
Theory of Computation
Course note based on Computability, Complexity, and Languages: Fundamentals of Theoretical

Computer Science, 2nd edition, authored by Martin Davis, Ron Sigal, and Elaine J. Weyuker.

course note prepared by

Tyng–Ruey Chuang

Week 1, Spring 2008

About This Course Note

• It is prepared for the course Theory of Computation taught at the National Taiwan
University in Spring 2008.

• It follows very closely the book Computability, Complexity, and Languages: Funda-
mentals of Theoretical Computer Science, 2nd edition, by Martin Davis, Ron Sigal,
and Elaine J. Weyuker. Morgan Kaufmann Publishers. ISBN: 0-12-206382-1.

• It is available from Tyng-Ruey Chuang’s web site:

http://www.iis.sinica.edu.tw/~trc/

and released under a Creative Commons “Attribution-ShareAlike 2.5 Taiwan” license:

http://creativecommons.org/licenses/by-sa/2.5/tw/

This course aims to cover . . .

• the development of computability theory using an extremely simple abstract program-
ming language,

• the various different formulations of computability and their equivalence,

• the expressiveness and limitation of various kinds of automata and formal languages,
and

• the basics of the theory of computational complexity.

1



By the end of this course, you should be able to . . .

• appreciate the existence of universal digital computers,

• understand there are well-defined functions that cannot be computed even by the
universal computers,

• know that certain problems are truly harder than others,

• use various formalized computation models to solve your problems, and

• show that some problems are just too difficult for the models at hand.

Textbook
Martin Davis, Ron Sigal, and Elaine J. Weyuker. Computability, Complexity, and Lan-

guages: Fundamentals of Theoretical Computer Science, 2nd edition. February 1994, Morgan
Kaufmann. ISBN: 0122063821.

• Written for people who may know programming, but from a mathematical view of the
subjects. Enjoyably readable but very rigorous.

• “It is our purpose . . . to provide an introduction to the various aspects of theoretical
computer science for undergraduate and graduate students that is sufficiently compre-
hensive that . . . research papers will become accessible to our readers.” (the authors)

• We will cover just one half of the materials in the book.

Schedule (1/2)

02/20 Preliminaries; A Programming Language. (1.1–1.7; 2.1–2.2)

02/27 Computable Functions; Primitive Recursive Functions. (2.3–2.5; 3.1–3.4)

03/05 Coding Programs by Numbers. (3.5–3.8; 4.1)

03/12 The Halting Problem; Universality. (4.2–4.3)

03/19 Recursively Enumerable Sets. (4.4–4.5)

03/26 Diagonalization and Reducibility. (4.6–4.8)

04/02 A Computable Function That Is Not Primitive Recursive. (4.9)

04/09 Turing Machines. (6.1–6.4)

04/16 mid-term examination

2



Schedule (2/2)

04/23 Nondeterministic Turing Machines; Semi-Thue Processes. (6.5–6.5; 7.1–7.2)

04/30 Post’s Correspondence Problem. Grammars. (7.2–7.6)

05/07 Regular Languages, Part 1. (9.1–9.4)

05/14 Regular Languages, Part 2. (9.5–9.7)

05/21 Context-Free Languages, Part 1. (10.1–10.4)

05/28 Context-Free Languages, Part 2. (10.5–10.9)

06/04 Context-Sensitive Languages. (11.1–11.3)

06/11 Polynomial-Time Computability. (15.1–15.4)

06/18 final examination

Outline of Today’s Lecture

• Review some preliminary materials.

• Define an abstract programming language S that is extremely simple.

• Write some programs in S .

1 Preliminaries (1)

1.1 Sets and n-tuples (1.1)

Cartesian Product

• If S1, S2, . . . , Sn are given sets, then we write S1 × S2,× · · · × Sn for the set of all
n-tuples (a1, a2, . . . , an) such that a1 ∈ S1, a2 ∈ S2, . . . , an ∈ Sn.

• S1 × S2,× · · · × Sn is called the Cartesian product of S1, S2, . . . , Sn.

• In case S1 = S2 = · · · = Sn = S we write Sn for the Cartesian product S1×S2,× · · ·×
Sn.

3



1.2 Functions (1.2)

Functions

• A function f is a set whose members are ordered pairs (i.e., 2-tuples) and has the
special property

(a, b) ∈ f and (a, c) ∈ f implies b = c.

We write f(a) = b to mean that (a, b) ∈ f .

• The set of all a such that (a, b) ∈ f for some b is called the domain of f . The set of all
f(a) for a in the domain of f is called the range of f .

• A partial function on a set S is a function whose domain is a subset of S. If a partial
function on S has the domain S, then it is called a total function.

• We write f(a) ↓ and say that f(a) is defined if a is in the domain of f ; if a is not in
the domain of f , we write f(a) ↑ and say that f(a) is undefined.

Examples of Functions

• Let f be the set of ordered pairs (n, n2) for n ∈ N . Then, for each n ∈ N , f(n) = n2.
The domain of f is N . The range of f is the set of perfect squares. f is a total function.

• Assuming N is our universe, an example of a partial function on N is given by g(n) =√
n. The domain of g is the set of perfect squares. The range of g is N . g is not a

total function.

• For a partial function f on a Cartesian product S1×S2,× · · ·×Sn , we write f(a1, . . . , an)
rather than f((a1, . . . , an)).

• A partial function f on a set Sn is called an n-ary partial function on S, or a function
of n variables on S. We use unary and binary for 1-ary and 2-ary, respectively.

2 Programs and Computable Functions (2)

2.1 A Programming Language (2.1)

The Programming Language S

• Values: natural numbers only, but of unlimited precision.

• Variables:

– Input variables X1, X1, X3, . . .

– An output variable Y

4



– Local variables Z1, Z1, Z3, . . .

• Instructions:

V ← V + 1 Increase by 1 the value of the variable V .

V ← V − 1 If the value of V is 0, leave it unchanged; otherwise decrease by 1 the value
of V .

IF V 6= 0 GOTO L If the value of V is nonzero, perform the instruction with label
L next; otherwise proceed to the next instruction in the list.

• Labels: A1, B1, C1, D1, E1, A2, B2, C2, D2, E2, A3, . . .

• Exit label: E.

• All variables and labels are in the global scope.

2.2 Some Examples of Programs (2.2)

Programming in S

• A program is a list (i.e., a finite sequence) of instructions.

• The output variable Y and the local variables Zi initially have the value 0.

• A program halts when there is no more instruction to execute.

• A program also halts if an instruction labeled L is to be executed, but there is no
instruction with that label.

• What does this program do?

[A] X ← X − 1
Y ← Y + 1
IF X 6= 0 GOTO A

A Bug?

• What does this program do?

[A] X ← X − 1
Y ← Y + 1
IF X 6= 0 GOTO A

• The above program computes the function

f(x) =

{
1 if x = 0
x otherwise.

5



A Program That Computes f(x) = x

[A] IF X 6= 0 GOTO B
Z ← Z + 1
IF Z 6= 0 GOTO E

[B] X ← X − 1
Y ← Y + 1
Z ← Z + 1
IF Z 6= 0 GOTO A

• What does Z actually do?

• What does the following do?

Z ← Z + 1
IF Z 6= 0 GOTO L

A Macro for Unconditional GOTO

• Before macro expansion:

[A] IF X 6= 0 GOTO B
GOTO E

[B] X ← X − 1
Y ← Y + 1
GOTO A

• After macro expansion:

[A] IF X 6= 0 GOTO B
Z1 ← Z1 + 1
IF Z1 6= 0 GOTO E

[B] X ← X − 1
Y ← Y + 1
Z2 ← Z2 + 1
IF Z2 6= 0 GOTO A

• Fresh local variables are always used during macro expansions.

6



Copy The Value of Variable X to Variable Y

• [A] IF X 6= 0 GOTO B
GOTO E

[B] X ← X − 1
Y ← Y + 1
GOTO A

• Anything wrong?

• The value of X is “destroyed” while copied to Y !

Copy The Value of Variable X to Variable Y , Continued

• [A] IF X 6= 0 GOTO B
GOTO C

[B] X ← X − 1
Y ← Y + 1
Z ← Z + 1
GOTO A

[C] IF Z 6= 0 GOTO D
GOTO E

[D] Z ← Z − 1
X ← X + 1
GOTO C

• Anything wrong?

• This program is correct only when Y and Z are initialized to the value 0. It cannot
be used as a macro.

A Macro for V ← V ′

• V ← 0
[A] IF V ′ 6= 0 GOTO B

GOTO C
[B] V ← V ′ − 1

V ← V + 1
Z ← Z + 1
GOTO A

[C] IF Z 6= 0 GOTO D
GOTO E

[D] Z ← Z − 1
V ′ ← V ′ + 1
GOTO C

7



• Anything wrong?

• V ← 0 is not an instruction in S .

A Macro for V ← 0

[L] V ← V − 1
IF V 6= 0 GOTO L

A Program That Computes f(x1, x2) = x1 + x2

Y ← X1

Z ← X2

[B] IF Z 6= 0 GOTO A
GOTO E

[A] Z ← Z − 1
Y ← Y + 1
GOTO B

Note that Z is used to preserve the value of X2 so that it will not be destroyed during
the computation.

A Program That Computes f(x1, x2) = x1 · x2

• Z2 ← X2

[B] IF Z2 6= 0 GOTO A
GOTO E

[A] Z2 ← Z2 − 1
Z1 ← X1 + Y
Y ← Z1

GOTO B

• OK!

A Shorter Program That Computes f(x1, x2) = x1 · x2?

• Z2 ← X2

[B] IF Z2 6= 0 GOTO A
GOTO E

[A] Z2 ← Z2 − 1
Y ← X1 + Y
GOTO B

• NO GOOD!

8



• Why?

• The macro for f(x1, x2) = x1 + x2

Y ← X1

Z ← X2

[B] IF Z 6= 0 GOTO A
GOTO E

[A] Z ← Z − 1
Y ← Y + 1
GOTO B

• Macro expanding Y ← X1 + Y :

Y ← X1

Z ← Y
[B] IF Z 6= 0 GOTO A

GOTO E
[A] Z ← Z − 1

Y ← Y + 1
GOTO B

• The above actually computes f(x1, x2) = 2 · x1

A Program That Computes f(x1, x2) = x1 · x2, Revisited

• Need to macro expand Z1 ← X1 + Y .

• After macro expansion:

Z2 ← X2

[B] IF Z2 6= 0 GOTO A
GOTO E

[A] Z2 ← Z2 − 1
Z1 ← X1

Z3 ← Y
[B2] IF Z3 6= 0 GOTO A2

GOTO E2

[A2] Z3 ← Z3 − 1
Z1 ← Z1 + 1
GOTO B2

[E2] Y ← Z1

GOTO B

9



Note on The Macro Expansion

• The output variable Y in the macro f(x1, x2) = x1 + x2 is now fresh variable Z1 in the
expanded form.

• The local variable Z in the macro f(x1, x2) = x1 + x2 is now fresh variable Z3 in the
expanded form (as variables Z1 and Z2 are already used).

• Fresh labels A2, B2, and E2 are used in the expanded form (as the original labels A, B,
and E are already used).

• The instruction GOTO E2 only terminates the addition. The computation must con-
tinue to place following the addition. Hence, the instruction immediately following the
addition is labeled E2.

• Unlimited supply of fresh local variables and local labels!

• More about macro expansion next week.

A Final Example

• What does this program compute?

Y ← X1

Z ← X2

[C] IF Z 6= 0 GOTO A
GOTO E

[A] IF Y 6= 0 GOTO B
GOTO A

[B] Y ← Y − 1
Z ← Z − 1
GOTO C

• If we begin with X1 = 5 and X2 = 2, . . .

• If we begin with X1 = 2 and X2 = 5, . . .

• This program computes the following partial function

g(x1, x2) =

{
x1 − x2 if x1 ≥ x2

↑ if x1 < x2

10


