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About This Course Note

I It is prepared for the course Theory of Computation taught at
the National Taiwan University in Spring 2008.
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Science, 2nd edition, by Martin Davis, Ron Sigal, and Elaine
J. Weyuker. Morgan Kaufmann Publishers. ISBN:
0-12-206382-1.
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and released under a Creative Commons
“Attribution-ShareAlike 2.5 Taiwan” license:
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Context-Free Languages (10)
Closure Properties (10.5)
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R ∩ L

Theorem 5.4. If R is a regular language and L is a context-free
language, then R ∩ L is context-free.

Proof. Let A be an alphabet such that L,R ∈ A∗. Let L = L(Γ) or
L(Γ) ∪ {0}, where Γ is a positive context-free grammar with
variables V , terminals A and start symbol S . Let M be a dfa that
accepts R with states Q, initial state q1 ∈ Q, accepting states
F ⊆ Q, and transition function δ.

For each symbol σ ∈ A ∪ V , and each ordered pair p, q ∈ Q, we
introduce a new symbol σpq. We shall construct a positive
context-free grammar Γ̃ whose terminals are A, and whose
variables consists of a start symbol S̃ together with all the new
symbols σpq for σ ∈ A ∪ V and p, q ∈ Q. (Note that for a ∈ A, a
is a terminal, but apq is a variable for each p, q ∈ Q.)
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R ∩ L, Continued

Proof of Theorem 5.4 (Continued). The productions of Γ̃ are:

1. S̃ → Sq1q for all q ∈ F .

2. X pq → σpr1
1 σr1r2

2 . . . σ
rn−1q
n of all productions X → σ1σ2 . . . σn

of Γ and all p, r1, r2, . . . , rn−1, q ∈ Q.

3. apq → a for all a ∈ A and all p, q ∈ Q such that δ(p, a) = q.

We shall now prove that L(Γ̃) = R ∩ L(Γ).

First let u = a1a2 . . . an ∈ R ∩ L(Γ). Since u ∈ L(Γ), we have
S ⇒∗

Γ a1a2 . . . an. It follows that
S̃ ⇒Γ̃ Sq1qn+1 ⇒∗

Γ̃
aq1q2
1 aq2q3

2 . . . a
qnqn+1
n , where

q1, q2, . . . , qn, qn+1 ∈ Q, q1 is the initial state, and qn+1 ∈ F .
Since u ∈ L(M ), we can choose states so that δ(qi , ai ) = qi+1, for
all i . This implies that a

qiqi+1

i → ai , for all i . We conclude that

S̃ ⇒∗
Γ̃

a1a2 . . . an, hence u ∈ L(Γ̃).
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R ∩ L, Continued

For the other direction, that if S̃ ⇒Γ̃ Sq1q ⇒∗
Γ̃

a1a2 . . . an = u
where q ∈ F , then S ⇒∗

Γ u, we need to prove the following lemma.

Lemma. Let σpq ⇒∗
Γ̃

u ∈ A∗. Then, δ∗(p, u) = q. Moreover, if σ
is a variable, then σ ⇒∗

Γ u.

Proof of this lemma can be done by an induction on the length of
a derivation of u from σpq ∈ Γ̃. That is, for derivation of length
> 2, we can write

σpq ⇒Γ̃ σr0r1
1 σr1r2

2 . . . σ
rn−1rn
n ⇒∗

Γ̃
u1u2 . . . un = u

where r0 = p, rn = q, and σ
ri−1ri
i ⇒∗

Γ̃
ui . The induction hypotheses

ensure that δ∗(ri−1, ui ) = ri and σi ⇒∗
Γ ui , for all i . From this we

can show that δ∗(p, u) = q and σ ⇒∗
Γ u, hence complete the proof

for the other direction. �
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Erased Symbols

Let A,P be alphabets such that P ⊆ A. For each letter a ∈ A, let
us write

a0 =

{
0 if a ∈ P
a if a ∈ A− P.

If x = a1a2 . . . an ∈ A∗, we write

ErP(x) = a0
1a

0
2 . . . , a0

n

In other words, ErP(x) is the word that results from x where all
the symbols in it that are part of the alphabet P are “erased.”
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Erased Symbols, Continued

If L ⊆ A∗, we also write

ErP(L) = {ErP(x) | x ∈ L}.

If Γ is any context-free grammar with terminal symbols T and if
P ⊆ T , we write ErP(Γ) for the context-free grammar with
terminals T − P, the same variables and start symbol as Γ, and
production

X → ErP(v)

for each production X → v of Γ.
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A Theorem about Erased Symbols

Theorem 5.5. If Γ is a context-free grammar and Γ̃ = ErP(Γ),
then L(Γ̃) = ErP(L(Γ)).

Proof Outline. Suppose that w ∈ L(Γ), we have

S = w1 ⇒Γ w2 . . . ⇒Γ wm = w .

Let vi = ErP(wi ), i = 1, 2, . . . ,m. Clearly,

S = v1 ⇒Γ̃ v2 . . . ⇒Γ̃ vm = ErP(w).

so that ErP(w) ∈ L(Γ̃). This proves that L(Γ̃) ⊇ ErP(L(Γ)). For
the other direction, we need to show that whenever
X ⇒∗

Γ̃
v ∈ (T − P)∗, there is a word w ∈ T ∗ such that X ⇒∗

Γ w
and v = ErP(w). This can be done by an induction on the length
of a derivation of v from X in Γ̃. �

8 / 25



Context-Free Languages (10)
Closure Properties (10.5)
Bracket Languages (10.7)

A Theorem about Erased Symbols

Theorem 5.5. If Γ is a context-free grammar and Γ̃ = ErP(Γ),
then L(Γ̃) = ErP(L(Γ)).
Proof Outline. Suppose that w ∈ L(Γ), we have

S = w1 ⇒Γ w2 . . . ⇒Γ wm = w .

Let vi = ErP(wi ), i = 1, 2, . . . ,m. Clearly,

S = v1 ⇒Γ̃ v2 . . . ⇒Γ̃ vm = ErP(w).

so that ErP(w) ∈ L(Γ̃). This proves that L(Γ̃) ⊇ ErP(L(Γ)). For
the other direction, we need to show that whenever
X ⇒∗

Γ̃
v ∈ (T − P)∗, there is a word w ∈ T ∗ such that X ⇒∗

Γ w
and v = ErP(w). This can be done by an induction on the length
of a derivation of v from X in Γ̃. �

8 / 25



Context-Free Languages (10)
Closure Properties (10.5)
Bracket Languages (10.7)

A Theorem about Erased Symbols, Continued

From Theorem 5.5, we may say that the “operators” L and ErP
commute

L(ErP(Γ)) = ErP(L(Γ))

for any context-free grammar Γ.

We prove the straightforward:

Corollary 5.6. If L ⊆ A∗ is a context-free language and P ⊆ A,
then ErP(L) is also a context-free language.

Proof. Let L = L(Γ), where Γ is context-free grammar. Let
Γ̃ = ErP(Γ). By Theorem 5.5, ErP(Γ) = L(Γ̃) so is context-free. �
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Bracket Languages

Let A be a finite set. Let B be an alphabet we get from A by
adding 2n new symbols (i , )i , i = 1, 2, . . . , n, where n is some given
positive integer. We write PARn(A) for the language consisting of
all the strings in B∗ that are correctly “paired,” thinking of each
pair (i , )i as matching left and right brackets.

More precisely, PARn(A) = L(Γ0), where Γ0 is the context-free
grammar with the single variables S , terminals B, and the
productions

1. S → a for all a ∈ A,

2. S → (iS)i , i = 1, 2, . . . , n,

3. S → SS , S → 0.

The languages PARn(A) are called bracket languages.
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Bracket Languages, Examples

Let A = {a, b, c}, and n = 2. For ease of reading we will use the
symbol ( for (1, ) for )1, [ for (2, and ] for )2.

Then we have
cb[(ab)c](a[b]c) ∈ PAR2(A)

as well as
()[] ∈ PAR2(A)
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Bracket Languages, Properties

Theorem 7.1. PARn(A) is a context-free language such that

1. A∗ ⊆ PARn(A);

2. if x , y ∈ PARn(A), so is xy ;

3. if x ∈ PARn(A), so is (ix)i , for i = 1, 2, . . . , n;

4. if x ∈ PARn(A) and x 6∈ A∗, then we can write x = u(iv)iw ,
for some i = 1, 2, . . . , n, where u ∈ A∗ and v ,w ∈ PARn(A).

Proof Outline. The proof for the first three properties are
straightforward. For the last, we use an induction on the length of
x . Note we have |x | > 1 otherwise x ∈ A ⊆ A∗, a contradiction.
Since |x | > 1, we need only to consider two cases:

I S ⇒ (iS)i ⇒∗ (iv)i = x , where S ⇒∗ v ;

I S ⇒ SS ⇒∗ rs = x , where S ⇒∗ r ,S ⇒∗ s, and r 6= 0, s 6= 0.

Both lead to x = u(iv)iw , u ∈ A∗ and v ,w ∈ PARn(A). �
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Dyck Languages

The language PARn(∅) is called the Dyck language of order n and
is usually written Dn. Note that this is a special case of A = 0 for
PARn(A).
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The Separators

Let us begin with a Chomsky normal form grammar Γ, with
terminals T and productions

Xi → YiZi , i = 1, 2, . . . , n

in addition to certain productions of the form V → a, a ∈ T .

We construct a new grammar Γs which we call the separator of Γ.
The terminals of Γs are the symbols of T together with 2n new
symbols (i , )i , i = 1, 2, . . . , n. The productions of Γs are

Xi → (iYi )iZi , i = 1, 2, . . . , n

as well as all of the productions in Γ of the form V → a with
a ∈ T .
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The Separators, Examples

As an example, let Γ have the productions

S → XY , S → YX , Y → ZZ ,

X → a, Z → a.

The productions of Γs can be written as

S → (X )Y , S → [Y ]X , Y → {Z}Z ,

X → a, Z → a.

where we use (, ), [, ], and {, } in place for the numbered brackets.
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Ambiguity in Context-free Grammars
Definition. A context-free grammar Γ is called ambiguous if there
is a word u ∈ L(Γ) that has two different leftmost derivations in Γ.
If Γ is not ambiguous, it is said to be unambiguous. �

Note that grammar Γ in the last slide is ambiguous: There are two
leftmost derivations for aaa:

S ⇒ XY ⇒ aY ⇒ aZZ ⇒ aaZ ⇒ aaa

S ⇒ YX ⇒ ZZX ⇒ aZX ⇒ aaX ⇒ aaa

However, for grammar Γs , the two derivations become

S ⇒ (X )Y ⇒ (a)Y ⇒ (a){Z}Z ⇒ (a){a}Z ⇒ (a){a}a

S ⇒ [Y ]X ⇒ [{Z}Z ]X ⇒ [{a}Z ]X ⇒ [{a}a]X ⇒ [{a}a]a
That is, Γs separates the two derivations in Γ. The bracketing in
the words (a){a}a and [{a}a]a enables their respective derivation
trees to be recovered.
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Separated then Erased

If we write P or the set of brackets (i , )i , i = 1, 2, . . . , n, then
clearly Γ = ErP(Γs). Hence, by Theorem 5.5, we conclude
immediately that

Theorem 7.2. ErP(L(Γs)) = L(Γ). �

In addition, we can also prove the following four lemmas about
some relationship between languages L(Γs) and PARn(T ).
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Lemma 1

Lemma 1. L(Γs) ⊆ PARn(T ).

Proof. We want to show that if X ⇒∗
Γs

w ∈ (T ∪ P)∗ for any
variable X , the w ∈ PARn(T ). The proof is by an induction on the
length of a derivation of w from X in Γs . If the length is 2, then w
is a single terminal and the result is clear. Otherwise, we write

X = X1 ⇒Γs (iYi )iZi ⇒∗
Γs

(iu)iv = w ,

where Yi ⇒∗
Γs

ui and Zi ⇒∗
Γs

v). By the induction hypothesis,
u, v ∈ PARn(T ). By b and c of Theorem 7.1, so is w . �

To proceed further, we need to define a new context-free grammar
∆, which is related to Γs .
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∆, A Context-free Grammar

Now let ∆ be the grammar whose variables, start symbol, and
terminals are those of Γs and whose productions are as follows:

1. all productions V → a from Γ with a ∈ T ,

2. all productions Xi → (i Yi , i = 1, 2, . . . , n,

3. all productions V → ai )i Zi , i = 1, 2, . . . , n, for which V → a
is a production of Γ with a ∈ T .
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Lemma 2

Lemma 2. L(∆) is regular.

Proof. ∆ is right-linear. By Theorem 2.5, it is regular. �
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Lemma 3
Lemma 3. L(Γs) ⊆ L(∆).

Proof. We show that if X ⇒∗
Γs

u ∈ (T ∪ P)∗ then X ⇒∗
∆ u. The

proof is by an induction on the length of a derivation of u from X
in Γs . Let

X = Xi ⇒Γs (i Yi )i Zi ⇒∗
Γs

(i v )i w = u,

where the induction hypothesis applies to Yi ⇒∗
Γs

v and Zi ⇒∗
Γs

w .
Thus Yi ⇒∗

∆ v and Zi ⇒∗
∆ w . By Exercise 3. (p. 308 of the

textbook), we can show that

Yi ⇒∗
∆ z V ⇒∆ z a = v ,

where V → a is a production of Γ. But then we have

Xi ⇒∆ (i Yi ⇒∗
∆ (i z V ⇒∆ (i z a )i Zi ⇒∗

∆ (i v )i w = u.

�
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Lemma 4

Lemma 4. L(∆) ∩ PARn(T ) ⊆ L(Γs).

Proof. Let X ⇒∗
∆ u, where u ∈ PARn(T ). We shall prove that

X ⇒∗
Γs

u. The proof is by an induction on the total number of
pairs of the brackets (i , )i in u. If there is no such pair, then u ∈ T
and production X → is in ∆ hence in Γs . Thus X ⇒∗

Γs
u.

Suppose there are pairs of brackets in u. By observing all the
available productions in ∆, we conclude that u = (i z for some z
and i . As u ∈ PARn(T ), we further conclude that u = (i v )i w ,
where v ,w ∈ PARn(T ).

As the symbol )i can only arises from the use of some production
V → a )i Zi in ∆. So v must end in a terminal a, so we can write
v = v̄ a, where
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Lemma 4, Continued
Proof (Continued).

X = Xi ⇒∆ (i Yi ⇒∗
∆ (i v̄V ⇒∆ (i v̄ a )i Zi ⇒∗

∆ (i v )i w

and
Zi ⇒∗

∆ w .

Moreover, since v → a is a production of Γ, hence of ∆, we also
have in ∆

Yi ⇒∗
∆ v̄V ⇒∆ v̄ a = v .

Since v and w must each contain fewer pairs of brackets than u,
we have by induction hypothesis

Yi ⇒∗
Γs

v , Zi ⇒∗
Γs

w .

Hence,
Xi ⇒Γs (i Yi )i Zi ⇒∗

Γs
(i v )i w = u

�
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A Main Theorem

Theorem 7.3. Let Γ be a grammar in Chomsky normal form with
terminals T . Then there is a regular language R such that

L(Γs) = R ∩ PARn(T ).

Proof. Let ∆ be defined as above and let R = L(∆). The results
follows from Lemmas 1-4. �
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Chomsky-Schützenberger Representation Theorem

Theorem 7.4. A languages L ⊆ T ∗ is context-free if and only if
there is a regular language R and a number n such that

L = ErP(R ∩ PARn(T ))

where P = {(i , )i | i = 1, 2, . . . , n}.

Proof. By Theorem 7.1, 7.2, and 7.3. �

We will see that the Chomsky-Schützenberger Representation
Theorem is instructional in the design of a class of machines —
the Pushdown Automata — to recognize context-free languages.
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