Theory of Computation

Course note based on *Computability, Complexity, and Languages: Fundamentals of Theoretical Computer Science*, 2nd edition, authored by Martin Davis, Ron Sigal, and Elaine J. Weyuker.

course note prepared by

Tyng-Ruey Chuang

Institute of Information Science, Academia Sinica

Department of Information Management, National Taiwan University

Week 14, Spring 2008

About This Course Note

- It is prepared for the course Theory of Computation taught at the National Taiwan University in Spring 2008.
- It follows very closely the book Computability, Complexity, and Languages: Fundamentals of Theoretical Computer Science, 2nd edition, by Martin Davis, Ron Sigal, and Elaine J. Weyuker. Morgan Kaufmann Publishers. ISBN: 0-12-206382-1.
- It is available from Tyng-Ruey Chuang's web site:

http://www.iis.sinica.edu.tw/~trc/

and released under a Creative Commons "Attribution-ShareAlike 2.5 Taiwan" license:

http://creativecommons.org/licenses/by-sa/2.5/tw/

$R \cap L$

Theorem 5.4. If *R* is a regular language and *L* is a context-free language, then $R \cap L$ is context-free.

$R \cap L$

Theorem 5.4. If *R* is a regular language and *L* is a context-free language, then $R \cap L$ is context-free.

Proof. Let A be an alphabet such that $L, R \in A^*$. Let $L = L(\Gamma)$ or $L(\Gamma) \cup \{0\}$, where Γ is a positive context-free grammar with variables \mathscr{V} , terminals A and start symbol S. Let \mathscr{M} be a dfa that accepts R with states Q, initial state $q_1 \in Q$, accepting states $F \subseteq Q$, and transition function δ .

For each symbol $\sigma \in A \cup \mathcal{V}$, and each ordered pair $p, q \in Q$, we introduce a new symbol σ^{pq} . We shall construct a positive context-free grammar $\tilde{\Gamma}$ whose terminals are A, and whose variables consists of a start symbol \tilde{S} together with all the new symbols σ^{pq} for $\sigma \in A \cup \mathcal{V}$ and $p, q \in Q$. (Note that for $a \in A$, a is a terminal, but a^{pq} is a variable for each $p, q \in Q$.)

Proof of Theorem 5.4 (Continued). The productions of $\tilde{\Gamma}$ are:

1. $\tilde{S} \to S^{q_1q}$ for all $q \in F$.

2. $X^{pq} \to \sigma_1^{pr_1} \sigma_2^{r_1r_2} \dots \sigma_n^{r_{n-1}q}$ of all productions $X \to \sigma_1 \sigma_2 \dots \sigma_n$ of Γ and all $p, r_1, r_2, \dots, r_{n-1}, q \in Q$.

3. $a^{pq} \rightarrow a$ for all $a \in A$ and all $p, q \in Q$ such that $\delta(p, a) = q$. We shall now prove that $L(\tilde{\Gamma}) = R \cap L(\Gamma)$.

Proof of Theorem 5.4 (Continued). The productions of $\tilde{\Gamma}$ are:

1. $\tilde{S} \to S^{q_1q}$ for all $q \in F$.

2. $X^{pq} \to \sigma_1^{pr_1} \sigma_2^{r_1r_2} \dots \sigma_n^{r_{n-1}q}$ of all productions $X \to \sigma_1 \sigma_2 \dots \sigma_n$ of Γ and all $p, r_1, r_2, \dots, r_{n-1}, q \in Q$.

3. $a^{pq} \rightarrow a$ for all $a \in A$ and all $p, q \in Q$ such that $\delta(p, a) = q$. We shall now prove that $L(\tilde{\Gamma}) = R \cap L(\Gamma)$.

First let $u = a_1 a_2 \dots a_n \in R \cap L(\Gamma)$. Since $u \in L(\Gamma)$, we have $S \Rightarrow_{\Gamma}^* a_1 a_2 \dots a_n$. It follows that $\tilde{S} \Rightarrow_{\tilde{\Gamma}} S^{q_1 q_{n+1}} \Rightarrow_{\tilde{\Gamma}}^* a_1^{q_1 q_2} a_2^{q_2 q_3} \dots a_n^{q_n q_{n+1}}$, where $q_1, q_2, \dots, q_n, q_{n+1} \in Q$, q_1 is the initial state, and $q_{n+1} \in F$. Since $u \in L(\mathcal{M})$, we can choose states so that $\delta(q_i, a_i) = q_{i+1}$, for all *i*. This implies that $a_i^{q_i q_{i+1}} \to a_i$, for all *i*. We conclude that $\tilde{S} \Rightarrow_{\tilde{\Gamma}}^* a_1 a_2 \dots a_n$, hence $u \in L(\tilde{\Gamma})$.

For the other direction, that if $\tilde{S} \Rightarrow_{\tilde{\Gamma}} S^{q_1q} \Rightarrow_{\tilde{\Gamma}}^* a_1a_2 \dots a_n = u$ where $q \in F$, then $S \Rightarrow_{\Gamma}^* u$, we need to prove the following lemma.

Lemma. Let $\sigma^{pq} \Rightarrow_{\widetilde{\Gamma}}^* u \in A^*$. Then, $\delta^*(p, u) = q$. Moreover, if σ is a variable, then $\sigma \Rightarrow_{\widetilde{\Gamma}}^* u$.

For the other direction, that if $\tilde{S} \Rightarrow_{\tilde{\Gamma}} S^{q_1q} \Rightarrow_{\tilde{\Gamma}}^* a_1a_2 \dots a_n = u$ where $q \in F$, then $S \Rightarrow_{\Gamma}^* u$, we need to prove the following lemma.

Lemma. Let $\sigma^{pq} \Rightarrow_{\widetilde{\Gamma}}^* u \in A^*$. Then, $\delta^*(p, u) = q$. Moreover, if σ is a variable, then $\sigma \Rightarrow_{\Gamma}^* u$.

Proof of this lemma can be done by an induction on the length of a derivation of u from $\sigma^{pq} \in \tilde{\Gamma}$. That is, for derivation of length > 2, we can write

$$\sigma^{pq} \Rightarrow_{\tilde{\Gamma}} \sigma_1^{r_0r_1} \sigma_2^{r_1r_2} \dots \sigma_n^{r_{n-1}r_n} \Rightarrow_{\tilde{\Gamma}}^* u_1u_2 \dots u_n = u$$

where $r_0 = p$, $r_n = q$, and $\sigma_i^{r_i - 1r_i} \Rightarrow_{\tilde{\Gamma}}^* u_i$. The induction hypotheses ensure that $\delta^*(r_{i-1}, u_i) = r_i$ and $\sigma_i \Rightarrow_{\tilde{\Gamma}}^* u_i$, for all *i*. From this we can show that $\delta^*(p, u) = q$ and $\sigma \Rightarrow_{\tilde{\Gamma}}^* u$, hence complete the proof for the other direction.

Erased Symbols

Let A, P be alphabets such that $P \subseteq A$. For each letter $a \in A$, let us write

$$a^0=\left\{egin{array}{ccc} 0 & ext{if} & a\in P\ a & ext{if} & a\in A-P. \end{array}
ight.$$

If $x = a_1 a_2 \dots a_n \in A^*$, we write

$$\mathsf{Er}_P(x) = a_1^0 a_2^0 \dots, a_n^0$$

In other words, $Er_P(x)$ is the word that results from x where all the symbols in it that are part of the alphabet P are "erased."

Erased Symbols, Continued

If $L \subseteq A^*$, we also write

 $\mathsf{Er}_{P}(L) = \{\mathsf{Er}_{P}(x) \mid x \in L\}.$

If Γ is any context-free grammar with terminal symbols T and if $P \subseteq T$, we write $\operatorname{Er}_P(\Gamma)$ for the context-free grammar with terminals T - P, the same variables and start symbol as Γ , and production

 $X \to \operatorname{Er}_P(v)$

for each production $X \rightarrow v$ of Γ .

A Theorem about Erased Symbols

Theorem 5.5. If Γ is a context-free grammar and $\tilde{\Gamma} = \text{Er}_{P}(\Gamma)$, then $L(\tilde{\Gamma}) = \text{Er}_{P}(L(\Gamma))$.

A Theorem about Erased Symbols

Theorem 5.5. If Γ is a context-free grammar and $\tilde{\Gamma} = \text{Er}_P(\Gamma)$, then $L(\tilde{\Gamma}) = \text{Er}_P(L(\Gamma))$. *Proof Outline*. Suppose that $w \in L(\Gamma)$, we have

 $S = w_1 \Rightarrow_{\Gamma} w_2 \ldots \Rightarrow_{\Gamma} w_m = w.$

Let $v_i = Er_P(w_i), i = 1, 2, ..., m$. Clearly,

$$S = v_1 \Rightarrow_{\widetilde{\Gamma}} v_2 \ldots \Rightarrow_{\widetilde{\Gamma}} v_m = \operatorname{Er}_P(w).$$

so that $\operatorname{Er}_{P}(w) \in L(\widetilde{\Gamma})$. This proves that $L(\widetilde{\Gamma}) \supseteq \operatorname{Er}_{P}(L(\Gamma))$. For the other direction, we need to show that whenever $X \Rightarrow_{\widetilde{\Gamma}}^{*} v \in (T - P)^{*}$, there is a word $w \in T^{*}$ such that $X \Rightarrow_{\Gamma}^{*} w$ and $v = \operatorname{Er}_{P}(w)$. This can be done by an induction on the length of a derivation of v from X in $\widetilde{\Gamma}$.

A Theorem about Erased Symbols, Continued

From Theorem 5.5, we may say that the "operators" L and Er_{P} commute

 $L(\operatorname{Er}_{P}(\Gamma)) = \operatorname{Er}_{P}(L(\Gamma))$

for any context-free grammar Γ .

We prove the straightforward:

Corollary 5.6. If $L \subseteq A^*$ is a context-free language and $P \subseteq A$, then $\text{Er}_P(L)$ is also a context-free language.

Proof. Let $L = L(\Gamma)$, where Γ is context-free grammar. Let $\tilde{\Gamma} = \text{Er}_P(\Gamma)$. By Theorem 5.5, $\text{Er}_P(\Gamma) = L(\tilde{\Gamma})$ so is context-free. \Box

Bracket Languages

Let A be a finite set. Let B be an alphabet we get from A by adding 2n new symbols $(i,)_i, i = 1, 2, ..., n$, where n is some given positive integer. We write $PAR_n(A)$ for the language consisting of all the strings in B^* that are correctly "paired," thinking of each pair $(i,)_i$ as matching left and right brackets.

More precisely, $PAR_n(A) = L(\Gamma_0)$, where Γ_0 is the context-free grammar with the single variables *S*, terminals *B*, and the productions

- 1. $S \rightarrow a$ for all $a \in A$,
- 2. $S \rightarrow (iS)_i$, $i = 1, 2, \ldots, n$,
- 3. $S \rightarrow SS$, $S \rightarrow 0$.

The languages $PAR_n(A)$ are called *bracket languages*.

Bracket Languages, Examples

Let $A = \{a, b, c\}$, and n = 2. For ease of reading we will use the symbol (for (1,) for $)_1$, [for (2,and] for $)_2$.

Then we have

 $cb[(ab)c](a[b]c) \in \mathsf{PAR}_2(A)$

as well as

 $()[] \in \mathsf{PAR}_2(A)$

Bracket Languages, Properties

Theorem 7.1. $PAR_n(A)$ is a context-free language such that

- 1. $A^* \subseteq PAR_n(A);$
- 2. if $x, y \in PAR_n(A)$, so is xy;
- 3. if $x \in PAR_n(A)$, so is $(ix)_i$, for i = 1, 2, ..., n;
- 4. if $x \in PAR_n(A)$ and $x \notin A^*$, then we can write $x = u(iv)_i w$, for some i = 1, 2, ..., n, where $u \in A^*$ and $v, w \in PAR_n(A)$.

Bracket Languages, Properties

Theorem 7.1. $PAR_n(A)$ is a context-free language such that

- 1. $A^* \subseteq PAR_n(A);$
- 2. if $x, y \in PAR_n(A)$, so is xy;
- 3. if $x \in PAR_n(A)$, so is $(ix)_i$, for i = 1, 2, ..., n;
- 4. if $x \in PAR_n(A)$ and $x \notin A^*$, then we can write $x = u(iv)_i w$, for some i = 1, 2, ..., n, where $u \in A^*$ and $v, w \in PAR_n(A)$.

Proof Outline. The proof for the first three properties are straightforward. For the last, we use an induction on the length of *x*. Note we have |x| > 1 otherwise $x \in A \subseteq A^*$, a contradiction. Since |x| > 1, we need only to consider two cases:

• $S \Rightarrow (_iS)_i \Rightarrow^* (_iv)_i = x$, where $S \Rightarrow^* v$;

• $S \Rightarrow SS \Rightarrow^* rs = x$, where $S \Rightarrow^* r, S \Rightarrow^* s$, and $r \neq 0, s \neq 0$.

Both lead to $x = u(iv)_i w$, $u \in A^*$ and $v, w \in PAR_n(A)$.

Dyck Languages

The language $PAR_n(\emptyset)$ is called the *Dyck language* of order *n* and is usually written D_n . Note that this is a special case of A = 0 for $PAR_n(A)$.

The Separators

Let us begin with a Chomsky normal form grammar $\Gamma,$ with terminals ${\mathcal T}$ and productions

 $X_i \rightarrow Y_i Z_i, \quad i=1,2,\ldots,n$

in addition to certain productions of the form $V \rightarrow a, a \in T$.

We construct a new grammar Γ_s which we call the *separator* of Γ . The terminals of Γ_s are the symbols of T together with 2n new symbols $(i,)_i, i = 1, 2, ..., n$. The productions of Γ_s are

 $X_i \rightarrow (i Y_i)_i Z_i, \quad i = 1, 2, \dots, n$

as well as all of the productions in Γ of the form $V \rightarrow a$ with $a \in T$.

The Separators, Examples

As an example, let Γ have the productions

 $S \to XY, \quad S \to YX, \quad Y \to ZZ,$ $X \to a, \quad Z \to a.$

The productions of Γ_s can be written as

$$S \to (X)Y, \quad S \to [Y]X, \quad Y \to \{Z\}Z,$$

 $X \to a, \quad Z \to a.$

where we use (,), [,], and $\{,\}$ in place for the numbered brackets.

Ambiguity in Context-free Grammars

Definition. A context-free grammar Γ is called *ambiguous* if there is a word $u \in L(\Gamma)$ that has two different leftmost derivations in Γ . If Γ is not ambiguous, it is said to be *unambiguous*.

Note that grammar Γ in the last slide is ambiguous: There are two leftmost derivations for *aaa*:

 $S \Rightarrow XY \Rightarrow aY \Rightarrow aZZ \Rightarrow aaZ \Rightarrow aaa$

 $S \Rightarrow YX \Rightarrow ZZX \Rightarrow aZX \Rightarrow aaX \Rightarrow aaa$

However, for grammar Γ_s , the two derivations become

 $S \Rightarrow (X)Y \Rightarrow (a)Y \Rightarrow (a)\{Z\}Z \Rightarrow (a)\{a\}Z \Rightarrow (a)\{a\}a$

 $S \Rightarrow [Y]X \Rightarrow [\{Z\}Z]X \Rightarrow [\{a\}Z]X \Rightarrow [\{a\}a]X \Rightarrow [\{a\}a]a$

That is, Γ_s separates the two derivations in Γ . The bracketing in the words $(a)\{a\}a$ and $[\{a\}a]a$ enables their respective derivation trees to be recovered.

16/25

Separated then Erased

If we write *P* or the set of brackets $(i,)_i, i = 1, 2, ..., n$, then clearly $\Gamma = \text{Er}_P(\Gamma_s)$. Hence, by Theorem 5.5, we conclude immediately that

Theorem 7.2. $\operatorname{Er}_{P}(L(\Gamma_{s})) = L(\Gamma)$.

In addition, we can also prove the following four lemmas about some relationship between languages $L(\Gamma_s)$ and $PAR_n(T)$.

Lemma 1

Lemma 1. $L(\Gamma_s) \subseteq PAR_n(T)$.

Proof. We want to show that if $X \Rightarrow_{\Gamma_s}^* w \in (T \cup P)^*$ for any variable X, the $w \in PAR_n(T)$. The proof is by an induction on the length of a derivation of w from X in Γ_s . If the length is 2, then w is a single terminal and the result is clear. Otherwise, we write

 $X = X_1 \Rightarrow_{\Gamma_s} (_iY_i)_i Z_i \Rightarrow^*_{\Gamma_s} (_iu)_i v = w,$

where $Y_i \Rightarrow^*_{\Gamma_s} u_i$ and $Z_i \Rightarrow^*_{\Gamma_s} v$). By the induction hypothesis, $u, v \in PAR_n(T)$. By b and c of Theorem 7.1, so is w.

To proceed further, we need to define a new context-free grammar Δ , which is related to Γ_s .

Δ , A Context-free Grammar

Now let Δ be the grammar whose variables, start symbol, and terminals are those of Γ_s and whose productions are as follows:

- 1. all productions $V \rightarrow a$ from Γ with $a \in T$,
- 2. all productions $X_i \rightarrow (i \ Y_i, i = 1, 2, \dots, n,$
- 3. all productions $V \to a_i$)_{*i*} Z_i , i = 1, 2, ..., n, for which $V \to a$ is a production of Γ with $a \in T$.

Lemma 2

Lemma 2. $L(\Delta)$ is regular.

Proof. Δ is right-linear. By Theorem 2.5, it is regular.

Lemma 3 Lemma 3. $L(\Gamma_s) \subseteq L(\Delta)$.

Proof. We show that if $X \Rightarrow_{\Gamma_s}^* u \in (T \cup P)^*$ then $X \Rightarrow_{\Delta}^* u$. The proof is by an induction on the length of a derivation of u from X in Γ_s . Let

$$X = X_i \Rightarrow_{\Gamma_s} (_i Y_i)_i Z_i \Rightarrow^*_{\Gamma_s} (_i v)_i w = u,$$

where the induction hypothesis applies to $Y_i \Rightarrow^*_{\Gamma_s} v$ and $Z_i \Rightarrow^*_{\Gamma_s} w$. Thus $Y_i \Rightarrow^*_{\Delta} v$ and $Z_i \Rightarrow^*_{\Delta} w$. By Exercise 3. (p. 308 of the textbook), we can show that

$$Y_i \Rightarrow^*_\Delta z \ V \Rightarrow_\Delta z \ a = v,$$

where $V \rightarrow a$ is a production of Γ . But then we have

 $X_i \Rightarrow_\Delta (_i Y_i \Rightarrow^*_\Delta (_i z V \Rightarrow_\Delta (_i z a)_i Z_i \Rightarrow^*_\Delta (_i v)_i w = u.$

21/25

Lemma 4

Lemma 4. $L(\Delta) \cap PAR_n(T) \subseteq L(\Gamma_s)$.

Proof. Let $X \Rightarrow_{\Delta}^{*} u$, where $u \in PAR_n(T)$. We shall prove that $X \Rightarrow_{\Gamma_s}^{*} u$. The proof is by an induction on the total number of pairs of the brackets $(i,)_i$ in u. If there is no such pair, then $u \in T$ and production $X \to is$ in Δ hence in Γ_s . Thus $X \Rightarrow_{\Gamma_s}^{*} u$.

Suppose there are pairs of brackets in u. By observing all the available productions in Δ , we conclude that $u = (i \ z \ \text{for some } z \ \text{and } i$. As $u \in \text{PAR}_n(T)$, we further conclude that $u = (i \ v \)_i \ w$, where $v, w \in \text{PAR}_n(T)$.

As the symbol $)_i$ can only arises from the use of some production $V \rightarrow a)_i Z_i$ in Δ . So v must end in a terminal a, so we can write $v = \overline{v}a$, where

Lemma 4, Continued Proof (Continued).

 $X = X_i \Rightarrow_\Delta (_i Y_i \Rightarrow^*_\Delta (_i \bar{v}V \Rightarrow_\Delta (_i \bar{v}a)_i Z_i \Rightarrow^*_\Delta (_i v)_i w$

and

$$Z_i \Rightarrow^*_\Delta w.$$

Moreover, since $v \to a$ is a production of Γ , hence of Δ , we also have in Δ

$$Y_i \Rightarrow^*_\Delta \bar{v} V \Rightarrow_\Delta \bar{v} a = v.$$

Since v and w must each contain fewer pairs of brackets than u, we have by induction hypothesis

$$Y_i \Rightarrow^*_{\Gamma_s} v, \quad Z_i \Rightarrow^*_{\Gamma_s} w.$$

Hence,

$$X_i \Rightarrow_{\Gamma_s} (_i Y_i)_i Z_i \Rightarrow^*_{\Gamma_s} (_i v)_i w = u$$

A Main Theorem

Theorem 7.3. Let Γ be a grammar in Chomsky normal form with terminals T. Then there is a regular language R such that

 $L(\Gamma_s) = R \cap PAR_n(T).$

Proof. Let Δ be defined as above and let $R = L(\Delta)$. The results follows from Lemmas 1-4.

Chomsky-Schützenberger Representation Theorem

Theorem 7.4. A languages $L \subseteq T^*$ is context-free if and only if there is a regular language R and a number n such that

 $L = \operatorname{Er}_P(R \cap \operatorname{PAR}_n(T))$

where $P = \{(i,)_i \mid i = 1, 2, ..., n\}.$

Proof. By Theorem 7.1, 7.2, and 7.3.

We will see that the Chomsky-Schützenberger Representation Theorem is instructional in the design of a class of machines the Pushdown Automata — to recognize context-free languages.