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Course outline

Unit 1. Basics of functional programming.

Unit 2. Fold/unfold functions for data types;
(Untyped) lambda calculus.

Unit 3. Parametric modules.
Each unit consists of 2 hours of lecture and 1 hour of lab/tutor.
Examples will be given in Objective Caml (O'Caml). Useful online
resources about O'Caml:
» Web site: http://caml.inria.fr/

» Book: Developing Applications with Objective Caml.
URL: http://caml.inria.fr/pub/docs/oreilly-book/



Untyped lambda calculus

» Introduced by Alonzo Church and his student Stephen Cole
Kleene in the 1930s to study computable functions — even
before there are computers!

» A (very simple) formal system for defining functions and their
operational meanings, yet is shown to be as powerful as other
systems.

> It is a basis of early programming languages (such as Lisp).
Typed lambda calculi — there are many variations — are the
bases of modern functional languages (such as O'Caml and
Haskell).



Untyped lambda terms

The set of all (untyped) lambda terms T consists of the following
terms:

x where x is a variable;

Ax.t where x is a variable and t € T is a lambda term;
(to denote function abstraction)

t; to where t1,t; € T are lambda terms; (to denote
function application)

(t) where t € T is a lambda term.
Examples:
X7 .y7 z7 X.yz

xyz, Ax.Ay.z, (Ax.Ay.x)uv, (Ax.xx)(Ax.x x)



Lambda calculus

Notational conventions

» Function application is left associative. For example:
Ax. Ay . x)(Ax.x)z

means
(Ax.Ay.x)(Ax.x))z

» The body of a function abstraction extends to the right as far

as possible. For example,

AX. Ay . Az.zy x

Ax.(Ay.(Az.(z y x)))

In case of doubt, use parentheses to make clear the intended
meaning of a term.
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Lambda calculus

Scope of variables

» An occurrence of variable x is bound if it appears in the body
t of a function abstraction A\ x . t.

» An occurrence of variable x is free if it appears in a position
where it is not bound by an enclosing abstraction of x.

In the following example,
(Ax.Ay.(Az.y) x) x

the outer occurrence of x is free while the inner occurrence of x is
bound. The only occurrence of y is bound. The variable z does
not occur in the function abstraction Az.y.



Lambda calculus

Two computational rules

alpha renaming Two lambda terms are equivalent if they differ
only in the naming of bound variables. For example,
these two terms are equivalent:

Ax.Ay.xy (Ax.x))y =a (Ax.Az.xz(Ax.x))y

beta reduction A term (Ax.t;) t — called a redex — is
converted to the term t; [t2/x] where all free
variables x in t; are replaced by term t,. For
example,

(Ax.Az.xz(Ax.x))y —p Az.yz(Ax.x)

Use alpha renaming to avoid accidental capture of free variables
during a beta reduction!



Lambda calculus

Normal forms and reduction strategies

A lambda term is in normal form if it has no more redex. A
lambda term may contain many redexes. Several strategies to
select redex for beta reduction:

Normal order reduction always selects the leftmost, outermost
redex, until no more redexes is left.

Call-by-name reduction always selects the leftmost, outermost
redex, but never reduces inside function abstractions.
(Haskell; call-by-need actually)

Call-by-value reduction always selects the leftmost, innermost
redex, but never reduces inside function abstractions.

(O'Caml)

Church-Rosser theorem: the normal order reduction strategy will
always lead to the normal form if there is one.



Lambda calculus

Non-terminating reduction sequences

There are lambda terms that have no normal form. An example:
(Ax.xx)(Ax.xx) —5 (Ax.xx)(Ax.xx) —pg

Let w denote the lambda term ((Ax.x x)(Ax.x x)), and Q
denote the lambda term (Ax.Ay.x) w. Then,

Normal order reduction

QR —p3 Ay.w —g Ay.w —g

Call-by-name reduction

Q —g Ay.w 4

Call-by-value reduction
Q —p Q@ —p Q —gp
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Church booleans
At Af.t

At AL
if:== Ab.Ap.Ag.bpg

true :

false :

Example:

if true PQ = (Ab.Ap.Aq.bpgq) true P Q
— true P Q
= (At.Af.t)PQ
— P

More definitions:
and := Ap.\q.if p q false
or := Ap.Aq.if ptrue g
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Lambda calculus

Church numerals

O:= M. Ax.x

1= Af.Ax.fx

2:= Af.Ax.f (f x)

ni= A.Ax.f(" x
succ := Ax.Af.An.f (xf n)
plus :== Ax. Ay . Af.An.xf (y f n)
times := Ax.Ay.x (plus y 0)

iszero := An.n (Ax.false) true
Example:
succ2 = (Ax.Af.An.f (xfn))2
— Af.An.f(2f n)

Ao An.f (M. An.f (f n))fn)
— X An.f(f(fn) = 3
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Lambda calculus

Recursion via fixed-point

Y= A.(Ax.f (xx))(Ax.f (x x))

Y is a fixed-point computing function. For any lambda term F,

YF = (Af.(Ax.f (xx))(Ax.f (xx))) F
— (Ax.F (xx))(Ax.F (x x))
— F((Ax.F (x x))(Ax.F (x x)))
= F(YF)

That is, (Y F) is a fixed-point of F.
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Lambda calculus

The factorial function, once again
Let

F:= Xf.\n.if (iszero n) 1 (times n (f (pred n)))
Then
Y F3

1

F(Y F)3
if (iszero 3) 1 (times 3 ((Y F) (pred 3)))
times 3 (Y F 2)
times 3 (F (Y F) 2)
times 3 (times 2 (Y F 1))
times 3 (times 2 (F (Y F) 1))
times 3 (times 2 (times 1 (Y F 0)))
(
(

times 3 (times 2 (times 1 (F (Y F) 0)))
times 3 (times 2 (times 1 1))
6

I
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Is that all?
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Is that all?

succ := Ax.Af.An.f (x f n)
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Is that all?

succ := Ax.Af.An.f (x f n)
pred := 777
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Is that all?

succ := Ax.Af.An.f (x f n)
pred := 777

The definition of pred turns out to be not so easy!
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