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Representation and Self-Similarity of Shapes

Davi Geiger, Tyng-Luh Liu, Robert V. Kohn

Abstract— Representing shapes in a compact and informa-
tive form is a significant problem for vision systems that
must recognize or classify objects. We describe a compact
representation model for two dimensional (2-D) shapes by
investigating their self-similarities, and constructing their
shape axis trees (SA-trees). Our approach can be formu-
lated as a variational one (or equivalently as MAP estima-
tion of a Markov random field). We start with a 2-D shape,
its boundary contour, and two different parameterizations
for the contour (one parameterization is oriented counter-
clockwise and the other clockwise). To measure its self-
similarity the two parameterizations are matched to derive
the best set of one-to-one point-to-point correspondences
along the contour. The cost functional used in the matching
may vary, and is determined by the adopted self-similarity
criteria, e.g., co-circularity, distance variation, parallelism,
and region homogeneity. The loci of middle points of the
pairing contour points yield the shape axis, and they can be
grouped into a unique free tree structure, the SA-tree. By
implicitly encoding the (local and global) shape information
into an SA-tree, a variety of vision tasks, e.g, shape recogni-
tion, comparison and retrieval can be performed in a more
robust and efficient way via various tree-based algorithms.
A dynamic programming algorithm gives the optimal solu-
tion in O(N*), where N is the size of the contour.

Keywords— Shape representation, self-similarity, varia-
tional matching, dynamic programming, MRF

I. INTRODUCTION

N effective and compact shape representation system

is a critical element for various computer vision appli-
cation. Perhaps the most explicit way to represent a shape
in 2-D is by a set of pixels contained within the shape.
Alternatively one can describe a shape by its boundary
contour(s), which is typically a more compact representa-
tion than the straightforward region representation. There
are many other possible representations for shapes and we
seek a compact one. However, we can not just naively in-
voke the idea of the Kolmogorov complexity!, as the goal
must include the construction of an efficiently computable
system. Today, no methodology exists to search for “the
Kolmogorov idea.”

If shapes are represented with global descriptors, then
articulated objects tend to be dissimilar since these
changes/deformations may change the global appearance
of objects considerably while the entire deformation is con-
centrated on specific points. Alternatively, if shapes are de-
scribed by local boundary descriptors, e.g., [2], then they
do not account for region information, object parts, and
global properties such as symmetries (see Fig. 1). An ideal
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I'Kolmogorov Complexity of an object (i.e., a binary string) is the
length of the shortest computer program that runs on a computer
and outputs that object.

representation system of shapes should not be sensitive to
small changes of appearance; otherwise similar objects of
the same class or partially occluded will be represented
very differently.
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Fig. 1. TI's and I's are derived from I'; by the same amount of
stretches at different locations. A shape descriptor accounting for
symmetries can favor 'z over I's when comparing to I';.

Our aim is to develop a shape axis tree (SA-tree) repre-
sentation of objects, where the graph edges of an SA-tree
correspond to the structure of object parts (see Fig. 2). In
particular, we are interested in shape representations that
are

(i) complete, i.e., all the object information is stored in the
representation.

(ii) simple, meaningful, and compact, i.e., redundancies are
removed by capturing symmetries, region information, ar-
ticulations (local deformations), and dividing the object
into “object parts” with as few parts as needed for any
level of specified details (via parameter setting).

(iii) stable, i.e., robust under small variations of the shape
(including noise variations and articulations).

(iv) easily computable, i.e., existence of polynomial time
algorithms (on the size of the shape) to find its represen-
tation.

A. Shape Representation

Our formulation is a variational one. It can also be
interpreted as the MAP estimate of a Markov random
field (MRF). Starting with a two dimensional shape and
its boundary contour, we seek a self-similarity measure to
structure the shape representation. The idea is to generate
two different parameterizations for the boundary contour
and to measure its self-similarity by matching the two pa-
rameterizations, i.e., by matching pairs of contour points
(and their tangents) along the boundary contour. Depend-
ing on the class of shapes and human perception factors,
the matching (self-similarity) criterion may vary, e.g., co-
circularity, parallelism, and region homogeneity. The op-
timal matching will give a set of pairing points for all the
boundary contour. This representation, the set of pairing
of all contour points, can be used to retrieve the original
contour as chain of points in a straightforward way.

The set of middle points of the optimal pairing contour
points gives a shape axis. A shape axis can bifurcate yield-
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ing the notion of structure parts (see Fig. 2). When the op-
timization criterion is based on mirror symmetry, or equiv-
alently the co-circularity criterion, the shape axis is closely
related to the symmetry axis or skeleton.

From the self matching, and pairing of all boundary con-
tour points, we extract a shape axis tree. In an SA-tree,
every node corresponds to either an end point (a match of
a point with itself) or a bifurcation of the shape axis. The
edges of the tree correspond to the object parts.

A.1 Open Shapes

Our method can also be applied to construct shape axes
from open shape contours. In this case the starting point
for each parameterization is one of the extreme points
(ends) of the open contour, no longer the same one, each
parameterization starts from the opposite extreme (end)
point. While the shape axis for an open contour can be de-
rived by essentially the same algorithm (designed for closed
contours), it is possible that its corresponding SA-tree may
degenerate into an SA-forest (see Fig. 10e).

B. Previous Work and Comparison

Blum first proposed to represent shapes by their sym-
metry and thickness [4]. Binford [3] is also a pioneer and
brought the attention to generalized cylinders. Other early
work includes [1], [18]. In [8], [9], affine transformations
are addressed, and direct 3-D considerations were given in
[26]. Pizer et al. have proposed a computational model
for object representation via “cores”, or regions of high
medalists in intensity images [5]. Ogniewicz [19] presented
an efficient method based on Voronoi diagrams. Leymarie
and Levine [15] have used the grassfire transform (from
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Constructing the SA-trees of two shape contours extracted from real images. Then, similarity comparison can be performed using

the psychology literature). In [29], Segen has described a
layered graph representation for 2-D shapes, where the re-
lations between object parts are encoded in the vertices.
Siddigi and Kimia’s work [31] has an interesting mathe-
matical formulation, preserving the intuition of the grass-
fire idea. It is a development of a reaction-diffusion equa-
tion where the symmetry axis is obtained and described by
the development of shocks (first, second, third, and fourth
order ones). It is motivated by the framework for shape
analysis via shock-diffusion equations [14]. Following this
line, Siddiqi et at. have addressed the 2-D shape match-
ing problem via comparing shock graphs [33]. Tari et al.
[34] have defined an edge strength function where its level
curves corresponding to the smoothed propagating glass-
ware front. The function can be applied to determine the
axes of local symmetries for 2-D shapes, and recently the
approach has be extended to shapes of arbitrary dimen-
sions [35]. Sclaroff and Pentland [28] proposed a modal
matching method for correspondence and recognition based
on describing the generalized symmetries of shapes. They
used finite element techniques to transform shapes into a
modal space and to address shape similarity by modal de-
formation energy. Zhu and Yuille’s work [39] as an effort
to use the symmetry axis representation to recognize and
represent flexible objects from the silhouettes.

Our view differs from previous work in that we are seek-
ing a variational optimization approach for the problem.

II. VARIATIONAL MATCHING OF CURVES

We shall determine the shape axis of a curve by finding
a “good match” between the curve and its mirror image.
It is convenient to begin, however, with the more general
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Fig. 3. The contour I'(s) and its mirror version I'(t). 7(s) and #(t) are unit tangents.

task of finding a “good match” between a pair of curves in
the plane.

Consider a pair of parameterized curves I' = {z(s) : 0 <
s<1,20) =z1)}and T = {&#(t) : 0 <t < 1,%(0) =
#(1)}. By a match between T’ and T’ we mean a monotone
correspondence between the two curves, taking endpoints
to endpoints. A match can be represented in several dif-
ferent ways. One representation uses the map s — t = #(s)
such that x(s) corresponds to Z(t(s)). A second uses the
inverse map t — s = s(t), so Z(t) corresponds to x(s(t)).
A third alternative has the advantage of treating the two
curves symmetrically: it specifies a pair of monotone func-
tions s(o) and t(o), each defined for 0 < o < 1, such that
z(s(o)) corresponds with Z(¢(c)). (The first two alterna-
tives are special cases, obtained by taking s(s) = o and
tlo)=0.)

To determine a “good match” we solve an appropriate
variational problem. Concentrating for the moment on our
third, more symmetrical representation, the matching en-
ergy should have the form

1
/ Fla, 758,75, t') do, 1)
0

where 7 = z,/|zs| and 7 = #;/|%¢| are the oriented unit
tangent vectors to I and T at «(s) and Z(t). Our notation
in (1) is somewhat abbreviated: the integrand must be eval-
uated at the appropriate point z = z(s(0)), 7 = 7(s(0)),
..., 8 =ds/do, and t' = dt/do.

Our framework imposes two structural conditions on the
matching energy density F'. The first is the symmetry con-
dition

F(p,&q,mv,w) = F(q,n;p, & w,v),

which assures that the notion of “matching” is symmetric,
i.e., the two curves I' and I' play equivalent roles. The

second is the scaling condition

F(p,& q,m; M, \w) = AF(p, &5 q,m;v,w)  for all X >0,

which makes the energy invariant under change-of-variable

in o:
ds dt
,T;%,%> do
_ds dt\ do ,_
”%%)% 4
. dsdo dtdo _
)da

"o do’ do do

ds dt
= F (T, T —,— | do.
/ ("'E?T",I:7T’ do_7da_> o

This assures that the energy depends only on the match,
i.e., the correspondence between s = s(o) and t = (o), and
not on the specific choice of maps o — s(o) and o — t(0).

We want our notion of “match” to be geometric, so it
is natural to require invariance under translation and rota-
tion:

&

x,T

[F(er
/F(w,T;
[r (e

&

T, T;T

F(p,&;q,m;v,w) depends on p, ¢ only through p — ¢,

and
F(Rp, R¢; Rq, Rn;v,w) = F(p, & q,m;v,w)

for every orientation-preserving rotation R. These assure
that applying the same rigid motion to I' and T leaves the
energy of their match unchanged. Invariance under scaling
is too much to ask, but it is natural to ask that

F(Ap, & Ag,n;v,w) = g(N)F(p, & q,m;v,w)

for some function g(\). Thus scaling I' and I’ by a common
factor A changes the energy of match by a known amount
g(A).

These restrictions leave still considerable freedom. The
particular choice of F' should depend, of course, on the type
of match one seeks.

for A > 0,

A. Matching a Curve with Itself

We turn now to our real goal — determining the self-
similarity of a closed curve I'. Locally, our notion of “good
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Fig. 4. From left to right: The matching space (s x t) and the graph (where p(s,t) = 1). The dashed lines represent mirror copies of the
solid ones, with respect to the mirror line: ¢t =1 — s. An SA-tree is then obtained.

match” is the one introduced above. Globally, however, the
situation is different because we now permit discontinuities.
The matches considered in this section are only piecewise
continuous and monotone.

To explain our new notion of “match” more precisely,
consider a simple closed curve I' in the plane, parameter-
ized monotonically by z(s), 0 < s < 1, with 2(0) = z(1).
Extending x(s) periodically, we may consider it to be de-
fined for all s € R, with z(s + 1) = z(s). (It is equivalent
to think of I' as a mapping from the unit circle St to R2.)
Let T’ be “the same curve traced backwards,” parameter-
ized by Z(t) = (1 — t) (see Fig. 3). Notice that Z is again
defined for all ¢, periodic with period 1.

A match between I’ and T can be represented as a binary
function u(s,t):

1, if z(s) corresponds to Z(t) = z(1 — t),
0, otherwise.

st = {

We visualize the match by plotting the points in the s,¢
plane where p(s,t) =1 (see Fig. 4).

There are some structural conditions every match must
satisfy. First, to respect the periodicity of z(s) we require

(s, t) = p(s +1,t) = p(s,t +1) (2)

Second, to make I' and T play equivalent roles we require
that

for all s,t.

x(s) corresponds with Z(t) = z(1 —t)

z(1 —t) corresponds with Z(1 — s) = z(s).
This amounts to

p’(s)t) ::u(]-_t>]-_5)' (3)

Thus, the plot of g must be symmetric about the line t =
1 —s. It is frequently convenient to view the plot of u as
the graph of a piecewise monotone function ¢(s). Then (3)
becomes the condition

1—s=t(1-1t(s)). [Mirror Property]

Third, the correspondence must be monotone and con-
tinuous except for finitely many jumps, and aside from the
jumps every point on I' must have a unique correspondent
on I'. In other words, the plot of u, restricted to the unit
square [0, 1] x [0.1], must consist of finitely many mono-
tone graphs; moreover it should cover each axis exactly
once (except for jumps) (see Fig. 4).

Every match p determines a collection of proposed shape
axis, by the rule

u(s,t) =1 <= z(s)corresponds to &(t) = z(1 —t)
z(s) + (1 —1t)

—
2

belongs to a shape axis.

Where the plot of u is discontinuous, so is the associated
shape axis. We call such discontinuities bifurcations of the
shape axis. Where the plot of y crosses the line t =1 — s
the points z(s) and x(1—t) are identical and the associated
shape axis meets ['. We call these points the leaves of the
shape axis.

Of course, to detect the real symmetries of the figure
we cannot use just any match — we must use a good one.
Each continuous portion of the match is assigned an en-
ergy by the analysis of the last section. The total energy
is obtained by adding these contributions, then adjoining
“jump energies” associated with the discontinuities. More
precisely, we add to (1) an energy term

Z JumpCost,

jumps

which is interpreted as follows: at a jump, the values
t(o+) = lims_,o+ t(c + 0) and t(o—) = lims_,o+ t(c — 0)
are different. The associated jump cost can be a function
of |t(c+)—t(c—)|. In practice we have used a constant cost
for jumps. Our “jumps” amount to the vertical discontinu-
ities one sees in the plot of u (see Fig. 4). There is no need
to handle the horizontal jumps separately because they are
in one-to-one correspondence with the vertical ones, on ac-
count of the symmetry (3). Shapes with bifurcations of
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Fig. 5.

There are no restriction to the loci of the shape axis where they can be partially inside and partially outside the shape.

(a) The

distance from the axis to the boundary is small, but bifurcations must be placed. (b) There is no bifurcation, but the distance from the axis
to the boundaries tends to be large. The optimal solution can be (a) or (b), depending on the weight of the bifurcation cost (JumpCost).

various degrees are considered by our model (see Fig. 8)
and the number of vertical discontinuities gives the degree
of the bifurcation. One may consider to have the “jump en-
ergies” depend directly on the number of bifurcations not
the degrees of bifurcations. However, when the cost for a
bifurcation does not depend on the degree of bifurcation the
following problem may occur: small perturbations near a
bifurcation may easily create new branches (parts), that is,
increase the degree of the bifurcation without any penalty.
We choose to penalize the degree of a bifurcation. In this
way, the number of bifurcations is controlled indirectly, and
it leads to a more stable system. When analyzing the dy-
namic programming solution we will investigate this issue
thoroughly.

B. Similarity Criteria

Various similarity/symmetry criteria can be considered,
e.g., co-circularity, parallelism, region homogeneity.
B.1 Co-Circularity or Mirror Symmetry

We want F'(p,&;q,n;v,w) to favor

and (¢ —p)I(€—n).

In other words F' favors co-circularity — the existence of a
circle passing through p and ¢ with tangents £ at p and 5
at g (see Fig. 6b).

(g—p)L(E+n)

B.2 Stretching and Distance:

It is also natural to favor v = w, so that there are
no stretchings, and to favor p = ¢ so that elements are
matched when they are close (see Fig. 5). Two possible
choices of F’s are

[(g—p) €+ (©+w)
[(a=p)- € =)' (v+w)

clv—w||p—q|?

FY(p, & q,m;0,w)

+ +

and

FOp, ¢ qmow) = LB @t o))

v+ w
2
N [(q —p) - (v —nuw)*]
v+ w
12 0y a2
. Jp—dPl wl,

U+ w

where ¢ is a positive constant. We chose the latter form,
somewhat arbitrarily (from previous work [2]), for the ex-
amples in this paper. This gives an energy of the form

+ clx(s) —

where 7(s) and 7(t) are the unit tangent vectors at x(s)
and Z(t) respectively.

B.3 Parallelism and Distance Variation

Other criteria may also be favorable, and translation
(or parallelism) is an interesting one frequently to be con-
sidered (see Fig. 6a). It is clear that for a straight seg-
ment to be a translation (parallel) of another one, the
tangents must be equal. To guarantee a symmetric cost
(and account for stretching) one model for parallelism
is given by the energy |7(s)s'(0) — 7(t)t'(¢)|. This cri-
terion is very similar as penalizing for variations of the
distance of the matched points along the parameteriza-
tion. More precisely, we take |d—(a:(s(a)) — &(t(0))) | =
[z4(5)|7()s' (0) — |7 (DIF(¢(s))t'(0) | For a pure trans-
lation of segments both criteria give zero cost. Distance
variations may be important to distinguish two shapes like
in Fig. 7, that would have identical self matching energy
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Fig. 6.
region can pop up.
n) and

Co-Circularity Parallelism

(c)

(a) It is known, from the Gestalt school, that parallelism (or distance variation) can be more salient than co-circularity as the white
(b) The co-circularity criterion is equivalent to mirror symmetry and can be expressed by the relations (¢ — p)
(¢ —p)||(€ —=n). The parallelism (or translation) criterion can be expressed as £||n. It is very similar to a distance variation criterion

L+

(see text). (c) Two different shape axes of a same shape based on co-circularity and parallelism, respectively.

otherwise. Distance variation may also be necessary as it
accounts for perceptual phenomena (see Fig. 6). A study
to choose the preferred human perception model is beyond
the scope of this paper.

dy

(a) Distance d is constant

(b) Distance d is varying

Fig. 7. Both figures have perfect mirror symmetry and yield zero
cost according to the energy (4). They can only be distinguished
by a distance variation criterion, or similar ones like a parallelism
criterion.

B.4 Discretization

In practice the curve I' is given discretely, as a sequence
of N points. The data determine z(s) at s € {s; = iAs;
i=0,...,N}, with As = 1/N (notice that z(sg) = z(sn)),
and if necessary z(s) is determined at other points by inter-
polation. For the mirror curve, we have Z(t;) = z(sn—;),
for j =0,...,N. A match between z(s;) and Z(t;) is de-
fined by p;; = 1, and p;; is zero otherwise. We discretize
the parameterization o € {0}, = kAco; k = 0,..,N}. It
is convenient to set Ao to 1/N, the same step size as

As and At. A match is then defined by the map from
or — (s(or),t(or)). The equivalence between both meth-
ods is given by oy, <> i =1 = (s; = s(ow),t; = t(ox)).

Discretizing the functional (4) and including the cost for
jumps we obtain the discrete energy (cost)

(1 —6(0w)) F(ok,0k41) Ao + 0(0r) x JumpCost

X

k=0
1 N-1
- N Z [(I_H(Uk))F(UkaUkﬂ)] + Z JumpCost,
k=0 jumps

(5)

where F(oy,,0441) is an abbreviated notation that

'1:|>

(0% Or+1)
= F(s(on), t(o
_ [z(s(0

y8(0k+1),t(0k41))

k)
1) = E(t(0n)) (7 (s(01))s' (o) + 7(t (o))t (02))]”

s'(og) + t'(ok)

— 7(t(ok))t' (o)) ]

2

N [(z(s(or)) — 2(t(0n))) (7 (s(ok))s" (ok)

s'(ok) + t'(ox)

+ cz(s(ow)) — Z(t(on))[? b (((jfkk))_+t7;'((‘7’“))|

S(0k+1)*s(0k)7 and t' (o) = Hokt1) —t(on)

s'(o) = Vi TN The
indicator function 6(cy) is defined to be 1 at oy if a jump
occurred, i.e., t(or+) # t(or—) (as discussed before, it
suffices to look at only the vertical jumps), and 0 otherwise.
Analogously,
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1 N—-1N-1
N {,Uzg O(pij)) - F(sistj, sir,tjr)
i=0 j=0
+ JumpCost, (6)
jumps

where 6 is again an indicator function for jumps, and we
have assumed that o, ¢ p;; = 1 and sy = s(opq1),t5 =

H(oht1)-
C. Markov Random Field (MRF) Interpretation

The computational problem is to obtain the optimal set
of pairing (s; = s(ox),t; = t(o)) represented by minimiz-
ing p;; (6). We can interpret the matches as a binary ran-
dom variables and define a coupled Markov random field
distribution for u;; as

1
P(p) = EG—E[{u}]

N—1
= LTT e # Do =000 Fsiaty i )] =0(ni5) umptos.

i,j=0
(7)

where Z is a normalization constant. The lower the energy
is the more likely u’s are to be the solution. The MAP
estimate will yield the minimum energy. By writing the
problem as an MRF we emphasize the local properties of
the energy function as well as its global behavior.

III. SELF-MATCHING AND SA-TREE VIA DYNAMIC
PROGRAMMING

Our task is now to search in the graph {s; x t;;4,j =
0,1,..., N} for an optimal path {uj;;i,j = 0,..., N} that
gives the minimum energy (6) under the constraints dis-
cussed for the path. We show that it can be computed
with dynamic programming in polynomial time, with com-
plexity O(N*).

Notice that although in most of our illustrations of shape
axis, the solution curves are plotted starting from the origin
(e.g., see Fig. 4) | i.e., x(0) is matched to Z(0), this corre-
spondence is not assumed and not required in our method,
i.e., a solution curve does not have to start from the origin.

Single Source Shortest Path (SSSP) or Digkstra’s algo-
rithm. Because the costs of the edges in the graph are al-
ways positive (thus the energy function is a sum of positive
terms), we have also applied the SSSP algorithm to ob-
tain further efficiency. We will not elaborate the approach
based on Dijkstra’s algorithm but concentrate on the dy-
namic programming solution, for simplicity. The SSSP can
be readily adapted as described in [6].

A. Dynamic Programming

From the mirror property stated in (3), we shall focus
on the lower triangular part of the diagram {s; x t;}. Any

possible match, including the optimal one, can be obtained
by searching and scanning downward along diagonal lines,
starting from the mirror line £ = 1—s. The mirror line rep-
resents “self matches”, i.e., matches between points along
the shape contour with themselves. Each diagonal line can
be indexed by a that varies over {0,1,..., N} and repre-
sented as t = § — s. So, a = N corresponds to the mir-
ror line and @ = 0 corresponds to the origin (so,%o) (see
Fig. 8). For convenience, we switch from the representa-
tion of matching points (¢,7) — (s4,¢;) (or ni; = 1) to the
representation [i,a] = (si, % — 8i) (Or ftia = 1).

Dynamic programming sets an initial cost along the mir-
ror line ¢ = N and iterates on a = N — 2,...,0 (note
that @ = N — 1 does not need to be considered since it
will cause a path to reach the mirror line at a non-lattice
point, i.e., we can simply set the costs to infinity at the
line a = N — 1). Along each diagonal line a it visits every
(si» % — 8i), 1 = 0,...,a, solving the subproblem “What is
the cost of the best path passing through (s;, & — s:)?”.

We use the matrix Cost[i,a] to store the best cost of
each subproblem at (s;, & — s;). With this representation,
the second index gives the index a of the diagonal line and
the first index fixes the position on the diagonal line a. A
sketch of the algorithm is as follows.

A.1 Initialization

Initially, all Cost[i,a]’s are set to oo except those on
the mirror line, i.e., Cost[i,N] = 0, for i = 0,..., N. We
could instead put a bias for points along the contour that
their curvatures are local maxima/minima as they are more
likely to be self-matches.

A.2 Tterations on a

Suppose we have solved the subproblems up to line a+1,
i.e., Cost[j,b],j =0,1,....,band b= N,N —1,...,a+1, are
computed. Then, Cost[i,a],i = 0,...,a of diagonal line a
can be derived by

Cost[i,a] = min{Ggli,a],GJ[i,a]} , 8)
where

Gsli,a]

= H ﬁ isla—i ;t C ,b
[J',b]rengsl[i,a]{ (si,t 8jytp—j) + Cost[j ]}

Gj[i,a]

=  min {Cost[i,b]+Cost[N_b+i,N_b+a]
[i,b]€Dli,a)

+(3-2x J[i, 0]

—2xJN—-b+i,N—-b+a]) x JumpCost}, 9)

and
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Fig. 8. (a) A shape contour with a degree 4 bifurcation. (b),(c) The subproblem being solved is (s;, 3 — $i), i.e., to find Cost[i,a]. The
candidate predecessors can either come from Dg to form a smooth transition or from D to form a bifurcation where the grey areas represent
subproblems that have been solved. Notice that to form a degree 3 bifurcation with [z, a], we only need to search the domain D since for
each [i,b] € Dy the third point, [N — b+ i, N — b + a], will be automatically derived. (d),(e),(f) Three different scenarios representing the
same solution: the piecewise smooth solutions display a “periodic” property as the starting point on the contour has been set to A, B and

C, respectively.
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. _ 1, if Cost[i,a] = Gy[i,al,
Tial = { 0, if Costli,a] = Gsli,al,
Dgli,al = {[i+1,d]: a+1<d<=N}

UJ{li+ka+1+k: 0<k<N-a},

Djli,d] {li,d]: a+1<d<N-1}.

The notation Gy represents the cost of grouping the two
branches to be part of a bifurcation (due to jumps) and G g
represents the cost of having the predecessor in a smooth
path (continuation). Dg and D; are the domains where
dynamic programming searches for possible predecessors
to form a smooth path or a bifurcation, respectively (see
Fig. 8b, 8c). The binary matrix J[i,a] defined above is
to guarantee that each (vertical) jump is penalized only
once, and the penalty term in (9) makes sure a degree n
bifurcation to be charged JumpCost exactly n times.

In order to backtrack the optimal solution, the algorithm
also keeps the predecessors

{77,013,

{[6,b), [N — b +4, N = b* + al},
if Cost[i,a] = Gli, al.

if Cost[i,a] = Ggli, al,

Back[i,a] = (10)

A.3 Optimal solution and backtracking

In the end this iterative process, from a = N to a = 0,
will provide Cost[0, 0], the total cost of the optimal match.
The final stage, a = 0, requires special attention due to the
random selection of the starting point of the contour.

There are two possibilities: (i) if z(sp) matches itself,
then there is only one predecessor connecting a smooth
path to reach the origin, and so Cost[0,0] = Gs[0,0]
(see Fig. 8d), and (ii) if z(so) does not match itself, then
there are two predecessors, say [0,b] and [N — b, N — b].
Unlike the usual “jump” case, it does not always imply
a bifurcation, due to the periodicity of a closed curve.
This is when both predecessors are smooth continuations,
ie, J[0,b] = JN —bN — b = 0, and no JumpCost
should be added to G;[0,0] (see Fig. 8e). All other
cases correspond to forming a bifurcation, and they will
be treated as before except that the penalty should be
2 x (1—J[0,b] — JIN — b, N — b]) x JumpCost. So, when
backtracking the optimal match with Cost[0,0] = G [0, 0],
the origin does not represent any match, but only the end
of the algorithm. Thus, our method does not require any
assumption on the starting point of a given shape.

Complexity. There are O(N?) subproblems to be solved
(evaluating Cost[i,a] for i = 0,...,a and a = N — 1,...,0),
and the complexity of each subproblem is O(N?) (the size
of total searching spaces Dg and Dy is O(N) and the com-
putation complexity of F‘(si,ta_i,sk,td_k) is also O(N),
assuming uniform matching). Therefore, the complexity of
this algorithm is O(N*). Backtracking only adds a O(N)
cost to the O(N*) cost of running the algorithm.

B. Analysis of Bifurcations of Degree n

Our analysis originates from a pivotal observation that
by examining bifurcations of degree 3 at each stage, one
can indeed handle bifurcations of any degree (see Fig. 9).

Let us first concentrate on a shape with a bifurcation
of degree 4, see Fig. 8a, and show how our method can
handle it. Then, it follows that the general case to deal
with bifurcations of any degree is also valid by induction.

Observe that the degree of a bifurcation is the same as
the number of smooth branches being grouped together. In
Fig. 8e, the four branches in the upper left shaded boxes are
merged to form a degree 4 bifurcation W XY Z (again, only
need to concentrate on region below the mirror line). So,
one may consider the number of branches inside a box as its
“degree”. Then, we can say that the W XY Z in Fig. 8f is
completed by a merging, at the final stage a = 0, among the
origin and the two shaded boxes of degree 3 and 1, respec-
tively, and it can be denoted as 4 = 3+1+0, corresponding
to WXYZ = WXY + Z + O (here O represents the ori-
gin). Similarly, in Fig. 8d and 8e, each degree 4 bifurcation
isderived by 4 =2+1+1 (or WXYZ =WX +Y + 2).

Notice that there are other possible ways to derive
W XY Z, however they all require the same cost. This is
due to the property that each jump is exactly penalized
once and a degree n bifurcation will be charged JumpCost
n times. In equation (9), the penalty term of G,[i,a] is
formulated to maintain this property. Each time three
branches being grouped together, one should first pay
3 x JumpCost then check if 2 x (J[i,b] + J[N —b+i, N —
b+ a]) x JumpCost can be credited back or not. (The cred-
its account for the considerations that a predecessor can
not be a completion of a bifurcation and a jump should be
charged only once.) One can verify that in Fig. 8d, 8e and
8f, the total penalty for the degree 4 bifurcation in each
case is 4 x JumpCost.

C. Backtracking and SA-trees

By starting at the origin [0, 0], the value Back[i, a] will
take at each step to the predecessor(s). It is either only one
predecessor or two, depending on if it is a continuation or a
bifurcation. (For simplicity, we will not discuss the special
case when [0,0] has two predecessors but still a continua-
tion as in Fig. 8e.) When there is one predecessor it con-
tinues accumulating (retrieving) the segment path. When
it gives two predecessors we can group them together and
argue it has reached a bifurcation node of the tree. To com-
plete a bifurcation node, backtracking should be applied to
each of the two predecessors in parallel, and such processes
are carried out recursively until reaching points with only
one predecessor. Then all these 1-predecessor points will
be grouped together to complete the bifurcation node, and
the backtracking process starting again from each of them.
For example, in Fig. 8d, once the backtracking reaches Z,
it starts to collect the 1-predecessor points associated with
the underlying bifurcation node. So, W, X and Y are
grouped together to form the WXY Z bifurcation node.
The backtracking then continue to proceed from each of
the W, X, and Y.
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Fig. 9. The algorithm can handle any number of bifurcations of any finite degree. We show examples of (a) none, (b) two degree-3 (c) one

degree-4, (d) one degree-5 bifurcations.

Eventually all the backtracking processes will reach the

mirror line, i.e., when all the branches reach the mirror
line the process is finished. The end points of each of the
branches are turned into leaves of the tree. (If [0, 0] only has
one predecessor, it is also a leaf.) These nodes correspond
to self-matches of points on the contour and so we may
refer to them as contact points of the match. The nodes of
an SA-tree can be classified as
1. Bifurcation nodes: The nodes constructed along the
backtracking process correspond to bifurcations of the SA
and therefore we call them bifurcation nodes of the SA-
tree. We refer to the SA-tree by T. The bifurcations nodes
are then referred by Bifurcation(T).
2. Leaf nodes: The nodes created at the end of the back-
tracking process, where all the branches of the backtracking
reaches the mirror line (and possibly the origin), are called
leaf nodes. They are the leaves of the tree, and correspond
to contact points, i.e., matches between points of the con-
tour with themselves. These are places where the SA meets
the shape contour. In the tree structure they correspond
to the leaves and we refer to these points by Leaf(T).

Object parts. We have now a language for defining object
parts, where every two consecutive nodes of the SA-tree
and the edge in between correspond to an object part. How
much our definition can describe object parts in the sense of
human perception of object parts is still subject of further
investigation.

IV. EXPERIMENTAL RESULTS AND APPLICATION

We have carried out a variety of experiments to test some
specific properties of the model, and to display the general
quality of the model/approach. In all our experiments, we
have used JumpCost = 100 for all the experiments (and the
results are robust with respect to small variations), unless
specified differently. It takes roughly 4.5 minutes to find
the optimal shape axis for a shape contour of 1000 points
size, on a Pentium-III 650 Mhz PC.

A. Shape-Azis Detection

We have carried out a variety of experiments to test some
specific properties of the model, and to display the general
quality of the model/approach. In all our experiments, we
have used JumpCost = 100 for all the experiments (and the
results are robust with respect to small variations), unless
specified differently. It takes roughly 4.5 minutes to find

the optimal shape axis for a shape contour of 1000 points
size.

First, we show an experiment to test how the algorithm
is sensitive to perturbations on the shape contour. In
Fig. 10a, it shows that when the perturbation becomes sig-
nificant then it turns into a part and causes bifurcation
in the SA. The parameter JumpCost controls the breaking.
The larger the JumpCost is the larger a perturbation has to
be to cause a new part. The other experiments (Fig. 10b
and 10c) are to support our observation that to control the
number of bifurcations indirectly via penalizing the degree
of a bifurcation leads to a more stable system.

Second, we examine the assertion that our approach can
have an SA that is inside and outside the shape contour.
Moreover, we analyze the bias our model of SA has towards
small distance to the shape contour (given by the terms
|z(s)—Z(t)|?). Fig. 5 shows how the SA weights the number
of bifurcations over the distance term, as the JumpCost vary
from a 100 to 1000. It can produce SA’s that are outside
and inside the shape.

Third, as the main advantage of our method, the algo-
rithm can obtain SA for a 2-D shape with any number of
bifurcation of any finite degree. The results for closed and
open shapes are shown in Fig. 9 and Fig. 11, respectively.

Finally, various SA’s are computed for a variety of shape
contours as shown in Fig. 13.

A.1 Open shapes and SA-Forest

The proposed dynamic solution can be extended to ex-
tract the SA’s from open contours. Experimental results
for open shape contours are shown in Fig. 11. For an open
contour, it has two distinct end points, and they start the
two parameterizations accordingly. To find the shape axis,
we only need to modify the final step solving for the sub-
problem (0,0). Notice that if a shape axis is derived by a
match where the two end points are not matched to each
other, the corresponding SA-tree will degenerate into an
SA-forest (see Fig. 11e).

B. An Application to Shape Comparison

We now demonstrate the efficiency of the proposed
model, and to show that with a good representation, it is
possible to have a general framework to address the issues
of shape stretching, articulation, and occlusion simultane-
ously.
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(a)

Fig. 10.

(a)Rectangular shape with small perturbation and with large perturbation. The shape will break into an additional new part

if the perturbation is large enough. (b) To control the number of bifurcations indirectly via penalizing the degrees of bifurcations is more
stable,compared to the results in (c), derived when JumpCost depends directly on the number of bifurcations.

Fig. 11. (a)-(e)The algorithm can also be applied to open contours, but the SA-tree may be degenerated into an SA-forest as in (e).

Since the local and global information of a shape is en-
coded compactly using the SA-tree representation, com-
paring the similarity between two shapes can, therefore,
be realized by measuring the degree of deformation of one
shape into the other via matching their respective SA-trees.
More precisely, we formulated an approzimate tree match-
ing scheme to compute the cost of matching one SA-tree
to the other one. It is an exact method, that allow inexact
matches (nodes in one tree do not have to match nodes in
the other three) and gives the flexibility to matching two
arbitrary SA-trees. In particular is applied when viewing
position, stretching, articulation, and occlusion yield differ-

ent shape contours, and thus different SA-trees even for the
same object. There are many other approaches to shape
matching according to various representation schemes of
shapes. Closely related to the symmetry axis representa-
tion is the work by Siddiqi et al. [33] and the one by Pelillo,
Siddigi, and Zucker [24]. These approaches, though differ-
ent, stress the importance of the symmetry axis represen-
tation.

With the SA-tree representation, we are able to utilize
its free tree property and the topological structure infor-
mation among neighboring nodes. Typical techniques such
as pruning and merging vertices can be applied in the pro-
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Fig. 12. The results illustrate that the SA-tree shape matching can account for articulation. Unlike typical string matching algorithms, the
derived matching is not restricted to following a sequential ordering along the contours but considering a free tree structure. The difficult
issue of occlusion can be handled appropriately by approximate tree matching with cut operation, as shown in (c). The degree of similarity
decreases in the order of (a), (b) and (c) as their respective matching costs increase.

cess of matching to account for stretching and occlusion.
Furthermore, since the actual geometric information and
the best pairing pairs of points along a shape contour are
encoded into the edges of an SA-tree, we can find not only
the node-to-node but also the edge-to-edge/edge-to-path
correspondences between two SA-trees. Such extension is
more versatile than the regular approximate tree pattern
matching [30]. The best approximate matching between
two SA-trees can be found efficiently with an A* algorithm.
In Fig. 12, three matching results are shown to illustrate
the matching scheme can generate good matching qual-
ity even when deformation, articulation and occlusion are
present. In practice, to encode a collection of shapes into

SA-trees can be done off-line. As to the SA-tree matching,
it takes less than one minute to complete for shapes around
the size of 1000 points, with a Pentium-III PC. Interested
readers may find further details in [16].

V. CONCLUSION

We have proposed a new approach to shape representa-
tion. It is inspired by the idea of the symmetry axis [4].
The approach is the first one to be a variational one, i.e.,
the shape axis we obtain, given the shape, can be inter-
preted as the minimum solution to a well defined criterion.
This is also where the power of the approach relies, where
by changing the optimality criterion we can obtain different
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(a) Shapes extracted from real images and their shape axes and SA-trees. (b) Examples of shape axes and SA-trees of various

Fig. 13.
human shapes.
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representations. Thus, one can (i) regularize the solution
by adding penalties for bifurcations, (ii) add penalties for
distances between the matched points (iii) vary the symme-
try criterion, e.g., co-circularity, parallelism, add distance
variation, add curvature terms. It is worth noticing that
the number of branches in a bifurcation is allowed to be
arbitrary, thus data driven.

The insight is to match a curve with itself, by establish-
ing two different parameterizations (clockwise and coun-
terclockwise) to the closed curve/shape and matching the
two parameterizations. The optimal matching minimizes
the variational criterion. The topological and geometrical
constraints become matching constraints. We have given a
precise formulation within the theory of matching curves,
establishing the criteria/requirements on the form of the
functional such that the solution is parameterization inde-
pendent and scale independent.

We have also shown that a dynamic programming solu-
tion exists and it is guaranteed to find the optimal solu-
tion (shape axis). The complexity of the solution is O(N?)
where IV is the size of the discretized contour chain. Be-
cause the optimization criterion is written as a sum of posi-
tive costs, the graph where dynamic programming find the
optimal solution have all positive value edges. This implies
that the Dijkstra’s algorithm can also be applied with more
efficiency.

Overall we have described and demonstrated the effi-
ciency and flexibility of our approach/algorithm on a va-
riety of shapes, open or closed. An application to shape
matching is also discussed to show the advantages of our
proposed system over others.
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