
Theory of Computation
Course note based on Computability, Complexity, and Languages: Fundamentals of Theoretical

Computer Science, 2nd edition, authored by Martin Davis, Ron Sigal, and Elaine J. Weyuker.

course note prepared by

Tyng–Ruey Chuang

Week 7, Spring 2010

About This Course Note

• It is prepared for the course Theory of Computation taught at the National Taiwan
University in Spring 2010.

• It follows very closely the book Computability, Complexity, and Languages: Funda-
mentals of Theoretical Computer Science, 2nd edition, by Martin Davis, Ron Sigal,
and Elaine J. Weyuker. Morgan Kaufmann Publishers. ISBN: 0-12-206382-1.

• It is available from Tyng-Ruey Chuang’s web site:

http://www.iis.sinica.edu.tw/~trc/

and released under a Creative Commons “Attribution-ShareAlike 3.0 Taiwan” license:

http://creativecommons.org/licenses/by-sa/3.0/tw/

1 A Universal Program (4)

1.1 The Recursive Theorem (4.8)

Recursive Theorem
Theorem 8.1. Let g(z, x1, . . . , xm) be a partially computable function of m+1 variables.

Then there is a number e such that

Φ(m)
e (x1, . . . , xm) = g(e, x1, . . . , xm)

1

Proof. Consider the partially computable function

g(S1
m(v, v), x1, . . . , xm)

where S1
m is the function that occurs in the parameter theorem. Then we have some number

z0 such that

g(S1
m(v, v), x1, . . . , xm) = Φ(m+1)(x1, . . . , xm, v, z0)

= Φ(m)(x1, . . . , xm, S
1
m(v, z0)).

Setting v = z0 and e = S1
m(z0, z0), we have

g(e, x1, . . . , xm) = Φ(m)(x1, . . . , xm, e) = Φ(m)
e (x1, . . . , xm)

2

A Self-Reproducing Program
Corollary 8.2. There is a number e such that for all x

Φe(x) = e

Proof. We consider the computable function

g(z, x) = u2
1(z, x) = z

Applying the recursive theorem we obtain a number e such that

Φe(x) = g(e, x) = e

2 Note: The program with number e “consumes’ its input x and outputs a “copy” of
itself. It is a “self-reproducing” organism!

Recursive Theorem, Examples
By using the recursive theorem, we can show that the functions obtained from primitive

recursion over other computable functions are also computable. To see this, first consider

f(x, t) =

{
k if t = 0
g(t−̇1,Φx(t−̇1)) otherwise

where g(x, y) is computable. By the recursion theorem there is a number e such that

Φe(t) = f(e, t) =

{
k if t = 0
g(t−̇1,Φe(t−̇1)) otherwise

An induction on t shows that Φe is a total, and therefore computable, function. Now Φe

satisfies the equations

Φe(0) = k

Φe(t+ 1) = g(t,Φe(t))

That is, Φe is obtained from g by primitive recursion.

2

Fixed Point Theorem
Theorem 8.3. Let f(z) be a computable function. Then there is a number e such that,

for all x,
Φf(e)(x) = Φe(x)

Proof. Let g(z, x) = Φf(z)(x), a partially computable function. By the recursion theorem,
there is a number e such that

Φe(x) = g(e, x) = Φf(e)(x)

2 Note that

• A number n is a fixed point of a function f(x) if f(n) = n.

• However, there are computable functions that have no fixed point in this sense, e.g.,
s(x).

• The fixed point theorem says that for every computable function f(x), there is a number
e of a program that computes the same function as the program with the number f(e).

1.2 A Computable Function That is Not primitive Recursive (4.9)

A Computable Function That is Not primitive Recursive
The Plan for A Proof:

• Construct a computable function φ(t, x) that enumerates all of the unary primitive
recursive functions. That is,

1. for each fixed value t = t0, the function φ(t0, x) will be primitive recursive;

2. for each unary primitive recursive function f(x), there will be a number t0 such
that f(x) = φ(t0, x).

• Show by diagonalization that the unary computable function φ(x, x) + 1 is different
from all primitive functions.

• Note that for the enumeration function φ(t, x) to work, we must show all primitive
functions can be represented in an unary manner.

Reduce the Parameter Count in Primitive Recursion
From a total n-ary function f and a total n+ 2-ary function g, one derives by primitive

recursion a total n+ 1-ary function h by

h(x1, . . . , xn, 0) = f(x1, . . . , xn)

h(x1, . . . , xn, t+ 1) = g(t, h(x1, . . . , xn, t), x1, . . . , xn).

3

If n > 1 we can reduce the number of parameters needed from n to n−1 by using the pairing
functions. That is, let

f̃(x1, . . . , xn−1) = f(x1, . . . , xn−2, l(xn−1), r(xn−1))

g̃(t, u, x1, . . . , xn−1) = g(t, u, x1, . . . , xn−2, l(xn−1), r(xn−1))

h̃(x1, . . . , xn−1, t) = h(x1, . . . , xn−2, l(xn−1), r(xn−1), t)

Reduce the Parameter Count in Primitive Recursion, Continued
Then we have

h̃(x1, . . . , xn−1, 0) = f̃(x1, . . . , xn−1)

h̃(x1, . . . , xn−1, t+ 1) = g̃(t, h̃(x1, . . . , xn−1, t), x1, . . . , xn−1)

Note that the original function h can be retrieved by

h(x1, . . . , xn, t) = h̃(x1, . . . , xn−2, 〈xn−1, xn〉, t)

Primitive Recursion, Reduced Form
By iterating this process we can reduce the number of parameters to 1, that is, to recur-

sions of the form

h(x, 0) = f(x)

h(x, t+ 1) = g(t, h(x, t), x)

Recursions with no parameters can also be put in the above form. Namely, for recursion

ψ(0) = k

ψ(t+ 1) = θ(t, ψ(t))

we simply set

f(x) = k

g(x1, x2, x3) = θ(u3
1(x1, x2, x3), u

3
2(x1, x2, x3))

Then ψ(t) = h(x, t) for all x.

4

Primitive Recursion, Further Reduced

h(x, 0) = f(x)

h(x, t+ 1) = g(t, h(x, t), x)

The above can be further reduced by using the pairing function to combine arguments.
Namely, we set

h̃(x, t) = 〈h(x, t), 〈x, t〉〉
Then, we have

h̃(x, 0) = 〈f(x), 〈x, 0〉〉
h̃(x, t+ 1) = 〈g(t, h(x, t), x), 〈x, t+ 1〉〉 = g̃(h̃(x, t))

where
g̃(u) = 〈g(r(r(u)), l(u), l(r(u))), 〈l(r(u)), r(r(u)) + 1〉〉

Again, the original function h can be retrieved by h(x, t) = l(h̃(x, t)).

Taking Pairing Function as Initial Function
Theorem 9.1. The primitive recursive functions are precisely the functions obtainable

from the initial functions

s(x), n(x), l(z), r(z), 〈x, y〉, and un
i , 1 ≤ i ≤ n

using the operations of composition and primitive recursion of the particular form

h(x, 0) = f(x)

h(x, t+ 1) = g(h(x, t))

2

Unary Primitive Recursive Function
Theorem 9.2. The unary primitive recursive functions are precisely those obtainable

from the initial functions
s(x), n(x), l(z), r(z)

by applying the following three operations on unary functions:

1. to go from f(x) and g(x) to f(g(x)),

2. to go from f(x) and g(x) to 〈f(x), g(x)〉,

3. to go from f(x) and g(x) to the function defined by the recursion

h(0) = 0

h(t+ 1) =

{
f(t

2
) if t+ 1 is odd,

g(h(t+1
2

)) if t+ 1 is even.

2

5

Unary Primitive Recursive Function, Proof Outline
Proof Outline. Let PR be the set of all functions obtained from the initials listed in the

theorem using operations 1 to 3. We show that PR is precisely the set of unary primitive
recursive functions by proving the following:

1. show all functions in PR are primitive recursive,

2. show every unary primitive recursive function belongs to PR.

Because an unary primitive recursive function may be composed from primitive recursive
functions that are not unary, e.g. h(t) defined by h′(t, . . . , t), where

h′(x1, . . . , xn) = f(g1(x1, . . . , xn), . . . , gk(x1, . . . , xn))

Proving 2. above will need additional care. 2

Functions in PR Are Primitive Recursive
We need only show that functions obtained from operation 3 are primitive recursive; the

other cases are already known. Making use of Gödel numbering, we set

~h(0) = 0,

~h(n) = [h(0), . . . , h(n− 1)] if n > 0.

We will show that ~h(n) is primitive recursive and then h(n) = (~h(n + 1))n+1 is primitive

recursive as well. ~h(n) is primitive recursive because

~h(n+ 1) = ~h(n) · ph(n)
n+1

=

{
~h(n) · pf(bn/2c)

n+1 if n is odd,

~h(n) · pg((~h(n))bn/2c)

n+1 if n is even.

Recall that pn is the n-th prime number.

Every Unary Primitive Recursive Function Is in PR, Proof Outline

• A function g(x1, . . . , xn) is called satisfactory if it has the property that for any unary
function h1(t), . . . , hn(t) that belongs to PR, the unary function g(h1(t), . . . , hn(t))
also belongs to PR.

• Note that an unary function g(t) that is satisfactory must belong to PR because
g(t) = g(u1

1(t)) and u1
1(t) = 〈l(t), r(t)〉 belongs to PR.

• We proceed to show that all primitive recursive functions are satisfactory, hence prove
that every unary primitive recursive function is in PR.

• We shall use the characterization of the primitive recursive functions of Theorem 9.1

6

All Primitive Recursive Functions Are Satisfactory, 1/3

• Initial functions: We need consider only the pairing function 〈x1, x2〉 and the projection
function un

i where 1 ≤ i ≤ n.

1. By definition, 〈h1(t), h2(t)〉 is in PR if both h1(t) and h2(t) are in PR.

2. If h1(t), . . . , hn(t) are in PR, then un
i (h1(t), . . . , hn(t)) = hi(t) of course is in PR.

• Function composition: Let

h(x1, . . . , xn) = f(g1(x1, . . . , xn), . . . , gk(x1, . . . , xn))

where g1, . . . , gk and f are satisfactory. Let h1(t), . . . , hn(t) be given functions that
belong to PR. Then, setting

g̃i(t) = gi(h1(t), . . . , hn(t))

for 1 ≤ i ≤ k we see that each g̃i is in PR. Now, the unary function

h(h1(t), . . . , hn(t)) = f(g̃1(t), . . . , g̃k(t))

also belongs to PR, hence h(x1, . . . , xn) is satisfactory.

All Primitive Recursive Functions Are Satisfactory, 2/3

• Primitive recursion: Let

h(x, 0) = f(x)

h(x, t+ 1) = g(h(x, t))

where f and g are satisfactory. We want to encode the binary function h(b, a) by an
unary function ψ(〈a, b〉+ 1) = h(b, a). Note that ψ(0) = 0 and ψ(t+ 1) = h(r(t), l(t)).
Recall that

〈a, b〉 = 2a(2b+ 1)− 1

1. If t+ 1 is even, then 2a(2b+ 1) is even; hence a > 0 and

ψ(t+ 1) = h(b, a) = g(h(b, a− 1))

= g(ψ(2a−1(2b+ 1))) = g(ψ((t+ 1)/2)).

2. If t+ 1 is odd, then 2a(2b+ 1) is odd; hence a = 0 and

ψ(t+ 1) = h(b, 0) = f(b) = f(t/2).

7

All Primitive Recursive Functions Are Satisfactory, 3/3

• Primitive recursion (continued): In other words,

ψ(0) = 0

ψ(t+ 1) =

{
f(t

2
) if t+ 1 is odd,

g(ψ(t+1
2

)) if t+ 1 is even.

Now f and g are satisfactory, and being unary, belongs to PR. By the definitions of
PR, ψ belongs to PR as well.

• To retrieve h from ψ we simply use h(b, a) = ψ(〈a, b〉+ 1). Therefore,

h(h2(t), h1(t)) = ψ(s(〈h1(t), h2(t)〉))

from which we see that if both h1 and h2 are in PR then so is h(h2(t), h1(t)). Hence
h is satisfactory.

Enumerating All Unary Primitive Recursive Functions
We now define the function φ(t, x), also written as φt(x), to enumerate all unary primitive

recursive functions:

φt(x) =

x+ 1 if t = 0
0 if t = 1
l(x) if t = 2
r(x) if t = 3
φl(n)(φr(n)(x)) if t = 3n+ 4, n ≥ 0
〈φl(n)(x), φr(n)(x)〉 if t = 3n+ 5, n ≥ 0
0 if t = 3n+ 6, n ≥ 0 and x = 0
φl(x)((x− 1)/2) if t = 3n+ 6, n ≥ 0 and x is odd
φr(x)(φt(x/2)) if t = 3n+ 6, n ≥ 0 and x is even

A Closer Look at φ(t, x)

• φ0, φ1, φ2, φ3 are the four initial functions.

• For t > 3, t is represented as 3n+ i where n ≥ 0 and i = 4, 5, 6. The three operations
of Theorem 9.2 are then dealt with for the corresponding value of i.

• The pairing functions are used to guarantee all functions obtained for any value of t
are eventually used in all possible applications of the three operations.

• It is clear from the definition that φ(t, x) is a total function and that it does enumerate
all the unary primitive recursive functions.

• It is clear that the definition of φ(t, x) also provides an algorithm for computing the
values of φ for any given inputs.

8

φ(t, x) Is Computable
We prove φ(t, x) is computable by using the recursive theorem. Let function g(z, t, x) be

defined as
g(z, t, x) =

x+ 1 if t = 0
0 if t = 1
l(x) if t = 2
r(x) if t = 3

Φ
(2)
z (l(n),Φ

(2)
z (r(n), x)) if t = 3n+ 4, n ≥ 0

〈Φ(2)
z (l(n), x),Φ

(2)
z (r(n), x)〉 if t = 3n+ 5, n ≥ 0

0 if t = 3n+ 6, n ≥ 0 and x = 0

Φ
(2)
z (l(n), bx/2c) if t = 3n+ 6, n ≥ 0 and x is odd

Φ
(2)
z (r(n),Φ

(2)
z (t, bx/2c) if t = 3n+ 6, n ≥ 0 and x is even

φ(t, x) Is Computable, Continued
Then g(z, t, x) is partially computable, and by the recursion theorem, there is a number

e such that
g(e, t, x) = Φe(t, x)

As g(e, t, x) satisfy the definition of φ(t, x) and that definition determines φ uniquely as a
total function, we must have

φ(t, x) = g(e, t, x)

Hence, φ(t, x) is computable.

φ(x, x) + 1 Is Not Primitive Recursive
Theorem 9.3. The function φ(x, x) + 1 is a computable function that is not primitive

recursive. 2

9

