
Lambda calculus

An Introduction to Functional Programming

Tyng–Ruey Chuang

Institute of Information Science
Academia Sinica, Taiwan

2007 Formosan Summer School
on Logic, Language, and Computation

July 2–13, 2007

1 / 15



Lambda calculus

This course note . . .

I . . . is prepared for the 2007 Formosan Summer School on
Logic, Language, and Computation (held in Taipei, Taiwan),

I . . . is made available from the Flolac ’07 web site:

http://www.iis.sinica.edu.tw/~scm/flolac07/

I . . . and is released to the public under a Creative Commons
Attribution-ShareAlike 2.5 Taiwan license:

http://creativecommons.org/licenses/by-sa/2.5/

2 / 15



Lambda calculus

Course outline

Unit 1. Basics of functional programming.

Unit 2. Fold/unfold functions for data types;
(Untyped) lambda calculus.

Unit 3. Parametric modules.

Each unit consists of 2 hours of lecture and 1 hour of lab/tutor.
Examples will be given in Objective Caml (O’Caml). Useful online
resources about O’Caml:

I Web site: http://caml.inria.fr/

I Book: Developing Applications with Objective Caml.
URL: http://caml.inria.fr/pub/docs/oreilly-book/

3 / 15



Lambda calculus

Untyped lambda calculus

I Introduced by Alonzo Church and his student Stephen Cole
Kleene in the 1930s to study computable functions — even
before there are computers!

I A (very simple) formal system for defining functions and their
operational meanings, yet is shown to be as powerful as other
systems.

I It is a basis of early programming languages (such as Lisp).
Typed lambda calculi — there are many variations — are the
bases of modern functional languages (such as O’Caml and
Haskell).

4 / 15



Lambda calculus

Untyped lambda terms

The set of all (untyped) lambda terms T consists of the following
terms:

x where x is a variable;

λ x . t where x is a variable and t ∈ T is a lambda term;
(to denote function abstraction)

t1 t2 where t1, t2 ∈ T are lambda terms; (to denote
function application)

(t) where t ∈ T is a lambda term.

Examples:
x , y , z , xyz

x y z , λ x . λ y . z , (λ x . λ y . x) u v , (λ x . x x)(λ x . x x)

5 / 15



Lambda calculus

Notational conventions

I Function application is left associative. For example:

(λ x . λ y . x)(λ x . x)z

means
((λ x . λ y . x)(λ x . x))z

I The body of a function abstraction extends to the right as far
as possible. For example,

λ x . λ y . λ z . z y x

means
λ x . (λ y . (λ z . (z y x)))

In case of doubt, use parentheses to make clear the intended
meaning of a term.

6 / 15



Lambda calculus

Scope of variables

I An occurrence of variable x is bound if it appears in the body
t of a function abstraction λ x . t.

I An occurrence of variable x is free if it appears in a position
where it is not bound by an enclosing abstraction of x .

In the following example,

(λ x . λ y . (λ z . y) x) x

the outer occurrence of x is free while the inner occurrence of x is
bound. The only occurrence of y is bound. The variable z does
not occur in the function abstraction λ z . y .

7 / 15



Lambda calculus

Two computational rules

alpha renaming Two lambda terms are equivalent if they differ
only in the naming of bound variables. For example,
these two terms are equivalent:

(λ x . λ y . x y (λ x . x)) y ≡α (λ x . λ z . x z (λ x . x)) y

beta reduction A term (λ x . t1) t2 — called a redex — is
converted to the term t1 [t2/x ] where all free
variables x in t1 are replaced by term t2. For
example,

(λ x . λ z . x z (λ x . x)) y →β λ z . y z (λ x . x)

Use alpha renaming to avoid accidental capture of free variables
during a beta reduction!

8 / 15



Lambda calculus

Normal forms and reduction strategies

A lambda term is in normal form if it has no more redex. A
lambda term may contain many redexes. Several strategies to
select redex for beta reduction:

Normal order reduction always selects the leftmost, outermost
redex, until no more redexes is left.

Call-by-name reduction always selects the leftmost, outermost
redex, but never reduces inside function abstractions.
(Haskell; call-by-need actually)

Call-by-value reduction always selects the leftmost, innermost
redex, but never reduces inside function abstractions.
(O’Caml)

Church-Rosser theorem: the normal order reduction strategy will
always lead to the normal form if there is one.

9 / 15



Lambda calculus

Non-terminating reduction sequences
There are lambda terms that have no normal form. An example:

(λ x . x x)(λ x . x x) →β (λ x . x x)(λ x . x x) →β . . .

Let ω denote the lambda term ((λ x . x x)(λ x . x x)), and Q
denote the lambda term (λ x . λ y . x) ω. Then,

Normal order reduction

Q →β λ y . ω →β λ y . ω →β . . .

Call-by-name reduction

Q →β λ y . ω 6→

Call-by-value reduction

Q →β Q →β Q →β . . .

10 / 15



Lambda calculus

Church booleans

true := λ t . λ f . t

false := λ t . λ f . f

if := λ b . λ p . λ q . b p q

Example:

if true P Q = (λ b . λ p . λ q . b p q) true P Q

→ true P Q

= (λ t . λ f . t) P Q

→ P

More definitions:

and := λ p . λ q . if p q false

or := λ p . λ q . if p true q

11 / 15



Lambda calculus

Church numerals

O := λ f . λ x . x

1 := λ f . λ x . f x

2 := λ f . λ x . f (f x)

n := λ f . λ x . f (n) x

succ := λ x . λ f . λ n . f (x f n)

plus := λ x . λ y . λ f . λ n . x f (y f n)

times := λ x . λ y . x (plus y 0)

iszero := λ n . n (λ x . false) true

Example:

succ 2 = (λ x . λ f . λ n . f (x f n)) 2

→ λ f . λ n . f (2 f n)

= λ f . λ n . f ((λ f . λ n . f (f n)) f n)

→ λ f . λ n . f (f (f n)) = 3

12 / 15



Lambda calculus

Recursion via fixed-point

Y := λ f . (λ x . f (x x))(λ x . f (x x))

Y is a fixed-point computing function. For any lambda term F ,

Y F = (λ f . (λ x . f (x x))(λ x . f (x x))) F

→ (λ x .F (x x))(λ x .F (x x))

→ F ((λ x .F (x x))(λ x .F (x x)))

= F (Y F )

That is, (Y F ) is a fixed-point of F .

13 / 15



Lambda calculus

The factorial function, once again
Let

F := λ f . λ n . if (iszero n) 1 (times n (f (pred n)))

Then

Y F 3 → F (Y F ) 3

= if (iszero 3) 1 (times 3 ((Y F ) (pred 3)))

→ times 3 (Y F 2)

→ times 3 (F (Y F ) 2)

→ times 3 (times 2 (Y F 1))

→ times 3 (times 2 (F (Y F ) 1))

→ times 3 (times 2 (times 1 (Y F 0)))

→ times 3 (times 2 (times 1 (F (Y F ) 0)))

→ times 3 (times 2 (times 1 1))

→ 6

14 / 15



Lambda calculus

Is that all?

succ := λ x . λ f . λ n . f (x f n)

pred := ???

The definition of pred turns out to be not so easy!

15 / 15



Lambda calculus

Is that all?

succ := λ x . λ f . λ n . f (x f n)

pred := ???

The definition of pred turns out to be not so easy!

15 / 15



Lambda calculus

Is that all?

succ := λ x . λ f . λ n . f (x f n)

pred := ???

The definition of pred turns out to be not so easy!

15 / 15



Lambda calculus

Is that all?

succ := λ x . λ f . λ n . f (x f n)

pred := ???

The definition of pred turns out to be not so easy!

15 / 15


	Lambda calculus

