
Functional Programming: Exercise 2

Tyng–Ruey Chuang

Institute of Information Science
Academia Sinica, Taiwan

2007 Formosan Summer School
on Logic, Language, and Computation

July 2–13, 2007

Homework due 9:30 am, July 9, 2007.
No late homework will be accepted.

1 / 4



Problem 1

Complete the following definition of function concat so that it will
return the concatenation of the lists in the input list.

let rec fold (base, step) list =
match list with

[] -> base
| hd :: tl -> step (hd, fold (base, step) tl)

let concat ll = fold __________________________ ll

let this = concat [[1]; [2; 3]; [4; 5; 6]; [7; 8]; [9]; []]

When submitted to the O’Caml interpreter, you shall see

val fold : ’a * (’b * ’a -> ’a) -> ’b list -> ’a = <fun>
val concat : ’a list list -> ’a list = <fun>
val this : int list = [1; 2; 3; 4; 5; 6; 7; 8; 9]

2 / 4



Problem 2

Complete the following definition of function revcat so that it will
return the reversal of the concatenation of the lists in the input list.

let revcat ll =
let rec loop ll acc = ____________________

in
loop ll []

let that = revcat [[1]; [2; 3]; [4; 5; 6]; [7; 8]; [9]; []]

When submitted to the O’Caml interpreter, you shall see

val revcat : ’a list list -> ’a list = <fun>
val that : int list = [9; 8; 7; 6; 5; 4; 3; 2; 1]

3 / 4



Problem 3
The following definition of nat can be used to express all natural
numbers:

type ’a t = Z | S of ’a
type nat = R of nat t

Complete the following definitions (assuming u ≥ 0):

let rec fold f n = __________________________
let rec unfold g n = __________________________
let int2nat u = unfold __________________________ u
let nat2int v = fold __________________________ v
let x = int2nat 3
let y = nat2int x

When submitted to the O’Caml interpreter, you shall see

val fold : (’a t -> ’a) -> nat -> ’a = <fun>
val unfold : (’a -> ’a t) -> ’a -> nat = <fun>
val int2nat : int -> nat = <fun>
val nat2int : nat -> int = <fun>
val x : nat = R (S (R (S (R (S (R Z))))))
val y : int = 3

4 / 4


