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About This Course Note

• It is prepared for the course Theory of Computation taught at the National Taiwan
University in Spring 2008.

• It follows very closely the book Computability, Complexity, and Languages: Funda-
mentals of Theoretical Computer Science, 2nd edition, by Martin Davis, Ron Sigal,
and Elaine J. Weyuker. Morgan Kaufmann Publishers. ISBN: 0-12-206382-1.

• It is available from Tyng-Ruey Chuang’s web site:

http://www.iis.sinica.edu.tw/~trc/

and released under a Creative Commons “Attribution-ShareAlike 2.5 Taiwan” license:

http://creativecommons.org/licenses/by-sa/2.5/tw/

This course aims to cover . . .

• the development of computability theory using an extremely simple abstract program-
ming language,

• the various different formulations of computability and their equivalence,

• the expressiveness and limitation of various kinds of automata and formal languages,
and

• the basics of the theory of computational complexity.
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By the end of this course, you should be able to . . .

• appreciate the existence of universal digital computers,

• understand there are well-defined functions that cannot be computed even by the
universal computers,

• know that certain problems are truly harder than others,

• use various formalized computation models to solve your problems, and

• show that some problems are just too difficult for the models at hand.

Textbook
Martin Davis, Ron Sigal, and Elaine J. Weyuker. Computability, Complexity, and Lan-

guages: Fundamentals of Theoretical Computer Science, 2nd edition. February 1994, Morgan
Kaufmann. ISBN: 0122063821.

• Written for people who may know programming, but from a mathematical view of the
subjects. Enjoyably readable but very rigorous.

• “It is our purpose . . . to provide an introduction to the various aspects of theoretical
computer science for undergraduate and graduate students that is sufficiently compre-
hensive that . . . research papers will become accessible to our readers.” (the authors)

• We will cover just one half of the materials in the book.

Schedule (1/2)

02/20 Preliminaries; A Programming Language. (1.1–1.7; 2.1–2.2)

02/27 Computable Functions; Primitive Recursive Functions. (2.3–2.5; 3.1–3.4)

03/05 Coding Programs by Numbers. (3.5–3.8; 4.1)

03/12 The Halting Problem; Universality. (4.2–4.3)

03/19 Recursively Enumerable Sets. (4.4–4.5)

03/26 Diagonalization and Reducibility. (4.6–4.8)

04/02 A Computable Function That Is Not Primitive Recursive. (4.9)

04/09 Turing Machines. (6.1–6.4)

04/16 mid-term examination
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Schedule (2/2)

04/23 Nondeterministic Turing Machines; Semi-Thue Processes. (6.5–6.5; 7.1–7.2)

04/30 Post’s Correspondence Problem. Grammars. (7.2–7.6)

05/07 Regular Languages, Part 1. (9.1–9.4)

05/14 Regular Languages, Part 2. (9.5–9.7)

05/21 Context-Free Languages, Part 1. (10.1–10.4)

05/28 Context-Free Languages, Part 2. (10.5–10.9)

06/04 Context-Sensitive Languages. (11.1–11.3)

06/11 Polynomial-Time Computability. (15.1–15.4)

06/18 final examination

Outline of Today’s Lecture

• Review some preliminary materials.

• Define an abstract programming language S that is extremely simple.

• Write some programs in S .

1 Preliminaries (1)

1.1 Sets and n-tuples (1.1)

Cartesian Product

• If S1, S2, . . . , Sn are given sets, then we write S1 × S2,× · · · × Sn for the set of all
n-tuples (a1, a2, . . . , an) such that a1 ∈ S1, a2 ∈ S2, . . . , an ∈ Sn.

• S1 × S2,× · · · × Sn is called the Cartesian product of S1, S2, . . . , Sn.

• In case S1 = S2 = · · · = Sn = S we write Sn for the Cartesian product S1×S2,× · · ·×
Sn.
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1.2 Functions (1.2)

Functions

• A function f is a set whose members are ordered pairs (i.e., 2-tuples) and has the
special property

(a, b) ∈ f and (a, c) ∈ f implies b = c.

We write f(a) = b to mean that (a, b) ∈ f .

• The set of all a such that (a, b) ∈ f for some b is called the domain of f . The set of all
f(a) for a in the domain of f is called the range of f .

• A partial function on a set S is a function whose domain is a subset of S. If a partial
function on S has the domain S, then it is called a total function.

• We write f(a) ↓ and say that f(a) is defined if a is in the domain of f ; if a is not in
the domain of f , we write f(a) ↑ and say that f(a) is undefined.

Examples of Functions

• Let f be the set of ordered pairs (n, n2) for n ∈ N . Then, for each n ∈ N , f(n) = n2.
The domain of f is N . The range of f is the set of perfect squares. f is a total function.

• Assuming N is our universe, an example of a partial function on N is given by g(n) =√
n. The domain of g is the set of perfect squares. The range of g is N . g is not a

total function.

• For a partial function f on a Cartesian product S1×S2,× · · ·×Sn , we write f(a1, . . . , an)
rather than f((a1, . . . , an)).

• A partial function f on a set Sn is called an n-ary partial function on S, or a function
of n variables on S. We use unary and binary for 1-ary and 2-ary, respectively.

2 Programs and Computable Functions (2)

2.1 A Programming Language (2.1)

The Programming Language S

• Values: natural numbers only, but of unlimited precision.

• Variables:

– Input variables X1, X1, X3, . . .

– An output variable Y
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– Local variables Z1, Z1, Z3, . . .

• Instructions:

V ← V + 1 Increase by 1 the value of the variable V .

V ← V − 1 If the value of V is 0, leave it unchanged; otherwise decrease by 1 the value
of V .

IF V 6= 0 GOTO L If the value of V is nonzero, perform the instruction with label
L next; otherwise proceed to the next instruction in the list.

• Labels: A1, B1, C1, D1, E1, A2, B2, C2, D2, E2, A3, . . .

• Exit label: E.

• All variables and labels are in the global scope.

2.2 Some Examples of Programs (2.2)

Programming in S

• A program is a list (i.e., a finite sequence) of instructions.

• The output variable Y and the local variables Zi initially have the value 0.

• A program halts when there is no more instruction to execute.

• A program also halts if an instruction labeled L is to be executed, but there is no
instruction with that label.

• What does this program do?

[A] X ← X − 1
Y ← Y + 1
IF X 6= 0 GOTO A

A Bug?

• What does this program do?

[A] X ← X − 1
Y ← Y + 1
IF X 6= 0 GOTO A

• The above program computes the function

f(x) =

{
1 if x = 0
x otherwise.
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A Program That Computes f(x) = x

[A] IF X 6= 0 GOTO B
Z ← Z + 1
IF Z 6= 0 GOTO E

[B] X ← X − 1
Y ← Y + 1
Z ← Z + 1
IF Z 6= 0 GOTO A

• What does Z actually do?

• What does the following do?

Z ← Z + 1
IF Z 6= 0 GOTO L

A Macro for Unconditional GOTO

• Before macro expansion:

[A] IF X 6= 0 GOTO B
GOTO E

[B] X ← X − 1
Y ← Y + 1
GOTO A

• After macro expansion:

[A] IF X 6= 0 GOTO B
Z1 ← Z1 + 1
IF Z1 6= 0 GOTO E

[B] X ← X − 1
Y ← Y + 1
Z2 ← Z2 + 1
IF Z2 6= 0 GOTO A

• Fresh local variables are always used during macro expansions.
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Copy The Value of Variable X to Variable Y

• [A] IF X 6= 0 GOTO B
GOTO E

[B] X ← X − 1
Y ← Y + 1
GOTO A

• Anything wrong?

• The value of X is “destroyed” while copied to Y !

Copy The Value of Variable X to Variable Y , Continued

• [A] IF X 6= 0 GOTO B
GOTO C

[B] X ← X − 1
Y ← Y + 1
Z ← Z + 1
GOTO A

[C] IF Z 6= 0 GOTO D
GOTO E

[D] Z ← Z − 1
X ← X + 1
GOTO C

• Anything wrong?

• This program is correct only when Y and Z are initialized to the value 0. It cannot
be used as a macro.

A Macro for V ← V ′

• V ← 0
[A] IF V ′ 6= 0 GOTO B

GOTO C
[B] V ← V ′ − 1

V ← V + 1
Z ← Z + 1
GOTO A

[C] IF Z 6= 0 GOTO D
GOTO E

[D] Z ← Z − 1
V ′ ← V ′ + 1
GOTO C
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• Anything wrong?

• V ← 0 is not an instruction in S .

A Macro for V ← 0

[L] V ← V − 1
IF V 6= 0 GOTO L

A Program That Computes f(x1, x2) = x1 + x2

Y ← X1

Z ← X2

[B] IF Z 6= 0 GOTO A
GOTO E

[A] Z ← Z − 1
Y ← Y + 1
GOTO B

Note that Z is used to preserve the value of X2 so that it will not be destroyed during
the computation.

A Program That Computes f(x1, x2) = x1 · x2

• Z2 ← X2

[B] IF Z2 6= 0 GOTO A
GOTO E

[A] Z2 ← Z2 − 1
Z1 ← X1 + Y
Y ← Z1

GOTO B

• OK!

A Shorter Program That Computes f(x1, x2) = x1 · x2?

• Z2 ← X2

[B] IF Z2 6= 0 GOTO A
GOTO E

[A] Z2 ← Z2 − 1
Y ← X1 + Y
GOTO B

• NO GOOD!
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• Why?

• The macro for f(x1, x2) = x1 + x2

Y ← X1

Z ← X2

[B] IF Z 6= 0 GOTO A
GOTO E

[A] Z ← Z − 1
Y ← Y + 1
GOTO B

• Macro expanding Y ← X1 + Y :

Y ← X1

Z ← Y
[B] IF Z 6= 0 GOTO A

GOTO E
[A] Z ← Z − 1

Y ← Y + 1
GOTO B

• The above actually computes f(x1, x2) = 2 · x1

A Program That Computes f(x1, x2) = x1 · x2, Revisited

• Need to macro expand Z1 ← X1 + Y .

• After macro expansion:

Z2 ← X2

[B] IF Z2 6= 0 GOTO A
GOTO E

[A] Z2 ← Z2 − 1
Z1 ← X1

Z3 ← Y
[B2] IF Z3 6= 0 GOTO A2

GOTO E2

[A2] Z3 ← Z3 − 1
Z1 ← Z1 + 1
GOTO B2

[E2] Y ← Z1

GOTO B
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Note on The Macro Expansion

• The output variable Y in the macro f(x1, x2) = x1 + x2 is now fresh variable Z1 in the
expanded form.

• The local variable Z in the macro f(x1, x2) = x1 + x2 is now fresh variable Z3 in the
expanded form (as variables Z1 and Z2 are already used).

• Fresh labels A2, B2, and E2 are used in the expanded form (as the original labels A, B,
and E are already used).

• The instruction GOTO E2 only terminates the addition. The computation must con-
tinue to place following the addition. Hence, the instruction immediately following the
addition is labeled E2.

• Unlimited supply of fresh local variables and local labels!

• More about macro expansion next week.

A Final Example

• What does this program compute?

Y ← X1

Z ← X2

[C] IF Z 6= 0 GOTO A
GOTO E

[A] IF Y 6= 0 GOTO B
GOTO A

[B] Y ← Y − 1
Z ← Z − 1
GOTO C

• If we begin with X1 = 5 and X2 = 2, . . .

• If we begin with X1 = 2 and X2 = 5, . . .

• This program computes the following partial function

g(x1, x2) =

{
x1 − x2 if x1 ≥ x2

↑ if x1 < x2
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