the local distances, one for each training sample, is 60.3%.
Our related work [10] that performs adaptive feature fusing via locally combining kernel matrices
has a recognition rate 59.8%. Multiple kernel learning is also used in Varma and Ray [18], and it
can yield a top recognition rate of 87.82% by integrating visual cues like shape and color.

5 Conclusions and discussions

The proposed MKL-DR technique is useful as it has the advantage of learning a unified space of low
dimension for data in multiple feature representations. Our approach is general and applicable to
most of the graph-based DR methods, and improves their performance. Such flexibilities allow one
to make use of more prior knowledge for effectively analyzing a given dataset, including choosing a
proper set of visual features to better characterize the data, and adopting a graph-based DR method
to appropriately model the relationship among the data points. On the other hand, via integrating
with a suitable DR scheme, MKL-DR can extend the multiple kernel learning framework to address
not just the supervised learning problems but also the unsupervised and the semisupervised ones.
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