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Real-Time Tracking Using Trust-Region Methods
Tyng-Luh Liu, Hwann-Tzong Chen

Abstract— Optimization methods based on iterative
schemes can be divided into two classes: line-search methods
and trust-region methods. While line-search techniques are
commonly found in various vision applications, not much
attention is paid to trust-region ones. Motivated by the
fact that line-search methods can be considered as spe-
cial cases of trust-region methods, we propose to establish
a trust-region framework for real-time tracking. Our ap-
proach is characterized by three key contributions. First,
since a trust-region tracking system is more effective, it of-
ten yields better performances than the outcomes of other
trackers that rely on iterative optimization to perform track-
ing, e.g., a line-search based mean-shift tracker. Second,
we have formulated a representation model that uses two
coupled weighting schemes derived from the covariance el-
lipse to integrate an object’s color probability distribution
and edge density information. As a result, the system can
address rotation and non-uniform scaling in a continuous
space, rather than working on some presumably possible
discrete values of rotation angle and scale. Third, the frame-
work is very flexible in that a variety of distance functions
can be adapted easily. Experimental results and compar-
ative studies are provided to demonstrate the efficiency of
the proposed method.

Keywords— Tracking, vision, iterative optimization, trust-
region methods.

I. Introduction

A key component of a successful tracking system is its
ability to search efficiently for the target. Focusing on this
goal, we propose a new approach for tracking using trust-
region methods [6]. Previous uses of trust-region have been
in areas other than real-time tracking, e.g., [12], [13]. While
the applications are different, the efficiency of trust-region
methods as an optimization tool has been demonstrated.
Recently, Chen and Liu [4] have applied trust-region to
tracking, and Sminchisescu and Triggs [16] have used them
for 3-D body tracking.

A. Our Approach

We view a tracking process as a sequence of iterative op-
timization problems: For each image frame the task is to
find an optimal solution that best describes the status of
a target object. It requires an effective method to solve
the underlying optimization problem appropriately. Most
of the iterative optimization techniques used in tracking as
well as other vision research are line-search in that the iter-
ates are restricted to some iteration-dependent directions,
e.g., the gradient. We instead use trust-region methods for
their efficiency and reliability.

In addition, motivated by [5], we formulate a flexible
object representation. It integrates both color and edge in-
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formation via two coupled weighting schemes derived from
a covariance ellipse model. Unlike other previous related
works [2], [5], where the values of scale are limited to few
pre-determined ones, the representation allows a system
to perform optimization over a continuous space to yield
better performance.

B. Previous Work

Methods based on Bayesian framework have been play-
ing an important role in tracking, e.g., [11], [15], [18].
Among them, the CONDENSATION algorithm [11], intro-
duced by Isard and Blake to track contours in clutter via
factored sampling, is perhaps the most well-known one. Its
main idea is to pinpoint the inappropriateness of the Gaus-
sian state density assumption for tracking in clutter while
multiple competing observations exist.

It is also possible to track objects of more complicated
shapes using a learning approach [1], [7], [8], [9], [17]. Dif-
ferent from CONDENSATION, Freedman and Brandstein [7],
[8] consider the contour-tracking problem without assum-
ing any dynamical model. They establish, via learning, a
subset tracker to perform tracking through minimization.
Exemplar-based methods [9], [17] require an off-line learn-
ing phase to generate object representations from exam-
ples, and then use distance measures to perform template
matching.

If the objects to be tracked are non-rigid, it is con-
venient to represent them with probability distributions.
A straightforward way to derive a distribution model is
through histogram analysis [2], [3], [4], [5]. Birchfield [2] has
proposed an algorithm to track a person’s head by mod-
eling it as a vertical ellipse with a fixed aspect ratio. In
[3], Bradski presents a CAMSHIFT (continuously adaptive
mean shift) system for use in a perceptual user interface to
track faces. Comaniciu et al. [5] have used the mean shift
to track non-rigid objects. They model objects by color
distributions, and then measure the similarity between the
target and candidate distributions using a Bhattacharyya
coefficient. Note that the mean-shift technique is indeed
a line search, and later we will discuss the comparisons
between the mean-shift and our approach.

II. Trust-Region Methods

Iterative algorithms for optimization can be divided into
two classes: line-search and trust-region. For a line-search
one, the iterates are determined along some specific di-
rections, e.g., steepest descent locates its iterates by con-
sidering the gradient directions. A trust-region method,
however, derives its iterates by solving the corresponding
optimization problem in a bounded region iteratively. So,
there are more options to select the iterates. In fact, line-
search methods can be considered special cases of trust-
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region methods [6].
The concept of trust-region methods can be better un-

derstood by considering a typical unconstrained minimiza-
tion problem,

min
x∈V

f(x) , (1)

where V is a vector space, and f is some objective function
to be minimized.

Essentially, there are three elements to any trust-region
method: (i) trust-region radius, to determine the size of a
trust region; (ii) trust-region subproblem, to approximate
a minimizer in the region; and (iii) trust-region fidelity, to
evaluate the accuracy of an approximating solution.

To illustrate, suppose an initial guess x0 and an initial
trust-region radius �0 > 0 are given, and let η1 and η2
be some constants satisfying 0 < η1 ≤ η2 < 1. For each
iteration k ≥ 0, we first define, for the vector space V, an
iteration-dependent norm ‖·‖k and an iteration-dependent
inner product 〈· , ·〉k by

‖s‖2
k = 〈s, s〉kdef= 〈s,Mks〉, for any s ∈ V,

where 〈· , ·〉 is the inner product, and Mk is an iteration-
dependent matrix. (We will discuss how to determine Mk

later.) Then at iteration k, with iterate xk and trust-region
radius �k, the following three steps are performed within
the trust region Bk = {x ∈ V | ‖x − xk‖k ≤ �k}.
1. Trust-region subproblem: We first construct a modelmk

to approximate f in Bk. In our system, a quadratic model
is used for the approximation, i.e.,

mk(xk + s) = mk(xk) + 〈gk, s〉 +
1
2
〈s, Hks〉, (2)

where mk(xk) = f(xk), gk = ∇xf(xk), and Hk is the
Hessian of f at xk. When Hk 	= 0, mk is said to be a
second-order model. A trust-region subproblem is then to
compute an sk, where ‖sk‖k ≤ �k, such that the model
mk is “sufficiently reduced,” that is,

sk = argmin
‖s‖k≤�k

ψk(s) def= 〈gk, s〉 +
1
2
〈s, Hks〉. (3)

2. Trust-region fidelity: After solving a subproblem, the
trial point xk + sk will be tested to see if it is a good
candidate for the next iterate. This is evaluated explicitly
by

rk =
f(xk) − f(xk + sk)

mk(xk) −mk(xk + sk)
.

If rk ≥ η1, then the trial point is accepted, i.e., xk+1 =
xk +sk. Otherwise, xk+1 = xk. Since η1 is a small positive
number, the above rule favors a trial point only when the
value of the objective function f is also reduced. When mk

approximates f well and yields a large rk, the trust-region
radius will be expanded for the next iteration. On the other
hand, if rk is smaller than η1 or rk is negative, it suggests
that the objective function f is not well approximated by
the model mk within the current trust region Bk. There-
fore, the iterate remains unchanged, and the trust-region

radius will be shrunk to derive more appropriate model and
subproblem for the next iteration.
3. Trust-region radius: More specifically, the trust-region
radius can be updated as follows.

∆k+1 =




max {α1‖sk‖k,∆k} if rk ≥ η2,

∆k if rk ∈ [η1, η2),
α2‖sk‖k if rk < η1,

where, following [6, p.782], we have η1 = 0.05, η2 = 0.9, and
α1 = 2.5, α2 = 0.25. The iterative optimization process
for (1) will be repeated until the sequence of iterates {xk}
converges.

A. Trust-Region Scaled Norm

An objective function f(x) may have variables whose
typical values are of different orders of magnitude. For
example, in real-time tracking, the values of spatial vari-
ables are often much larger than the vales of scale vari-
ables. Without re-scaling the variables properly, the con-
tributions from variables of small values tend to be dom-
inated by those from variables of large values. It can
then lead to unexpected optimization results. To deal
with such issues, the re-scaling will be done for each it-
eration k through a nonsingular matrix Sk to ensure every
trust-region subproblem is solved in a reasonably scaled
space. In particular, we have used nonsingular diagonal
matrices Sks, where the diagonal entries correspond to
typical values of the respective variables. It follows that
the new variables, say x̃, in the scaled space are derived
by x̃ = S−1

k x . As a result, x̃ will be of comparable
scales after the re-scaling. Moreover, as is proved in [6],
it is not necessary to reformulate a trust-region subprob-
lem using the new variables since re-scaling the variables
is equivalent to using an iteration-dependent scaled norm
defined by ‖s‖2

k =< s,Mks >=< s, S−T
k S−1

k s >, where
Mk = S−T

k S−1
k is an iteration-dependent matrix.

B. Trust-Region vs. Line-Search

In our approach, we have used a quadratic model mk

for the implementation. If, instead, a linear model is used,
then the RHS of (2) is reduced to the first two terms. This
implies that a trust-region method with a linear model ap-
proximation is almost like gradient descent, but it often
achieves better performances owing to its ability to adjust
trust regions adaptively throughout the iterations. This is
why line-search methods can be considered special cases of
trust-region.

Both trust-region and line-search are guaranteed to con-
verge to a local minimum. However, not all local minima
are of interest for real application. Typical line-search, e.g.,
steepest descent or even trust-region with a linear model
approximation may often converge to a local minimum that
is inferior to a nearby one. In Fig. 1, we construct an ob-
jective function with three local minima, x1, x2, and x3.
Among them, x1 is clearly the global minimum. We test
the three schemes, using 1000 different initial positions,
x0s, sampled uniformly from [56.96, 66.95]. Though the
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Fig. 1. Optimizing with Steepest Descent, TR+linear model, and TR+quadratic model. Out of 1000 runs, with initial positions x0s, sampled
uniformly from [56.96, 66.95], we record in each entry the number of times that a method converges to a local minimum.

x0s are indeed close to the global minimum x1, steepest de-
scent fails to converge to x1 258 times. Trust-region meth-
ods are tested with different ∆0, and are more successful
in converging to x1. In passing, note that the mean-shift
technique in [5] is a more conservative line-search. Instead
of taking largest/steepest steps along gradients, it usually
progresses by small steps, computed from the information
within fixed-size windows. Such an approach tends to con-
verge to a nearby local minimum regardless of its signifi-
cance. Thus, both a more sophisticated model approxima-
tion and a mechanism to iteratively adjust the regions of
interest are needed to reduce the chance of converging to a
local minimum not of interest.

III. Representations and Objective Functions

Motivated by the work of Comaniciu et al. [5], we also
use probability distributions to represent targets. But un-
like [5], where the analysis relies on kernel properties, we
simply treat the color distribution as a weighted color his-
togram to account for the possible non-rigidity of objects.

A. Representation Models for Tracking

Tracking objects by distribution is efficient but not nec-
essarily sufficient. Suppose the scale of a target object of
monotone color is enlarged. Then, it is not guaranteed that
the appropriate scale will always be recovered since, in this
case, any sub-portion of the object has a similar distribu-
tion to that of the object. Other tracking cues are needed
to elevate the performance, e.g., [14]. In our system, the
representation model consists of two elements: the first is
to characterize the RGB color distribution, and the second

is to estimate the edge density near the object boundary.
Since the edge density is contributed mainly from samples
near the boundary, and more prone to be affected by the
background, we choose color distribution as the primary
cue for tracking.

A.1 Color Distribution

For computing the weighed color histogram, the RGB
color space is first divided into n bins, and a bin assignment
function b is defined uniquely by each pixel xi’s RGB value
as b : xi 
→ {1, . . . , n}. We then formulate a color weighting
scheme based on the bivariate normal distribution, defined
by φ(x,µ,Σ) = 1

2π|Σ|1/2 e
−(x−µ)T Σ−1(x−µ)/2, where x =

(x1, x2)T , µ = (µ1, µ2)T is the mean vector, and Σ is the
covariance matrix.

Let the correlation coefficient ρ = σ12/σ1σ2. Then, when
|ρ| < 1, the bivariate normal distribution can be rewritten
as

φ(x; ζ) =
1

2πσ1σ2

√
1 − ρ2

exp
{
−ε(x; ζ)

2

}
, (4)

where, to simplify the notations, we have σ = (σ1, σ2)T ,
ζ = (µ,σ, ρ) = (µ1, µ2, σ1, σ2, ρ), and

ε(x; ζ) =
1

1 − ρ2

{
(x1 − µ1)2

σ2
1

− 2ρ
(x1 − µ1)(x2 − µ2)

σ1σ2

+
(x2 − µ2)2

σ2
2

}
.

From (4), it implies that lines of constant φ correspond to
constant exponents, i.e., ε(x; ζ) = constant represents an
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Fig. 2. (a) Bivariate normal for color weights. (b) Crater function for edge weights. (c) A covariance ellipse can be represented either by
(p1, p2, θ) or by (σ1, σ2, ρ), where p1, p2 are lengths of the principal semi-diameters, and θ is the angle between the p1 semi-diameter and the
x1 axis. (d) Peaks of a crater function occur near the loci of the coupled covariance ellipse.

ellipse centering at µ. We focus only on the covariance
ellipses, which satisfy ε(x; ζ) = 1 (denoted as ε1(ζ)), to
construct the color weighting scheme.

Now, let I0 be the first image frame and ζ0 =
(µ0,σ0, ρ0). Then, a target object initially centering at
µ0 can be associated with A1(ζ0) = {x | ε(x; ζ0) ≤ 1},
the area enclosed by ε1(ζ0). We define the target’s color
distribution within A1(ζ0), denoted as p(u; ζ0), by

p(u; ζ0) =
1
Cp

∑
xi∈A1(ζ0)

wc(xi; ζ0)δ(b(xi) − u)

wc(xi; ζ0) = exp
{
−ε(xi; ζ0)

2

}
,

(5)

where δ is the Kronecker delta function, and wc is the de-
rived color weighting function. That p(u; ζ0) is a probabil-
ity implies Cp =

∑
xi∈A1(ζ0)wc(xi; ζ0). For convenience,

the notation p(u; ζ0) will be abbreviated into p(u) since ζ0

only describes the target’s initial state. Analogously, dur-
ing tracking, the color distribution of some A1(ζ), denoted
as q(u; ζ), is

q(u; ζ) =
1
Cq

∑
xi∈A1(ζ)

wc(xi; ζ)δ(b(xi) − u),

where Cq is the total weight such that
∑n

u=1 q(u; ζ) = 1.

A.2 Edge Density

For every wc in (5), we can use a crater function to define
a coupled edge-point weighting function we. Specifically,
we have we(xi; ζ) = γ ε(xi; ζ) exp

{−γ
2 ε(xi; ζ)

}
, where γ

is the parameter to adjust the shape of a crater function
and the size of a crater’s opening. It can be verified by
a straightforward calculation that for γ = 2, the peaks
of the level surface of a crater function occur at the loci
of the associated covariance ellipse as shown in Fig. 2d.
In practice, we find better tracking performance can be
achieved by using a slightly larger γ, say γ = 4, in that
significant values of edge weight are within the covariance
ellipse.

Finally, we adopt the notation e(ζ) to represent the edge
density within and near the boundary of a covariance el-
liptic region A1(ζ). The scale-invariant definition of e(ζ)

is as follows.

e(ζ) =
1

σ1σ2

∑
xi∈A1(ζ)

we(xi; ζ)E(xi), (6)

where E(xi) is a binary edge map, derived from a high-pass
5 × 5 Laplacian filter in [10].

B. Objective Functions for Tracking

In view of the object representation model just described,
a tracking process for an arbitrary target can be character-
ized then by evolution dynamics of a covariance ellipse,
ε1(ζt), where we simply denote the process as ζ0 → ζ1 →
ζ2 → · · · . To decide an optimal ζt for each frame It, we
still need to formulate an appropriate objective function to
complete the framework.

Since there are two rather distinct features included in
the representation model, the resulting objective functional
must address these two factors justifiably. First, to measure
the similarity between two color distributions, we consider
the Kullback-Leibler distance, i.e.,

fc(ζ) =
n∑

u=1

p(u) log
p(u)
q(u; ζ)

, (7)

where p(u) is the target (true) color distribution and q(u; ζ)
is the one for the covariance ellipse ε1(ζ). Second, to esti-
mate whether the boundary edge density of a candidate co-
variance ellipse is comparable to the one of target’s, we em-
bed the edge density ratio, denoted as h(ζ) = e(ζ)/e(ζ0),
into a sigmoid function to derive the following,

fe(ζ) = 1 − 1
1 + exp {−α(h(ζ) − β)}

=
1

1 + exp {α(h(ζ) − β)} , (8)

where α and β are parameters for setting up the initial
sigmoid function. (We use α = 5 and β = 1 for all the
experiments.) Finally, with the definitions in (7) and (8),
the underlying optimization problem for each image frame
It can be formally written as

ζt = argmin
ζ∈Ωt

f(ζ) = fc + λ fe , (9)
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Fig. 3. TR: Trust-Region, MS: Mean-Shift, BH:Bhattacharyya, and KL: Kullback-Leibler. In each image, the final convergent circle is
plotted in white and the intermediate ones in yellow.

where λ is a parameter to weigh the relative importance of
the two terms, and Ωt is the space consisting of all possible
ζ’s for any combinations of translation, scale, and orienta-
tion.

IV. Experimental Results and Discussion

We demonstrate the efficiency of our method by (i) mak-
ing comparisons with a mean-shift tracker [5], and (ii) car-
rying out a variety of experiments of different scenarios.

A. Trust-Region vs. Mean-Shift

In [5], the color distribution is used as the only cue
for tracking, and the Bhattacharyya coefficient, defined by∑n

u=1

√
p(u)q(u;x), is chosen to be the objective function

to be maximized. Since a mean-shift vector is simply to
approximate the gradient of an objective function, thus for
the sake of comparison, we implement a trust-region tracker
with a linear model approximation, and use the exact color
representation model described in [5] for all comparisons.
This implies we are dealing with two trackers: trust-region
(TR) and mean-shift (MS), and two objective functions:
Kullback-Leibler distance (KL) and Bhattacharyya coeffi-
cient (BH). Totally there are four possible combinations:
MS+BH, TR+BH, MS+KL, and TR+KL.

In Fig. 3, we show some of the results obtained by using
MS+BH and TR+KL, respectively. The main advantage
of experimenting with such a sequence is that the resulting
level surfaces are mostly smooth but with sporadic local ex-
trema. Thus, it is easier to pinpoint the causes of different
outcomes. We also examine the values of objective func-
tions explicitly. To do so, we randomly generate 500 initial
positions for an arbitrary image frame from the Magnet se-
quence, then perform optimizations from each position us-
ing MS+BH and TR+BH, respectively. The same process
is repeated for MS+KL and TR+KL. We then count the
number of occurrences of converging to a better objective
function value by trust-region. This quantitative analy-
sis is also performed for the other three sequences shown

in Fig. 5. Our results, in Fig. 4, indicate that no matter
which objective function is used, BH or KL, the probability
that a trust-region tracker is more effective is about 90%,
by converging to better values 3675 times out of 4000 tests.
Note that the efficiency can be further improved by using
a quadratic model approximation.

B. Tracking by TR+KL+Edge

We turn now our attention to experimenting with
the complete algorithm, i.e., using trust-region with a
quadratic model to preform tracking via optimizing with
(9). In all our experiments, the RGB space is divided into
16 × 16 × 16 = 4096 bins. Other parameters used include:
λ = 0.2, initial trust-region radius ∆0 = 4, and typical
values of the diagonal of Sk are (10, 10, 1, 1, 0.1). The ex-
periments are carried out on a Pentium-4 2.4GHz PC.

The first sequence is to show the tracker’s ability to pur-
sue a fast moving object (a kid jumping around), account-
ing for the 2-D translation factor only. Note that, in Fig. 5a
- 5d, the intermediate iterates/ellipses are plotted in green
to illustrate the underlying optimization process. In the
second experiment, we demonstrate, in Fig. 5e - 5h, the
effectiveness of optimizing over a 5-dimensional continu-
ous space to capture various changes in the object’s scale,
shape, and orientation. We emphasize that if a system has
a status variable ζ limited to just some pre-determined dis-
crete values of scale and orientation, it generally could not
deliver a comparable performance. The third test is per-
formed using a pan/tilt/zoom camera where the target per-
son in the scene moves back and forth to bring about rapid
and substantial changes in the size of the face appeared
in Face sequence. While most tracking-by-distribution sys-
tems cannot handle such difficulties, our method addresses
the issues of scales robustly as shown in Fig. 5i - 5l.

C. Complexity Analysis

Since the algorithm is iterative, and it typically takes
just few iterations to converge, it suffices to analyze the
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time complexity for one iteration. For frame t, let m be
the number of pixels within A1(ζt) and d be the dimen-
sionality of ζ. (In our formulation, d = 5.) We first need
to compute the color histogram q(u; ζt), the edge density
e(ζt) in (6), the gradient gk, and the Hessian matrix Hk,
which it takes O(m), O(m), O(dm), and O(d2m) time,
respectively. Next, it takes O(n) time to evaluate fc by
summing up p(u) log p(u)

q(u) , and O(1) time for fe. (Recall
that n is the number of color bins.) Finally, for solving a
trust-region subproblem, since the number of iterations is
assumed to be less than a fixed number, the time complex-
ity only depends on dimensionality d. In particular, to find
a minimizer of the subproblem, we have to compute ψk and
‖sk‖k in (3), or find the intersection on the region bound-
ary. The first requires O(d2) time, and the latter two take
O(d) computation time. When Hk is non-convex, we need
extra O(d2) time to find the other possible iterate. There-
fore, the time complexity for one iteration of the complete
TR tracking algorithm is O(d2m+ n).

D. Discussion

Our approach focuses mainly on two important issues:
optimization and representation. Specifically, we have dis-
cussed three choices for optimization: line-search, trust-
region with a linear-model approximation, and trust-region
with a quadratic-model approximation. While the three
all have the desired property to converge to a local mini-
mum, we investigate the quality of a solution. To empha-
size, we note that a line-search method may fail to converge
to a better, nearby extremum due to a crude approxima-
tion to the local shape of an objective function. We then
compare our method with a well-known mean-shift tracker
to demonstrate the advantages of being able to find the
iterates in a region and to adjust the size of the region
adaptively. Nonetheless, it is difficult to evaluate quantita-
tively the performances of two different tracking methods
because when testing with a video sequence, they often

start at different initial positions for each intermediate im-
age frame. Thus, we instead do the quantitative analy-
sis for one arbitrary image frame with randomly generated
starting positions. This is equivalent to solving an iterative
optimization problem using the two methods, respectively,
for each initial value. Such modifications make it possible
to analyze the results explicitly, and to further verify that
a trust-region implementation for tracking is often more
reliable and effective than a line-search one.

Other efforts have been made to design a good repre-
sentation model. We have formulated a covariance-ellipse
representation to integrate color and edge density informa-
tion. It enables the system to perform optimization over a
continuous space to yield more accurate results. Our future
work includes extending the framework for multiple-object
tracking, and exploiting other possible applications in com-
puter vision using trust-region methods.
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