
Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Denotational Semantics

Tyng–Ruey Chuang

Institute of Information Science
Academia Sinica, Taiwan

2010 Formosan Summer School
on Logic, Language, and Computation

June 28 – July 9, 2010

1 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

This course note . . .

I . . . is prepared for the 2010 Formosan Summer School on
Logic, Language, and Computation (FLOLAC) held in Taipei,
Taiwan,

I . . . is made available from the FLOLAC ’10 web site:

http://flolac.iis.sinica.edu.tw/flolac10/

(please also check the above site for updated version)

I . . . and is released to the public under a Creative Commons
Attribution-ShareAlike 3.0 Taiwan license:

http://creativecommons.org/licenses/by-sa/3.0/tw/

2 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Course outline

Unit 1. Basic domain theory.

Unit 2. Denotational semantics of functional programs and
While programs.

Unit 3. Non-standard semantics.

Each unit consists of 2 hours of lecture and 1 hour of lab/tutor.

3 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Syntax and Semantics

I Syntax is about the form of sentences in a language.

I Semantics is about the meaning of sentences.

I Syntax: Let’s keep in touch!

I Semantics: Bye bye!

I Syntax:

let f n = n * n
let k = f 10

I Semantics:
f is a function computing the square of its argument n;
k is the result of applying f to integer 10.

4 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Syntax and Semantics

I Syntax is about the form of sentences in a language.

I Semantics is about the meaning of sentences.

I Syntax: Let’s keep in touch!

I Semantics: Bye bye!

I Syntax:

let f n = n * n
let k = f 10

I Semantics:
f is a function computing the square of its argument n;
k is the result of applying f to integer 10.

4 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Syntax and Semantics

I Syntax is about the form of sentences in a language.

I Semantics is about the meaning of sentences.

I Syntax: Let’s keep in touch!

I Semantics: Bye bye!

I Syntax:

let f n = n * n
let k = f 10

I Semantics:
f is a function computing the square of its argument n;
k is the result of applying f to integer 10.

4 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Syntax and Semantics

I Syntax is about the form of sentences in a language.

I Semantics is about the meaning of sentences.

I Syntax: Let’s keep in touch!

I Semantics: Bye bye!

I Syntax:

let f n = n * n
let k = f 10

I Semantics:
f is a function computing the square of its argument n;
k is the result of applying f to integer 10.

4 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Syntax and Semantics

I Syntax is about the form of sentences in a language.

I Semantics is about the meaning of sentences.

I Syntax: Let’s keep in touch!

I Semantics: Bye bye!

I Syntax:

let f n = n * n
let k = f 10

I Semantics:
f is a function computing the square of its argument n;
k is the result of applying f to integer 10.

4 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Syntax and Semantics

I Syntax is about the form of sentences in a language.

I Semantics is about the meaning of sentences.

I Syntax: Let’s keep in touch!

I Semantics: Bye bye!

I Syntax:

let f n = n * n
let k = f 10

I Semantics:
f is a function computing the square of its argument n;
k is the result of applying f to integer 10.

4 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Semantics of Programming Languages

I The semantics of a programming language is a systematic way
of giving meanings to programs written in the language.

I Operational semantics: A program means what a machine
interprets it to be.

I Denotational semantics: A program denotes a mathematical
object independent of its machine execution.

I The denotational semantics and the operational semantics of
a programming language shall closely relate to each other.

I Programs shall have precise and consistent meaning.

5 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Semantics of Programming Languages

I The semantics of a programming language is a systematic way
of giving meanings to programs written in the language.

I Operational semantics: A program means what a machine
interprets it to be.

I Denotational semantics: A program denotes a mathematical
object independent of its machine execution.

I The denotational semantics and the operational semantics of
a programming language shall closely relate to each other.

I Programs shall have precise and consistent meaning.

5 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Semantics of Programming Languages

I The semantics of a programming language is a systematic way
of giving meanings to programs written in the language.

I Operational semantics: A program means what a machine
interprets it to be.

I Denotational semantics: A program denotes a mathematical
object independent of its machine execution.

I The denotational semantics and the operational semantics of
a programming language shall closely relate to each other.

I Programs shall have precise and consistent meaning.

5 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Semantics of Programming Languages

I The semantics of a programming language is a systematic way
of giving meanings to programs written in the language.

I Operational semantics: A program means what a machine
interprets it to be.

I Denotational semantics: A program denotes a mathematical
object independent of its machine execution.

I The denotational semantics and the operational semantics of
a programming language shall closely relate to each other.

I Programs shall have precise and consistent meaning.

5 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Non-terminating Programs

What does program g mean?

let rec g n = if (n mod 2 = 0)
then not (g (n+1))
else not (g (n-1))

Possible answers:

I g1(n) =

{
T if n is even,
F if n is odd.

I g2(n) =

{
F if n is even,
T if n is odd.

I g3(n) is undefined for all n, as the execution will not
terminate (or, will not terminate normally).

Which interpretation is accurate?

6 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Non-terminating Programs

What does program g mean?

let rec g n = if (n mod 2 = 0)
then not (g (n+1))
else not (g (n-1))

Possible answers:

I g1(n) =

{
T if n is even,
F if n is odd.

I g2(n) =

{
F if n is even,
T if n is odd.

I g3(n) is undefined for all n, as the execution will not
terminate (or, will not terminate normally).

Which interpretation is accurate?

6 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Non-terminating Programs

What does program g mean?

let rec g n = if (n mod 2 = 0)
then not (g (n+1))
else not (g (n-1))

Possible answers:

I g1(n) =

{
T if n is even,
F if n is odd.

I g2(n) =

{
F if n is even,
T if n is odd.

I g3(n) is undefined for all n, as the execution will not
terminate (or, will not terminate normally).

Which interpretation is accurate?

6 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Non-terminating Programs

What does program g mean?

let rec g n = if (n mod 2 = 0)
then not (g (n+1))
else not (g (n-1))

Possible answers:

I g1(n) =

{
T if n is even,
F if n is odd.

I g2(n) =

{
F if n is even,
T if n is odd.

I g3(n) is undefined for all n, as the execution will not
terminate (or, will not terminate normally).

Which interpretation is accurate?

6 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Non-terminating Programs

What does program g mean?

let rec g n = if (n mod 2 = 0)
then not (g (n+1))
else not (g (n-1))

Possible answers:

I g1(n) =

{
T if n is even,
F if n is odd.

I g2(n) =

{
F if n is even,
T if n is odd.

I g3(n) is undefined for all n, as the execution will not
terminate (or, will not terminate normally).

Which interpretation is accurate?

6 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Non-terminating Programs, Continued

let rec g n = if (n mod 2 = 0)
then not (g (n+1))
else not (g (n-1))

Which of the following meaning of g is more accurate?

I g3(n) = ↑

I g4(n) =

T if n = 0,
F if n = 1,
↑ otherwise.

I g5(n) =

F if n = 0,
T if n = 1,
↑ otherwise.

Note: We use ↑ as a shorthand for non-termination or abnormal
termination. Functions g3, g4, and g5 are partial functions.

7 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

A Notation for Functions

For a (partial) function f , we use the notation
f = {(d , e) | f (d) = e, e is defined}.

g1(n) =

{
T if n is even
F if n is odd

g1 =
{(2n,T) | n ≥ 0} ∪
{(2n + 1,F) | n ≥ 0}

g2(n) =

{
F if n is even
T if n is odd

g2 =
{(2n,F) | n ≥ 0} ∪
{(2n + 1,T) | n ≥ 0}

g3(n) = ↑ g3 = ∅

g4(n) =

T if n = 0
F if n = 1
↑ otherwise

g4 = {(0,T), (1,F)}

g5(n) =

F if n = 0
T if n = 1
↑ otherwise

g5 = {(0,F), (1,T)}

8 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

A Notation for Functions

For a (partial) function f , we use the notation
f = {(d , e) | f (d) = e, e is defined}.

g1(n) =

{
T if n is even
F if n is odd

g1 =
{(2n,T) | n ≥ 0} ∪
{(2n + 1,F) | n ≥ 0}

g2(n) =

{
F if n is even
T if n is odd

g2 =
{(2n,F) | n ≥ 0} ∪
{(2n + 1,T) | n ≥ 0}

g3(n) = ↑ g3 = ∅

g4(n) =

T if n = 0
F if n = 1
↑ otherwise

g4 = {(0,T), (1,F)}

g5(n) =

F if n = 0
T if n = 1
↑ otherwise

g5 = {(0,F), (1,T)}

8 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

A Notation for Functions

For a (partial) function f , we use the notation
f = {(d , e) | f (d) = e, e is defined}.

g1(n) =

{
T if n is even
F if n is odd

g1 =
{(2n,T) | n ≥ 0} ∪
{(2n + 1,F) | n ≥ 0}

g2(n) =

{
F if n is even
T if n is odd

g2 =
{(2n,F) | n ≥ 0} ∪
{(2n + 1,T) | n ≥ 0}

g3(n) = ↑ g3 = ∅

g4(n) =

T if n = 0
F if n = 1
↑ otherwise

g4 = {(0,T), (1,F)}

g5(n) =

F if n = 0
T if n = 1
↑ otherwise

g5 = {(0,F), (1,T)}

8 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

A Notation for Functions

For a (partial) function f , we use the notation
f = {(d , e) | f (d) = e, e is defined}.

g1(n) =

{
T if n is even
F if n is odd

g1 =
{(2n,T) | n ≥ 0} ∪
{(2n + 1,F) | n ≥ 0}

g2(n) =

{
F if n is even
T if n is odd

g2 =
{(2n,F) | n ≥ 0} ∪
{(2n + 1,T) | n ≥ 0}

g3(n) = ↑ g3 = ∅

g4(n) =

T if n = 0
F if n = 1
↑ otherwise

g4 = {(0,T), (1,F)}

g5(n) =

F if n = 0
T if n = 1
↑ otherwise

g5 = {(0,F), (1,T)}

8 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

A Notation for Functions

For a (partial) function f , we use the notation
f = {(d , e) | f (d) = e, e is defined}.

g1(n) =

{
T if n is even
F if n is odd

g1 =
{(2n,T) | n ≥ 0} ∪
{(2n + 1,F) | n ≥ 0}

g2(n) =

{
F if n is even
T if n is odd

g2 =
{(2n,F) | n ≥ 0} ∪
{(2n + 1,T) | n ≥ 0}

g3(n) = ↑ g3 = ∅

g4(n) =

T if n = 0
F if n = 1
↑ otherwise

g4 = {(0,T), (1,F)}

g5(n) =

F if n = 0
T if n = 1
↑ otherwise

g5 = {(0,F), (1,T)}

8 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Data Types and Sets

In programming languages, a data type can be viewed as a set of
values, along with predefined operations on values in the set.

I For type int, we think of the set Z = {. . . , 2,−1, 0, 1, 2, . . .}
along with integer operations +,−,×,÷, . . .

I For type bool, we think of the set B = {T,F}, along with
boolean operations ∨,∧,¬,

This view, however, does not address non-terminating programs.

I Which element in B gives meaning to (g 0)?

I Of the 5 meanings g1, g2, g3, g4, g5 for g, which one most
accurately describes g?

9 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Data Types and Sets

In programming languages, a data type can be viewed as a set of
values, along with predefined operations on values in the set.

I For type int, we think of the set Z = {. . . , 2,−1, 0, 1, 2, . . .}
along with integer operations +,−,×,÷, . . .

I For type bool, we think of the set B = {T,F}, along with
boolean operations ∨,∧,¬,

This view, however, does not address non-terminating programs.

I Which element in B gives meaning to (g 0)?

I Of the 5 meanings g1, g2, g3, g4, g5 for g, which one most
accurately describes g?

9 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Data Types and Domains
To address non-termination,

I For each data type, an element ⊥ is introduced to the set of
values to denote computational divergence.

I A partial order is established among the elements in the new
set. This set is called the domain for the data type.

We use v to denote “semantically weaker”. We write x v y to
mean that x is less defined than y computationally. That is, x has
less information content than y has.

I For type bool, we now think of the domain B = {⊥,T,F}.
I Elements in B are ordered by ⊥ v T and ⊥ v F. But T 6v F

and F 6v T.
I Domain B illustrated: F T

⊥

@@@@@@@

~~~~~~~

10 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Data Types and Domains
To address non-termination,

I For each data type, an element ⊥ is introduced to the set of
values to denote computational divergence.

I A partial order is established among the elements in the new
set. This set is called the domain for the data type.

We use v to denote “semantically weaker”. We write x v y to
mean that x is less defined than y computationally. That is, x has
less information content than y has.

I For type bool, we now think of the domain B = {⊥,T,F}.
I Elements in B are ordered by ⊥ v T and ⊥ v F. But T 6v F

and F 6v T.
I Domain B illustrated: F T

⊥

@@@@@@@

~~~~~~~

10 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Data Types and Domains
To address non-termination,

I For each data type, an element ⊥ is introduced to the set of
values to denote computational divergence.

I A partial order is established among the elements in the new
set. This set is called the domain for the data type.

We use v to denote “semantically weaker”. We write x v y to
mean that x is less defined than y computationally. That is, x has
less information content than y has.

I For type bool, we now think of the domain B = {⊥,T,F}.

I Elements in B are ordered by ⊥ v T and ⊥ v F. But T 6v F
and F 6v T.

I Domain B illustrated: F T

⊥

@@@@@@@

~~~~~~~

10 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Data Types and Domains
To address non-termination,

I For each data type, an element ⊥ is introduced to the set of
values to denote computational divergence.

I A partial order is established among the elements in the new
set. This set is called the domain for the data type.

We use v to denote “semantically weaker”. We write x v y to
mean that x is less defined than y computationally. That is, x has
less information content than y has.

I For type bool, we now think of the domain B = {⊥,T,F}.
I Elements in B are ordered by ⊥ v T and ⊥ v F. But T 6v F

and F 6v T.

I Domain B illustrated: F T

⊥

@@@@@@@

~~~~~~~

10 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Data Types and Domains
To address non-termination,

I For each data type, an element ⊥ is introduced to the set of
values to denote computational divergence.

I A partial order is established among the elements in the new
set. This set is called the domain for the data type.

We use v to denote “semantically weaker”. We write x v y to
mean that x is less defined than y computationally. That is, x has
less information content than y has.

I For type bool, we now think of the domain B = {⊥,T,F}.
I Elements in B are ordered by ⊥ v T and ⊥ v F. But T 6v F

and F 6v T.
I Domain B illustrated: F T

⊥

@@@@@@@

~~~~~~~

10 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Partially Ordered Set (poset)

Definition
A partially ordered set (poset) D is a set with a binary relation
vD ⊆ D × D such that for every x , y , z ∈ D, the following
properties fold:

1. (reflexive) x vD x .

2. (anti-symmetric) x vD y and y vD x implies x = y .

3. (transitive) x vD y and y vD z implies x vD z .

2

I B = {T,F} with vB = {(F,F), (T,T)} is a poset.

I B = {⊥,F,T} with
vB = {(⊥,⊥), (F,F), (T,T), (⊥,F), (⊥,T)} is also a poset.

11 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Partially Ordered Set (poset)

Definition
A partially ordered set (poset) D is a set with a binary relation
vD ⊆ D × D such that for every x , y , z ∈ D, the following
properties fold:

1. (reflexive) x vD x .

2. (anti-symmetric) x vD y and y vD x implies x = y .

3. (transitive) x vD y and y vD z implies x vD z .

2

I B = {T,F} with vB = {(F,F), (T,T)} is a poset.

I B = {⊥,F,T} with
vB = {(⊥,⊥), (F,F), (T,T), (⊥,F), (⊥,T)} is also a poset.

11 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Partially Ordered Set (poset)

Definition
A partially ordered set (poset) D is a set with a binary relation
vD ⊆ D × D such that for every x , y , z ∈ D, the following
properties fold:

1. (reflexive) x vD x .

2. (anti-symmetric) x vD y and y vD x implies x = y .

3. (transitive) x vD y and y vD z implies x vD z .

2

I B = {T,F} with vB = {(F,F), (T,T)} is a poset.

I B = {⊥,F,T} with
vB = {(⊥,⊥), (F,F), (T,T), (⊥,F), (⊥,T)} is also a poset.

11 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Directed Set

Definition
Let D be a poset. A set X ⊆ D is directed if

1. X 6= ∅.
2. For all x , y ∈ X there is a z ∈ X such that x vD z and

y vD z .

2

I A directed set X of a poset D can be viewed as an
approximation for some computation in D.

I It is an approximation because for every two elements
x , y ∈ X , there is always a more defined element z ∈ X which
x and y can progress to.

12 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Directed Set

Definition
Let D be a poset. A set X ⊆ D is directed if

1. X 6= ∅.
2. For all x , y ∈ X there is a z ∈ X such that x vD z and

y vD z .

2

I A directed set X of a poset D can be viewed as an
approximation for some computation in D.

I It is an approximation because for every two elements
x , y ∈ X , there is always a more defined element z ∈ X which
x and y can progress to.

12 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Directed Set

Definition
Let D be a poset. A set X ⊆ D is directed if

1. X 6= ∅.
2. For all x , y ∈ X there is a z ∈ X such that x vD z and

y vD z .

2

I A directed set X of a poset D can be viewed as an
approximation for some computation in D.

I It is an approximation because for every two elements
x , y ∈ X , there is always a more defined element z ∈ X which
x and y can progress to.

12 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Complete Partial Order (cpo)

Definition
Let D be a poset. D is a complete partial order (cpo) if

1. There is a least element ⊥D ∈ D such that for all x ∈ D,
⊥D vD x .

2. Every directed set X ⊆ D has a least upper bound (lub)⊔
X ∈ D.

2

I That is, for a cpo D and an approximation X ⊆ D, the
approximation in X must progress to an unique element (the
lub) in D (though not necessarily in X ).

I We use cpo as the domain for denotational semantics. The
terms cpo and domain are used interchangeably.

I The subscript D in vD and ⊥D is often omitted if it is clear.

13 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Complete Partial Order (cpo)

Definition
Let D be a poset. D is a complete partial order (cpo) if

1. There is a least element ⊥D ∈ D such that for all x ∈ D,
⊥D vD x .

2. Every directed set X ⊆ D has a least upper bound (lub)⊔
X ∈ D.

2

I That is, for a cpo D and an approximation X ⊆ D, the
approximation in X must progress to an unique element (the
lub) in D (though not necessarily in X ).

I We use cpo as the domain for denotational semantics. The
terms cpo and domain are used interchangeably.

I The subscript D in vD and ⊥D is often omitted if it is clear.

13 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Complete Partial Order (cpo)

Definition
Let D be a poset. D is a complete partial order (cpo) if

1. There is a least element ⊥D ∈ D such that for all x ∈ D,
⊥D vD x .

2. Every directed set X ⊆ D has a least upper bound (lub)⊔
X ∈ D.

2

I That is, for a cpo D and an approximation X ⊆ D, the
approximation in X must progress to an unique element (the
lub) in D (though not necessarily in X ).

I We use cpo as the domain for denotational semantics. The
terms cpo and domain are used interchangeably.

I The subscript D in vD and ⊥D is often omitted if it is clear.

13 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Complete Partial Order (cpo)

Definition
Let D be a poset. D is a complete partial order (cpo) if

1. There is a least element ⊥D ∈ D such that for all x ∈ D,
⊥D vD x .

2. Every directed set X ⊆ D has a least upper bound (lub)⊔
X ∈ D.

2

I That is, for a cpo D and an approximation X ⊆ D, the
approximation in X must progress to an unique element (the
lub) in D (though not necessarily in X ).

I We use cpo as the domain for denotational semantics. The
terms cpo and domain are used interchangeably.

I The subscript D in vD and ⊥D is often omitted if it is clear.

13 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Domain N

0 1 2 3 . . .

⊥

OOOOOOOOOOOOOO

????????

��������

14 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

A Possible View of Natural Numbers

{n | n ≥ 3}

{n | n ≥ 2}

{n | n ≥ 1}

{n | n ≥ 0}

⊥
15 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

A Domain Built from Subsets

{a, b, c}

{a, b}

ttttttttt
{a, c} {b, c}

JJJJJJJJJ

{a}

tttttttttt
{b}

JJJJJJJJJJ

tttttttttt
{c}

JJJJJJJJJJ

∅

sssssssssss

KKKKKKKKKKK

16 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

A Domain of Partial Functions

{(2n,T) | n ≥ 0} ∪
{(2n + 1,F) | n ≥ 0}

{(2n,F) | n ≥ 0} ∪
{(2n + 1,T) | n ≥ 0}

{(0,T), (1,F)} {(0,F), (1,T)}

{(0,T)} {(1,F)}

NNNNNNNNNN

{(0,F)}

ppppppppppp
{(1,T)}

∅

8888888

SSSSSSSSSSSSSSSSS

�������

kkkkkkkkkkkkkkkkk

17 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Domain Lifting

Definition
Let D be a domain. Define poset lift(D) by

1. lift(D) = D ∪ {⊥lift(D)}, ⊥lift(D) 6∈ D.

2. x vlift(D) y if and only if x = ⊥lift(D) or x vD y .

2

I If D is a domain then lift(D) forms a domain.

I lift(D) is called the lifted domain of D.

18 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Domain Lifting

Definition
Let D be a domain. Define poset lift(D) by

1. lift(D) = D ∪ {⊥lift(D)}, ⊥lift(D) 6∈ D.

2. x vlift(D) y if and only if x = ⊥lift(D) or x vD y .

2

I If D is a domain then lift(D) forms a domain.

I lift(D) is called the lifted domain of D.

18 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Domain 1 and Domain 2

Example

Let 1 be the poset {⊥} where ⊥ v1 ⊥. 1 is a domain. 2

Example

Let 2 = lift(1). Then 2 is a domain. 2 has only two elements, ⊥
and >, and ⊥ v2 >. 2

For domain 2 , the least upper bound operator t and the greatest
lower bound operator u are defined by the following.

t ⊥ >
⊥ ⊥ >
> > >

u ⊥ >
⊥ ⊥ ⊥
> ⊥ >

(Look familiar?)

19 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Domain 1 and Domain 2

Example

Let 1 be the poset {⊥} where ⊥ v1 ⊥. 1 is a domain. 2

Example

Let 2 = lift(1). Then 2 is a domain. 2 has only two elements, ⊥
and >, and ⊥ v2 >. 2

For domain 2 , the least upper bound operator t and the greatest
lower bound operator u are defined by the following.

t ⊥ >
⊥ ⊥ >
> > >

u ⊥ >
⊥ ⊥ ⊥
> ⊥ >

(Look familiar?)

19 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Domain 1 and Domain 2

Example

Let 1 be the poset {⊥} where ⊥ v1 ⊥. 1 is a domain. 2

Example

Let 2 = lift(1). Then 2 is a domain. 2 has only two elements, ⊥
and >, and ⊥ v2 >. 2

For domain 2 , the least upper bound operator t and the greatest
lower bound operator u are defined by the following.

t ⊥ >
⊥ ⊥ >
> > >

u ⊥ >
⊥ ⊥ ⊥
> ⊥ >

(Look familiar?)

19 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

The Sum of Two Domains

Definition
Let D and D ′ be domains. Define poset D + D ′ by

1. D + D ′ = D ∪ D ′ ∪ {⊥D+D′}, where the elements in D are
made distinct from the elements in D ′. ⊥D+D′ 6∈ D ∪ D ′.

2. x vD+D′ y if and only if x = ⊥D+D′ or x vD y or x vD′ y .

2

I If both D and D ′ are domains, then D + D ′ is a domain too.

I D + D ′ is called the sum of D and D ′.

20 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

The Sum of Two Domains

Definition
Let D and D ′ be domains. Define poset D + D ′ by

1. D + D ′ = D ∪ D ′ ∪ {⊥D+D′}, where the elements in D are
made distinct from the elements in D ′. ⊥D+D′ 6∈ D ∪ D ′.

2. x vD+D′ y if and only if x = ⊥D+D′ or x vD y or x vD′ y .

2

I If both D and D ′ are domains, then D + D ′ is a domain too.

I D + D ′ is called the sum of D and D ′.

20 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

The Coalesced Sum of Two Domains

Definition
Let D and D ′ be domains. Define poset D ⊕ D ′ by

1. D ⊕ D ′ = D ∪ D ′ ∪ {⊥D⊕D′}, where the elements in D
are made distinct from the elements in D ′, except ⊥D and
⊥D′ . ⊥D⊕D′ = ⊥D = ⊥D′ .

2. x vD⊕D′ y if and only if x = ⊥D⊕D′ or x vD y or x vD′ y .

2

I If both D and D ′ are domains, then D ⊕ D ′ is a domain too.

I D ⊕ D ′ is called the coalesced sum of D and D ′.

21 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

The Coalesced Sum of Two Domains

Definition
Let D and D ′ be domains. Define poset D ⊕ D ′ by

1. D ⊕ D ′ = D ∪ D ′ ∪ {⊥D⊕D′}, where the elements in D
are made distinct from the elements in D ′, except ⊥D and
⊥D′ . ⊥D⊕D′ = ⊥D = ⊥D′ .

2. x vD⊕D′ y if and only if x = ⊥D⊕D′ or x vD y or x vD′ y .

2

I If both D and D ′ are domains, then D ⊕ D ′ is a domain too.

I D ⊕ D ′ is called the coalesced sum of D and D ′.

21 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

The Product of Two Domains

Definition
Let D and D ′ be domains. Define D × D ′ by

1. D × D ′ = { 〈d , d ′〉 | d ∈ D, d ′ ∈ D ′ },
⊥D×D′ = 〈⊥D , ⊥D′〉.

2. 〈d1, d ′1〉 vD×D′ 〈d2, d ′2〉 if and only if d1 vD d2 and
d ′1 vD′ d ′2.

2

I If both D and D ′ are domains, then D × D ′ is a domain too.

I D × D ′ is called the product of D and D ′.

22 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

The Product of Two Domains

Definition
Let D and D ′ be domains. Define D × D ′ by

1. D × D ′ = { 〈d , d ′〉 | d ∈ D, d ′ ∈ D ′ },
⊥D×D′ = 〈⊥D , ⊥D′〉.

2. 〈d1, d ′1〉 vD×D′ 〈d2, d ′2〉 if and only if d1 vD d2 and
d ′1 vD′ d ′2.

2

I If both D and D ′ are domains, then D × D ′ is a domain too.

I D × D ′ is called the product of D and D ′.

22 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

The Smash Product of Two Domains

Definition
Let D and D ′ be domains. Define D ⊗ D ′ by

1. D ⊗ D ′ = { 〈d , d ′〉 | d ∈ D, d ′ ∈ D ′ }.
⊥D⊗D′ = 〈⊥D , d ′〉 = 〈d , ⊥D′〉 for any d ∈ D and d ′ ∈ D ′.

2. 〈d1, d ′1〉 vD⊗D′ 〈d2, d ′2〉 if and only if 〈d1, d ′1〉 = ⊥D⊗D′ , or
d1 vD d2 and d ′1 vD′ d ′2.

2

I If both D and D ′ are domains, then D ⊗ D ′ is a domain too.

I D ⊗ D ′ is called the smashed product of D and D ′.

23 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

The Smash Product of Two Domains

Definition
Let D and D ′ be domains. Define D ⊗ D ′ by

1. D ⊗ D ′ = { 〈d , d ′〉 | d ∈ D, d ′ ∈ D ′ }.
⊥D⊗D′ = 〈⊥D , d ′〉 = 〈d , ⊥D′〉 for any d ∈ D and d ′ ∈ D ′.

2. 〈d1, d ′1〉 vD⊗D′ 〈d2, d ′2〉 if and only if 〈d1, d ′1〉 = ⊥D⊗D′ , or
d1 vD d2 and d ′1 vD′ d ′2.

2

I If both D and D ′ are domains, then D ⊗ D ′ is a domain too.

I D ⊗ D ′ is called the smashed product of D and D ′.

23 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Continuous Function

Definition
Let D and D ′ be domains, and f be a total function from D to D ′.

1. f is monotonic if and only if f (d1) vD′ f (d2) whenever
d1 vD d2.

2. f is continuous if and only if f (
⊔

X ) =
⊔

f {X} for every
directed set X ⊆ D, where f {X} is defined as {f (x) | x ∈ X}.

3. f is strict if and only if f (⊥D) = ⊥D′ .

2

I If a function f is not strict, it is called non–strict.

I If a function is continuous then it is monotonic, but the
reverse is not true.

24 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Continuous Function

Definition
Let D and D ′ be domains, and f be a total function from D to D ′.

1. f is monotonic if and only if f (d1) vD′ f (d2) whenever
d1 vD d2.

2. f is continuous if and only if f (
⊔

X ) =
⊔

f {X} for every
directed set X ⊆ D, where f {X} is defined as {f (x) | x ∈ X}.

3. f is strict if and only if f (⊥D) = ⊥D′ .

2

I If a function f is not strict, it is called non–strict.

I If a function is continuous then it is monotonic, but the
reverse is not true.

24 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Continuous Function Space

Definition
Let D and D ′ be domains. Define D → D ′ by

1. D → D ′ = {f | f is a continuous function from D to D ′},
and ⊥D→D′ = {(d ,⊥D′) | d ∈ D}.

2. f vD→D′ g if and only if for all d ∈ D, f (d) vD′ g(d).

2

25 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Continuous Function Space as Domain, I

Theorem (Scott)

The continuous function space D → D ′ is a domain if both D and
D ′ are domains. 2

Proof.
We need to show that every directed set F ⊆ D → D ′ has a least
upper bound (lub) and this lub is itself a continuous function. Let

Ft = {(d ,
⊔
{f (d) | f ∈ F}) | d ∈ D}

Since F is directed, we know that, for any d ∈ D,
{f (d) | f ∈ F} ⊆ D ′ is directed as well. Because D ′ is a domain,⊔
{f (d) | f ∈ F} exists hence function Ft is well defined.

Moreover, by construction, we observe that Ft is the lub of F .
(To be continued)

26 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Continuous Function Space as Domain, I

Theorem (Scott)

The continuous function space D → D ′ is a domain if both D and
D ′ are domains. 2

Proof.
We need to show that every directed set F ⊆ D → D ′ has a least
upper bound (lub) and this lub is itself a continuous function.

Let

Ft = {(d ,
⊔
{f (d) | f ∈ F}) | d ∈ D}

Since F is directed, we know that, for any d ∈ D,
{f (d) | f ∈ F} ⊆ D ′ is directed as well. Because D ′ is a domain,⊔
{f (d) | f ∈ F} exists hence function Ft is well defined.

Moreover, by construction, we observe that Ft is the lub of F .
(To be continued)

26 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Continuous Function Space as Domain, I

Theorem (Scott)

The continuous function space D → D ′ is a domain if both D and
D ′ are domains. 2

Proof.
We need to show that every directed set F ⊆ D → D ′ has a least
upper bound (lub) and this lub is itself a continuous function. Let

Ft = {(d ,
⊔
{f (d) | f ∈ F}) | d ∈ D}

Since F is directed, we know that, for any d ∈ D,
{f (d) | f ∈ F} ⊆ D ′ is directed as well. Because D ′ is a domain,⊔
{f (d) | f ∈ F} exists hence function Ft is well defined.

Moreover, by construction, we observe that Ft is the lub of F .
(To be continued)

26 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Continuous Function Space as Domain, I

Theorem (Scott)

The continuous function space D → D ′ is a domain if both D and
D ′ are domains. 2

Proof.
We need to show that every directed set F ⊆ D → D ′ has a least
upper bound (lub) and this lub is itself a continuous function. Let

Ft = {(d ,
⊔
{f (d) | f ∈ F}) | d ∈ D}

Since F is directed, we know that, for any d ∈ D,
{f (d) | f ∈ F} ⊆ D ′ is directed as well. Because D ′ is a domain,⊔
{f (d) | f ∈ F} exists hence function Ft is well defined.

Moreover, by construction, we observe that Ft is the lub of F .
(To be continued)

26 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Continuous Function Space as Domain, II

Proof (Continued).

Why is {f (d) | f ∈ F} ⊆ D ′ directed, and why is Ft the lub of F ?

Let u, v ∈ {f (d) | f ∈ F}. We have u = f d and v = g d for some
f , g ∈ F . As F is directed, there is a h ∈ F such that f vD→D′ h
and g vD→D′ h. That is, f d vD′ h d and g d vD′ h d . Since
h d ∈ {f (d) | f ∈ F}, we conculde the set is directed.

We first observe that f vD→D′ Ft for all f ∈ F . That is, Ft is an
upper bound of F . Suppose w is also an upper bound of F . That
is, f vD→D′ w for all f ∈ F ; hence, for any d ∈ D, f d vD′ w d .
Taking the lub at both sides of v, we arrive at⊔
{f (d) | f ∈ F} = Ft d vD′ w d for any d ∈ D. That is, Ft is

the lub of F .

27 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Continuous Function Space as Domain, II

Proof (Continued).

Why is {f (d) | f ∈ F} ⊆ D ′ directed, and why is Ft the lub of F ?

Let u, v ∈ {f (d) | f ∈ F}. We have u = f d and v = g d for some
f , g ∈ F . As F is directed, there is a h ∈ F such that f vD→D′ h
and g vD→D′ h. That is, f d vD′ h d and g d vD′ h d . Since
h d ∈ {f (d) | f ∈ F}, we conculde the set is directed.

We first observe that f vD→D′ Ft for all f ∈ F . That is, Ft is an
upper bound of F . Suppose w is also an upper bound of F . That
is, f vD→D′ w for all f ∈ F ; hence, for any d ∈ D, f d vD′ w d .
Taking the lub at both sides of v, we arrive at⊔
{f (d) | f ∈ F} = Ft d vD′ w d for any d ∈ D. That is, Ft is

the lub of F .

27 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Continuous Function Space as Domain, II

Proof (Continued).

Why is {f (d) | f ∈ F} ⊆ D ′ directed, and why is Ft the lub of F ?

Let u, v ∈ {f (d) | f ∈ F}. We have u = f d and v = g d for some
f , g ∈ F . As F is directed, there is a h ∈ F such that f vD→D′ h
and g vD→D′ h. That is, f d vD′ h d and g d vD′ h d . Since
h d ∈ {f (d) | f ∈ F}, we conculde the set is directed.

We first observe that f vD→D′ Ft for all f ∈ F . That is, Ft is an
upper bound of F . Suppose w is also an upper bound of F . That
is, f vD→D′ w for all f ∈ F ; hence, for any d ∈ D, f d vD′ w d .
Taking the lub at both sides of v, we arrive at⊔
{f (d) | f ∈ F} = Ft d vD′ w d for any d ∈ D. That is, Ft is

the lub of F .

27 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Continuous Function Space as Domain, III

Proof (Continued).

Is Ft a continuous function? For all directed set X ⊆ D, we have

Ft(
⊔

X )

=
⊔

f ∈F f (
⊔

X ) (Definition of Ft)

=
⊔

f ∈F (
⊔

x∈X f (x)) (X ⊆ D is directed; each f is continuous)

=
⊔

x∈X (
⊔

f ∈F f (x)) (Rearranging indices)

=
⊔

x∈X Ft(x) (Definition of Ft)

=
⊔

Ft{X} (Definition of
⊔

X )

We conclude Ft is continuous.

From now on, we write
⊔

F to denote the function Ft, the least
upper bound of a directed set of continuous functions F .

28 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Continuous Function Space as Domain, III

Proof (Continued).

Is Ft a continuous function? For all directed set X ⊆ D, we have

Ft(
⊔

X )

=
⊔

f ∈F f (
⊔

X ) (Definition of Ft)

=
⊔

f ∈F (
⊔

x∈X f (x)) (X ⊆ D is directed; each f is continuous)

=
⊔

x∈X (
⊔

f ∈F f (x)) (Rearranging indices)

=
⊔

x∈X Ft(x) (Definition of Ft)

=
⊔

Ft{X} (Definition of
⊔

X )

We conclude Ft is continuous.

From now on, we write
⊔

F to denote the function Ft, the least
upper bound of a directed set of continuous functions F .

28 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Why Continuous Function?

What are the motivations behind using continuous function spaces
as the semantic domains of functions written in a programming
language? Several reasons:

I We shall only admit monotonic functions. If x contains less
information than y does, surely f (x) shall yield less
information than f (y) does, regardless of what f is.

I If X is an approximation, then the result of applying f to
⊔

X
shall agree with

⊔
f {X}. That is, f can be understood as an

approximation too.

I In particular, we don’t want to admit (non-continuous)
functions that “jump” arbitrarily at the limit of an
approximation.

I Continuous function spaces are themselves complete partial
orders so work well with other semantic domains.

29 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Why Continuous Function?

What are the motivations behind using continuous function spaces
as the semantic domains of functions written in a programming
language? Several reasons:

I We shall only admit monotonic functions. If x contains less
information than y does, surely f (x) shall yield less
information than f (y) does, regardless of what f is.

I If X is an approximation, then the result of applying f to
⊔

X
shall agree with

⊔
f {X}. That is, f can be understood as an

approximation too.

I In particular, we don’t want to admit (non-continuous)
functions that “jump” arbitrarily at the limit of an
approximation.

I Continuous function spaces are themselves complete partial
orders so work well with other semantic domains.

29 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Why Continuous Function?

What are the motivations behind using continuous function spaces
as the semantic domains of functions written in a programming
language? Several reasons:

I We shall only admit monotonic functions. If x contains less
information than y does, surely f (x) shall yield less
information than f (y) does, regardless of what f is.

I If X is an approximation, then the result of applying f to
⊔

X
shall agree with

⊔
f {X}. That is, f can be understood as an

approximation too.

I In particular, we don’t want to admit (non-continuous)
functions that “jump” arbitrarily at the limit of an
approximation.

I Continuous function spaces are themselves complete partial
orders so work well with other semantic domains.

29 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Why Continuous Function?

What are the motivations behind using continuous function spaces
as the semantic domains of functions written in a programming
language? Several reasons:

I We shall only admit monotonic functions. If x contains less
information than y does, surely f (x) shall yield less
information than f (y) does, regardless of what f is.

I If X is an approximation, then the result of applying f to
⊔

X
shall agree with

⊔
f {X}. That is, f can be understood as an

approximation too.

I In particular, we don’t want to admit (non-continuous)
functions that “jump” arbitrarily at the limit of an
approximation.

I Continuous function spaces are themselves complete partial
orders so work well with other semantic domains.

29 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Why Continuous Function?

What are the motivations behind using continuous function spaces
as the semantic domains of functions written in a programming
language? Several reasons:

I We shall only admit monotonic functions. If x contains less
information than y does, surely f (x) shall yield less
information than f (y) does, regardless of what f is.

I If X is an approximation, then the result of applying f to
⊔

X
shall agree with

⊔
f {X}. That is, f can be understood as an

approximation too.

I In particular, we don’t want to admit (non-continuous)
functions that “jump” arbitrarily at the limit of an
approximation.

I Continuous function spaces are themselves complete partial
orders so work well with other semantic domains.

29 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Fixed Points and The Least Fixed Point

Definition
Let D be a poset and let f ∈ D → D be a total function.

1. x ∈ D is a fixed point of f if and only if f (x) = x .

2. x is the least fixed point of f if and only if x is a fixed point
of f , and for every fixed point d ∈ D of f , it implies x vD d .

2

I Function f (x) = x , where x ∈ B, have three fixed points: ⊥,
F, and T.

I ⊥ is the least fixed point of f .

30 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Fixed Points and The Least Fixed Point

Definition
Let D be a poset and let f ∈ D → D be a total function.

1. x ∈ D is a fixed point of f if and only if f (x) = x .

2. x is the least fixed point of f if and only if x is a fixed point
of f , and for every fixed point d ∈ D of f , it implies x vD d .

2

I Function f (x) = x , where x ∈ B, have three fixed points: ⊥,
F, and T.

I ⊥ is the least fixed point of f .

30 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

The Least Fixed Point Theorem

Theorem (Kleene)

Let D be a domain.

1. Every function f ∈ D → D has a least fixed point.

2. There exists a function fix ∈ (D → D)→ D such that for
every function f ∈ D → D, fix (f ) is the least fixed point of f .

2

Proof.
1. Xf = {⊥D , f (⊥D), f (f (⊥D)), . . . , f (n)(⊥D), . . .} is a
directed set because ⊥D vD f (⊥D), f (⊥D) vD f (f (⊥D)), . . . .
By the continuity of f ,

f (
⊔

Xf ) =
⊔

f {Xf } =
⊔

Xf

Hence,
⊔

Xf is a fixed point of f . (To be continued)

31 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

The Least Fixed Point Theorem

Theorem (Kleene)

Let D be a domain.

1. Every function f ∈ D → D has a least fixed point.

2. There exists a function fix ∈ (D → D)→ D such that for
every function f ∈ D → D, fix (f ) is the least fixed point of f .

2
Proof.
1. Xf = {⊥D , f (⊥D), f (f (⊥D)), . . . , f (n)(⊥D), . . .} is a
directed set because ⊥D vD f (⊥D), f (⊥D) vD f (f (⊥D)), . . . .
By the continuity of f ,

f (
⊔

Xf ) =
⊔

f {Xf } =
⊔

Xf

Hence,
⊔

Xf is a fixed point of f . (To be continued)

31 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

The Least Fixed Point Theorem, Continued

Proof (Continued).

Moreover, suppose that d too is a fixed point of f . Then

⊥D vD d , f (⊥D) vD f (d) = d , . . . , f (n)(⊥D) vD f (n)(d) = d , . . .

Taking the lub of both sides, it follows that
⊔

Xf vD d .

2. Define function fix by

fix (f ) =
⊔

Xf

Then fix (f ) is the least fixed point of f . Moreover, by rearranging
indices, we can show that, for all directed set F ⊆ D → D

fix (
⊔

F ) =
⊔

fix {F}

That is, f is continuous hence f ∈ (D → D)→ D.

32 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

The Least Fixed Point Theorem, Continued

Proof (Continued).

Moreover, suppose that d too is a fixed point of f . Then

⊥D vD d , f (⊥D) vD f (d) = d , . . . , f (n)(⊥D) vD f (n)(d) = d , . . .

Taking the lub of both sides, it follows that
⊔

Xf vD d .
2. Define function fix by

fix (f ) =
⊔

Xf

Then fix (f ) is the least fixed point of f . Moreover, by rearranging
indices, we can show that, for all directed set F ⊆ D → D

fix (
⊔

F ) =
⊔

fix {F}

That is, f is continuous hence f ∈ (D → D)→ D.
32 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Why The Least Fixed Point?
The least fixed point of a function f can be used to give meaning
to a recursively defined function g .

I Take the following recursive definition of g:

let rec g n = if (n mod 2 = 0)
then not (g (n+1))
else not (g (n-1))

I We define a non-recursive function f

let f g n = if (n mod 2 = 0)
then not (g (n+1))
else not (g (n-1))

I If f has a meaning f ∈ (N → B)→ (N → B), then by the
least fixed point theorem, fix(f ) = f (fix(f )). This matches
the recursive definition of g.

I We then assign g = fix(f ) ∈ N → B as the meaning of g.

33 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Why The Least Fixed Point?
The least fixed point of a function f can be used to give meaning
to a recursively defined function g .

I Take the following recursive definition of g:

let rec g n = if (n mod 2 = 0)
then not (g (n+1))
else not (g (n-1))

I We define a non-recursive function f

let f g n = if (n mod 2 = 0)
then not (g (n+1))
else not (g (n-1))

I If f has a meaning f ∈ (N → B)→ (N → B), then by the
least fixed point theorem, fix(f ) = f (fix(f )). This matches
the recursive definition of g.

I We then assign g = fix(f ) ∈ N → B as the meaning of g.

33 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Why The Least Fixed Point?
The least fixed point of a function f can be used to give meaning
to a recursively defined function g .

I Take the following recursive definition of g:

let rec g n = if (n mod 2 = 0)
then not (g (n+1))
else not (g (n-1))

I We define a non-recursive function f

let f g n = if (n mod 2 = 0)
then not (g (n+1))
else not (g (n-1))

I If f has a meaning f ∈ (N → B)→ (N → B), then by the
least fixed point theorem, fix(f ) = f (fix(f )). This matches
the recursive definition of g.

I We then assign g = fix(f ) ∈ N → B as the meaning of g.

33 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Why The Least Fixed Point?
The least fixed point of a function f can be used to give meaning
to a recursively defined function g .

I Take the following recursive definition of g:

let rec g n = if (n mod 2 = 0)
then not (g (n+1))
else not (g (n-1))

I We define a non-recursive function f

let f g n = if (n mod 2 = 0)
then not (g (n+1))
else not (g (n-1))

I If f has a meaning f ∈ (N → B)→ (N → B), then by the
least fixed point theorem, fix(f ) = f (fix(f )). This matches
the recursive definition of g.

I We then assign g = fix(f ) ∈ N → B as the meaning of g.

33 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Giving Meaning to Programs
Semantic Domains

Why The Least Fixed Point?
The least fixed point of a function f can be used to give meaning
to a recursively defined function g .

I Take the following recursive definition of g:

let rec g n = if (n mod 2 = 0)
then not (g (n+1))
else not (g (n-1))

I We define a non-recursive function f

let f g n = if (n mod 2 = 0)
then not (g (n+1))
else not (g (n-1))

I If f has a meaning f ∈ (N → B)→ (N → B), then by the
least fixed point theorem, fix(f ) = f (fix(f )). This matches
the recursive definition of g.

I We then assign g = fix(f ) ∈ N → B as the meaning of g.

33 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

Compose Meaning for Programs
I For every data type, find a domain whose elements correspond

to values of the type, computationally.

I Type unit is domain 2 , type bool is domain B, type nat is
domain N , etc.

I For a user-defined data type, construct a domain equation to
the specification of the type, then solve the equation.

I For built-in constants of a data type, map them to the
corresponding values in the domain for the type.

I () is mapped to > ∈ 2 , true is mapped to T ∈ B, not is
mapped to a function not ∈ B → B where
not = {(⊥,⊥), (F,T), (T,F)}.

I We write [[()]]2 = >, [[true]]B = T, and [[not]]B→B = not, etc.

I For a user-defined term, construct a semantic equation based
on its definition, reusing existing terms and constants.

I If the definition is recursive, compute the least fixed point.

34 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

Compose Meaning for Programs
I For every data type, find a domain whose elements correspond

to values of the type, computationally.
I Type unit is domain 2 , type bool is domain B, type nat is

domain N , etc.

I For a user-defined data type, construct a domain equation to
the specification of the type, then solve the equation.

I For built-in constants of a data type, map them to the
corresponding values in the domain for the type.

I () is mapped to > ∈ 2 , true is mapped to T ∈ B, not is
mapped to a function not ∈ B → B where
not = {(⊥,⊥), (F,T), (T,F)}.

I We write [[()]]2 = >, [[true]]B = T, and [[not]]B→B = not, etc.

I For a user-defined term, construct a semantic equation based
on its definition, reusing existing terms and constants.

I If the definition is recursive, compute the least fixed point.

34 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

Compose Meaning for Programs
I For every data type, find a domain whose elements correspond

to values of the type, computationally.
I Type unit is domain 2 , type bool is domain B, type nat is

domain N , etc.
I For a user-defined data type, construct a domain equation to

the specification of the type, then solve the equation.

I For built-in constants of a data type, map them to the
corresponding values in the domain for the type.

I () is mapped to > ∈ 2 , true is mapped to T ∈ B, not is
mapped to a function not ∈ B → B where
not = {(⊥,⊥), (F,T), (T,F)}.

I We write [[()]]2 = >, [[true]]B = T, and [[not]]B→B = not, etc.

I For a user-defined term, construct a semantic equation based
on its definition, reusing existing terms and constants.

I If the definition is recursive, compute the least fixed point.

34 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

Compose Meaning for Programs
I For every data type, find a domain whose elements correspond

to values of the type, computationally.
I Type unit is domain 2 , type bool is domain B, type nat is

domain N , etc.
I For a user-defined data type, construct a domain equation to

the specification of the type, then solve the equation.

I For built-in constants of a data type, map them to the
corresponding values in the domain for the type.

I () is mapped to > ∈ 2 , true is mapped to T ∈ B, not is
mapped to a function not ∈ B → B where
not = {(⊥,⊥), (F,T), (T,F)}.

I We write [[()]]2 = >, [[true]]B = T, and [[not]]B→B = not, etc.

I For a user-defined term, construct a semantic equation based
on its definition, reusing existing terms and constants.

I If the definition is recursive, compute the least fixed point.

34 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

Compose Meaning for Programs
I For every data type, find a domain whose elements correspond

to values of the type, computationally.
I Type unit is domain 2 , type bool is domain B, type nat is

domain N , etc.
I For a user-defined data type, construct a domain equation to

the specification of the type, then solve the equation.

I For built-in constants of a data type, map them to the
corresponding values in the domain for the type.

I () is mapped to > ∈ 2 , true is mapped to T ∈ B, not is
mapped to a function not ∈ B → B where
not = {(⊥,⊥), (F,T), (T,F)}.

I We write [[()]]2 = >, [[true]]B = T, and [[not]]B→B = not, etc.

I For a user-defined term, construct a semantic equation based
on its definition, reusing existing terms and constants.

I If the definition is recursive, compute the least fixed point.

34 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

Compose Meaning for Programs
I For every data type, find a domain whose elements correspond

to values of the type, computationally.
I Type unit is domain 2 , type bool is domain B, type nat is

domain N , etc.
I For a user-defined data type, construct a domain equation to

the specification of the type, then solve the equation.

I For built-in constants of a data type, map them to the
corresponding values in the domain for the type.

I () is mapped to > ∈ 2 , true is mapped to T ∈ B, not is
mapped to a function not ∈ B → B where
not = {(⊥,⊥), (F,T), (T,F)}.

I We write [[()]]2 = >, [[true]]B = T, and [[not]]B→B = not, etc.

I For a user-defined term, construct a semantic equation based
on its definition, reusing existing terms and constants.

I If the definition is recursive, compute the least fixed point.

34 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

Compose Meaning for Programs
I For every data type, find a domain whose elements correspond

to values of the type, computationally.
I Type unit is domain 2 , type bool is domain B, type nat is

domain N , etc.
I For a user-defined data type, construct a domain equation to

the specification of the type, then solve the equation.

I For built-in constants of a data type, map them to the
corresponding values in the domain for the type.

I () is mapped to > ∈ 2 , true is mapped to T ∈ B, not is
mapped to a function not ∈ B → B where
not = {(⊥,⊥), (F,T), (T,F)}.

I We write [[()]]2 = >, [[true]]B = T, and [[not]]B→B = not, etc.

I For a user-defined term, construct a semantic equation based
on its definition, reusing existing terms and constants.

I If the definition is recursive, compute the least fixed point.

34 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

Compose Meaning for Programs
I For every data type, find a domain whose elements correspond

to values of the type, computationally.
I Type unit is domain 2 , type bool is domain B, type nat is

domain N , etc.
I For a user-defined data type, construct a domain equation to

the specification of the type, then solve the equation.

I For built-in constants of a data type, map them to the
corresponding values in the domain for the type.

I () is mapped to > ∈ 2 , true is mapped to T ∈ B, not is
mapped to a function not ∈ B → B where
not = {(⊥,⊥), (F,T), (T,F)}.

I We write [[()]]2 = >, [[true]]B = T, and [[not]]B→B = not, etc.

I For a user-defined term, construct a semantic equation based
on its definition, reusing existing terms and constants.

I If the definition is recursive, compute the least fixed point.

34 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

Compose Meaning for Programs, An Example
For the following program g:

let rec g n = if (n mod 2 = 0)
then not (g (n+1))
else not (g (n-1))

We compose the following function f ∈ (N → B)→ (N → B):

f g n = if-then-else

(eq (mod n 2) 0) (not (g (plus n 1))) (not (g (minus n 1)))

where functions

if-then-else ∈ B → N → N → N
eq ∈ N → N → B

not ∈ B → B
mod, plus, minus ∈ N → N → N

35 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

Compose Meaning for Programs, An Example
For the following program g:

let rec g n = if (n mod 2 = 0)
then not (g (n+1))
else not (g (n-1))

We compose the following function f ∈ (N → B)→ (N → B):

f g n = if-then-else

(eq (mod n 2) 0) (not (g (plus n 1))) (not (g (minus n 1)))

where functions

if-then-else ∈ B → N → N → N
eq ∈ N → N → B

not ∈ B → B
mod, plus, minus ∈ N → N → N

35 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

Compose Meaning for Programs, An Example
For the following program g:

let rec g n = if (n mod 2 = 0)
then not (g (n+1))
else not (g (n-1))

We compose the following function f ∈ (N → B)→ (N → B):

f g n = if-then-else

(eq (mod n 2) 0) (not (g (plus n 1))) (not (g (minus n 1)))

where functions

if-then-else ∈ B → N → N → N
eq ∈ N → N → B

not ∈ B → B
mod, plus, minus ∈ N → N → N

35 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

if-then-else ⊥ x y = ⊥
if-then-else T x y = x
if-then-else F x y = y

eq ⊥ y = ⊥
eq x ⊥ = ⊥
eq x y = T where x = y 6= ⊥
eq x y = F otherwise

not ⊥ = ⊥
not F = T
not T = F
. . .
minus ⊥ y = ⊥
minus x ⊥ = ⊥
minus x y = ⊥ where x < y
minus x y = x − y otherwise

36 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

The Least Fixed Point Iteration
Start with ⊥N→B = {(n,⊥) | n ∈ N}, we compute the least upper
bound of the following directed set

{⊥N→B, f (⊥N→B), f (f (⊥N→B)), . . .}

Note that f (⊥N→B) computes to

g n = if-then-else (eq (mod n 2) 0) ⊥ ⊥

This is simplified to
g n = ⊥

That is, we have reached ⊥N→B as the least fixed point of f . We
conclude that

[[g]]N→B = ⊥N→B = {(n,⊥) | n ∈ N}

That is, g will not terminate for any given input.

37 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

The Least Fixed Point Iteration
Start with ⊥N→B = {(n,⊥) | n ∈ N}, we compute the least upper
bound of the following directed set

{⊥N→B, f (⊥N→B), f (f (⊥N→B)), . . .}

Note that f (⊥N→B) computes to

g n = if-then-else (eq (mod n 2) 0) ⊥ ⊥

This is simplified to
g n = ⊥

That is, we have reached ⊥N→B as the least fixed point of f . We
conclude that

[[g]]N→B = ⊥N→B = {(n,⊥) | n ∈ N}

That is, g will not terminate for any given input.

37 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

The Least Fixed Point Iteration
Start with ⊥N→B = {(n,⊥) | n ∈ N}, we compute the least upper
bound of the following directed set

{⊥N→B, f (⊥N→B), f (f (⊥N→B)), . . .}

Note that f (⊥N→B) computes to

g n = if-then-else (eq (mod n 2) 0) ⊥ ⊥

This is simplified to
g n = ⊥

That is, we have reached ⊥N→B as the least fixed point of f . We
conclude that

[[g]]N→B = ⊥N→B = {(n,⊥) | n ∈ N}

That is, g will not terminate for any given input.
37 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

The Factorial Program
For the following program fac:

let rec fac n = if n = 0 then 1 else n * (fac (n - 1))

We compose the following function f ∈ (N → N )→ (N → N ):

f fac n = if-then-else (eq n 0) 1 (multi n (fac (minus n 1)))

Start with ⊥N→N = {(n,⊥) | n ∈ N}, the least fixed point
iteration for f will be

f (0)(⊥N→B) = {(n,⊥) | n ∈ N}
f (1)(⊥N→B) = {(0, 1)} ∪ {(n,⊥) | n 6∈ {0}}
f (2)(⊥N→B) = {(0, 1), (1, 1)} ∪ {(n,⊥) | n 6∈ {0, 1}}
f (3)(⊥N→B) = {(0, 1), (1, 1), (2, 2)} ∪ {(n,⊥) | n 6∈ {0, 1, 2}}

...

f (k+1)(⊥N→B) = {(n, n!) | n ≤ k} ∪ {(n,⊥) | n 6∈ {0, 1, . . . , k}}
...

38 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

The Factorial Program
For the following program fac:

let rec fac n = if n = 0 then 1 else n * (fac (n - 1))

We compose the following function f ∈ (N → N )→ (N → N ):

f fac n = if-then-else (eq n 0) 1 (multi n (fac (minus n 1)))

Start with ⊥N→N = {(n,⊥) | n ∈ N}, the least fixed point
iteration for f will be

f (0)(⊥N→B) = {(n,⊥) | n ∈ N}
f (1)(⊥N→B) = {(0, 1)} ∪ {(n,⊥) | n 6∈ {0}}
f (2)(⊥N→B) = {(0, 1), (1, 1)} ∪ {(n,⊥) | n 6∈ {0, 1}}
f (3)(⊥N→B) = {(0, 1), (1, 1), (2, 2)} ∪ {(n,⊥) | n 6∈ {0, 1, 2}}

...

f (k+1)(⊥N→B) = {(n, n!) | n ≤ k} ∪ {(n,⊥) | n 6∈ {0, 1, . . . , k}}
...

38 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

The Factorial Program
For the following program fac:

let rec fac n = if n = 0 then 1 else n * (fac (n - 1))

We compose the following function f ∈ (N → N )→ (N → N ):

f fac n = if-then-else (eq n 0) 1 (multi n (fac (minus n 1)))

Start with ⊥N→N = {(n,⊥) | n ∈ N}, the least fixed point
iteration for f will be

f (0)(⊥N→B) = {(n,⊥) | n ∈ N}
f (1)(⊥N→B) = {(0, 1)} ∪ {(n,⊥) | n 6∈ {0}}
f (2)(⊥N→B) = {(0, 1), (1, 1)} ∪ {(n,⊥) | n 6∈ {0, 1}}
f (3)(⊥N→B) = {(0, 1), (1, 1), (2, 2)} ∪ {(n,⊥) | n 6∈ {0, 1, 2}}

...

f (k+1)(⊥N→B) = {(n, n!) | n ≤ k} ∪ {(n,⊥) | n 6∈ {0, 1, . . . , k}}
... 38 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

Dealing With Mutual Recursion
For functions even and odd defined as

let rec even n = if n=0 then true else odd (n-1)
and odd n = if n=0 then false else even (n-1)

We first define the following (non-recursive) function
f ∈ (N → B)× (N → B)→ (N → B)× (N → B):

f (even, odd) =

({(n, if-then-else (eq n 0) T (odd (minus n 1))) | n ∈ N},
{(n, if-then-else (eq n 0) F (even (minus n 1))) | n ∈ N})

Note that the least fixed point of f is a pair of functions
(even, odd) mutually satisfying

even = {(n, if-then-else (eq n 0) T (odd (minus n 1))) | n ∈ N}
odd = {(n, if-then-else (eq n 0) F (even (minus n 1))) | n ∈ N}

39 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

Dealing With Mutual Recursion
For functions even and odd defined as

let rec even n = if n=0 then true else odd (n-1)
and odd n = if n=0 then false else even (n-1)

We first define the following (non-recursive) function
f ∈ (N → B)× (N → B)→ (N → B)× (N → B):

f (even, odd) =

({(n, if-then-else (eq n 0) T (odd (minus n 1))) | n ∈ N},
{(n, if-then-else (eq n 0) F (even (minus n 1))) | n ∈ N})

Note that the least fixed point of f is a pair of functions
(even, odd) mutually satisfying

even = {(n, if-then-else (eq n 0) T (odd (minus n 1))) | n ∈ N}
odd = {(n, if-then-else (eq n 0) F (even (minus n 1))) | n ∈ N}

39 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

Dealing With Mutual Recursion
For functions even and odd defined as

let rec even n = if n=0 then true else odd (n-1)
and odd n = if n=0 then false else even (n-1)

We first define the following (non-recursive) function
f ∈ (N → B)× (N → B)→ (N → B)× (N → B):

f (even, odd) =

({(n, if-then-else (eq n 0) T (odd (minus n 1))) | n ∈ N},
{(n, if-then-else (eq n 0) F (even (minus n 1))) | n ∈ N})

Note that the least fixed point of f is a pair of functions
(even, odd) mutually satisfying

even = {(n, if-then-else (eq n 0) T (odd (minus n 1))) | n ∈ N}
odd = {(n, if-then-else (eq n 0) F (even (minus n 1))) | n ∈ N}

39 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

Dealing With Mutual Recursion, Continued

We then start the least fixed point iteration with
(⊥N→B, ⊥N→B), and get

⊥ 0 1 2 3 . . .

even(0) ⊥ ⊥ ⊥ ⊥ ⊥ . . .

odd(0) ⊥ ⊥ ⊥ ⊥ ⊥ . . .

even(1) ⊥ T ⊥ ⊥ ⊥ . . .

odd(1) ⊥ F ⊥ ⊥ ⊥ . . .

even(2) ⊥ T F ⊥ ⊥ . . .

odd(2) ⊥ F T ⊥ ⊥ . . .

even(3) ⊥ T F T ⊥ . . .

odd(3) ⊥ F T F ⊥ . . .
...

...
...

...
...

...
. . .

40 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

Modeling States of While Programs

I The execution of a While program results in a change to the
state of the machine. A state is a mapping from variables to
values where undefined variables are mapped to ⊥.

I A state can be queried and updated. Let s be a state, x be a
variable, and v be a value. Then,

I s x returns the value associated to variable x in state s.
I s[x 7→ v ] is the state identical to s except now variable x is

mapped to v .

I Let s = [x 7→ 5, y 7→ 7, z 7→ 0], then
I s y is 7,
I s[x 7→ 3] is [x 7→ 3, y 7→ 7, z 7→ 0].

41 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

Evaluation at the Presence of States
The semantics of arithmetic and boolean expressions in While
programs is now defined by evaluation at the presence of states.
As an example, let state s = [x 7→ 3, y 7→ 7, z 7→ 0], then

[[x + 1]]N s = [[x]]N s + [[1]]N s

= (s x) + [[1]]N
= 3 + 1

= 4

and

[[¬(x = 1)]]B s = not ([[x = 1]]B s)

= not ([[x]]N s = [[1]]N s)

= not ((s x) = [[1]]N )

= not (3 = 1) = not F = T

42 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

Semantics of While statements

I [[x := a]]S s = s[x 7→ [[a]]N s]

I [[skip]]S = id

I [[S1 ; S2]]S = [[S2]]S ◦ [[S1]]S
I [[if b then S1 else S2]]S = cond ([[b]]B, [[S1]]S , [[S2]]S)

I [[while b do S ]]S = fix F
where F g = cond ([[b]]B, g ◦ [[S ]]S , id)

where formally

I S is the domain State→ State,

I s is an element in domain State, and

I State is the mapping from variables to values.

Note that our notations are different from those in the textbook.
Also S (and State, when viewed as a function) are continuous
instead of being partial; ⊥State = {(x ,⊥) | x is a variable}.

43 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

Denotational Semantics of Assignment and Skip

[[x := e]]S s = s[x 7→ [[e]]N s]

I compute the semantics of expression e at state s, which is an
element in domain N ;

I map variable x to this element; and

I update the state s with the above mapping.

[[skip]]S = id

I id is the identity function: id x = x ;

I skip has no effect on the state: for all state s,
[[skip]]S s = s;

I which means [[skip]]S is the identity function!

44 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

Denotational Semantics of Sequencer and Conditional
[[S1 ; S2]]S = [[S2]]S ◦ [[S1]]S

I for all state s, ([[S2]]S ◦ [[S1]]S) s = [[S2]]S ([[S1]]S s);

I the result is s ′′ whenever [[S1]]S s = s ′ and [[S2]]S s ′ = s ′′;

I note that if either s ′ or s ′′ is ⊥S , the end result is also ⊥S .

[[if b then S1 else S2]]S = cond ([[b]]B, [[S1]]S , [[S2]]S)

I cond is a function in domain (State→ B)× S × S → S;

I it is defined by

cond (p, g1, g2) s =

{
g1 s if p s = T
g2 s if p s = F

where s is a state;

I note that the result is ⊥State if (p s = ⊥B) or (p s = T and
g1 s = ⊥State) or (p s = F and g2 s = ⊥State).

45 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

Denotational Semantics of While Loop

[[while b do S ]]S = fix F
where F g = cond ([[b]]B, g ◦ [[S ]]S , id)

I observe that while b do S has the same effect of
if b then (S ; while b do S) else skip

I the two must have the same semantics:
[[while b do S ]]S = cond ([[b]]B, [[while b do S ]]S ◦ [[S ]]S , id)

I [[while b do S ]]S is a fixed point of the functional F :
F g = cond ([[b]]B, g ◦ [[S ]]S , id)

I note that F is an element in domain S → S, and

I the fixed point function fix is an element in domain
(S → S)→ S.

46 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

Which Fixed Point? An Exmaple, I

Consider this program: while ¬(x = 0) do skip

I the corresponding functional F is defined by

F g s = cond ([[¬(x = 0)]]B, g ◦ [[skip]]S , id) s

=

{
g s if s x 6= 0
s if s x = 0

I function g0 s =

{
⊥State if s x 6= 0
s if s x = 0

is a fixed point of F ,

I so is g1 s =

{
⊥State if s x 6∈ {0, 1}
s if s x ∈ {0, 1} a fixed point, and

I so is g2 s =

{
⊥State if s x 6∈ {0, 1, 2}
s if s x ∈ {0, 1, 2} , and so on.

Clearly we want g0 as the semantics of this program. How?

47 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

Which Fixed Point? An Exmaple, II
What is the least fixed point of functional F :

F g s =

{
g s if s x 6= 0
s if s x = 0

where F ∈ S → S, g ∈ S = State→ State, and s ∈ State.
Start with ⊥S which is defined as

⊥S x = ⊥State, for all x ∈ State

the least fixed point iteration for F will be

F (0)(⊥S) s = ⊥S s = ⊥State

F (1)(⊥S) s =

{
⊥State if s x 6= 0
s if s x = 0

F (2)(⊥S) s =

{
⊥State if s x 6= 0
s if s x = 0

Clearly the least fixed point is reached at F (2)(⊥S).
48 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Functional Programs
While Programs

Does the Least Fixed Point Always Exist?

Do all While programs have well–defined denotational semantics?
We just need to ensure that all semantic functions are continuous!
In particular,

I the semantic functions for all primitive arithmetic and boolean
operators are continuous,

I the conditional function is continuous,

I that function composition is continuous, and

I the fixed point function is continuous!

49 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Other Interpretations

I Sometimes, we are not interested in the precise meaning of a
program. Rather, we want a safe approximation which can be
more easily computed.

I What is the range of possible values for x?
I Will the execution (f x) terminate if x has the value 0?
I Will (f x) always terminate for all x?

I For built-in data types and constants, we may use
non-standard domains and their elements. For example, we
may interpret if . . . then . . . else . . . as

if-then-else {⊥} X Y = {⊥}
if-then-else B X Y = X ∪ Y otherwise

I However, we need to be precise about these non-standard
domains too!

50 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Other Interpretations

I Sometimes, we are not interested in the precise meaning of a
program. Rather, we want a safe approximation which can be
more easily computed.

I What is the range of possible values for x?

I Will the execution (f x) terminate if x has the value 0?
I Will (f x) always terminate for all x?

I For built-in data types and constants, we may use
non-standard domains and their elements. For example, we
may interpret if . . . then . . . else . . . as

if-then-else {⊥} X Y = {⊥}
if-then-else B X Y = X ∪ Y otherwise

I However, we need to be precise about these non-standard
domains too!

50 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Other Interpretations

I Sometimes, we are not interested in the precise meaning of a
program. Rather, we want a safe approximation which can be
more easily computed.

I What is the range of possible values for x?
I Will the execution (f x) terminate if x has the value 0?

I Will (f x) always terminate for all x?

I For built-in data types and constants, we may use
non-standard domains and their elements. For example, we
may interpret if . . . then . . . else . . . as

if-then-else {⊥} X Y = {⊥}
if-then-else B X Y = X ∪ Y otherwise

I However, we need to be precise about these non-standard
domains too!

50 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Other Interpretations

I Sometimes, we are not interested in the precise meaning of a
program. Rather, we want a safe approximation which can be
more easily computed.

I What is the range of possible values for x?
I Will the execution (f x) terminate if x has the value 0?
I Will (f x) always terminate for all x?

I For built-in data types and constants, we may use
non-standard domains and their elements. For example, we
may interpret if . . . then . . . else . . . as

if-then-else {⊥} X Y = {⊥}
if-then-else B X Y = X ∪ Y otherwise

I However, we need to be precise about these non-standard
domains too!

50 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Other Interpretations

I Sometimes, we are not interested in the precise meaning of a
program. Rather, we want a safe approximation which can be
more easily computed.

I What is the range of possible values for x?
I Will the execution (f x) terminate if x has the value 0?
I Will (f x) always terminate for all x?

I For built-in data types and constants, we may use
non-standard domains and their elements. For example, we
may interpret if . . . then . . . else . . . as

if-then-else {⊥} X Y = {⊥}
if-then-else B X Y = X ∪ Y otherwise

I However, we need to be precise about these non-standard
domains too!

50 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Other Interpretations

I Sometimes, we are not interested in the precise meaning of a
program. Rather, we want a safe approximation which can be
more easily computed.

I What is the range of possible values for x?
I Will the execution (f x) terminate if x has the value 0?
I Will (f x) always terminate for all x?

I For built-in data types and constants, we may use
non-standard domains and their elements. For example, we
may interpret if . . . then . . . else . . . as

if-then-else {⊥} X Y = {⊥}
if-then-else B X Y = X ∪ Y otherwise

I However, we need to be precise about these non-standard
domains too!

50 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Scott-closed Set

Definition
Let D be a domain. A set X ⊆ D is Scott–closed if

1. If Y ⊆ X and Y is directed, then
⊔

Y ∈ X .

2. If x ∈ X , y vD x , then y ∈ X .

2

The least Scott–closed set containing a set Y is written as Y ∗.

51 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Scott-closed Set

Definition
Let D be a domain. A set X ⊆ D is Scott–closed if

1. If Y ⊆ X and Y is directed, then
⊔

Y ∈ X .

2. If x ∈ X , y vD x , then y ∈ X .

2

The least Scott–closed set containing a set Y is written as Y ∗.

51 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Hoare Power Domain

Definition
Let D be a domain. Define P(D) by

1. P(D) = {S | ∅ 6= S ⊆ D, S is Scott–closed }, and
⊥P(D) = {⊥D}.

2. S vP(D) T if and only if S ⊆ T .

2

I If D is a domain, then P(D) is a domain too. It is called the
Hoare power domain.

I Not only can we apply P to domains, we can apply it to
continuous functions as well. For a function f ∈ D → E , the
function P(f ) ∈ P(D)→ P(E ) is defined as

P(f ) (X ) = {f (x) | x ∈ X}∗

52 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Hoare Power Domain

Definition
Let D be a domain. Define P(D) by

1. P(D) = {S | ∅ 6= S ⊆ D, S is Scott–closed }, and
⊥P(D) = {⊥D}.

2. S vP(D) T if and only if S ⊆ T .

2

I If D is a domain, then P(D) is a domain too. It is called the
Hoare power domain.

I Not only can we apply P to domains, we can apply it to
continuous functions as well. For a function f ∈ D → E , the
function P(f ) ∈ P(D)→ P(E ) is defined as

P(f ) (X ) = {f (x) | x ∈ X}∗

52 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Mappings between A Domain and Its Hoare Power Domain

I The function {·} ∈ D → P(D) is defined by

{d} = {d}∗

I For a function from P(D) to D, we can use the least upper
bound function

⊔
X , where X ∈ P(D), if D is a complete

lattice.

I A complete lattice is a poset in which all subsets have a least
upper bound.

I Note that both {·} and
⊔

are continuous.

53 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Mappings between A Domain and Its Hoare Power Domain

I The function {·} ∈ D → P(D) is defined by

{d} = {d}∗

I For a function from P(D) to D, we can use the least upper
bound function

⊔
X , where X ∈ P(D), if D is a complete

lattice.

I A complete lattice is a poset in which all subsets have a least
upper bound.

I Note that both {·} and
⊔

are continuous.

53 / 66



Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Concrete Domain, Hoare Power Domain, and Abstract
Domain

Take B as an example. From B we can build the Hoare power
domain P(B). We too can reduce B to a two-element abstract
domain B̄ = 2 . Relative to its Hoare power domain P(B) and its
abstract domain B̄, we call B the concrete domain, or the standard
domain.

F T

⊥

@@@@@@@

~~~~~~~

{⊥,F,T}

{⊥,F}

������
{⊥,T}

666666

{⊥}

������

666666

>

⊥

54 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Collecting Interpretation and Abstract Interpretation

I Instead of using the standard domains, we can map data types
to Hoare power domains, and map programs to functions
between the Hoare power domains. When so doing, we are
performing collecting interpretation of functional programs.

I Instead of using the standard domains, we can map data types
to abstract domains, and map programs to functions between
the abstract domains. When so doing, we are performing
abstract interpretation of functional programs.

I Abstract interpretation is a useful technique for program
analysis, but we need to relate the three semantics: standard
interpretation, collecting interpretation, and abstract
interpretation.

55 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Collecting Interpretation and Abstract Interpretation

I Instead of using the standard domains, we can map data types
to Hoare power domains, and map programs to functions
between the Hoare power domains. When so doing, we are
performing collecting interpretation of functional programs.

I Instead of using the standard domains, we can map data types
to abstract domains, and map programs to functions between
the abstract domains. When so doing, we are performing
abstract interpretation of functional programs.

I Abstract interpretation is a useful technique for program
analysis, but we need to relate the three semantics: standard
interpretation, collecting interpretation, and abstract
interpretation.

55 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Collecting Interpretation and Abstract Interpretation

I Instead of using the standard domains, we can map data types
to Hoare power domains, and map programs to functions
between the Hoare power domains. When so doing, we are
performing collecting interpretation of functional programs.

I Instead of using the standard domains, we can map data types
to abstract domains, and map programs to functions between
the abstract domains. When so doing, we are performing
abstract interpretation of functional programs.

I Abstract interpretation is a useful technique for program
analysis, but we need to relate the three semantics: standard
interpretation, collecting interpretation, and abstract
interpretation.

55 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Strictness Analysis
I A function f ∈ D → D ′ is strict if and only if f (⊥D) = ⊥D′ .

I In call-by-value functional languages, function application is
strict: computation always diverges if an argument diverges.

I In call-by-name/need functional languages, function
application is non-strict: computation may terminate even if
all arguments diverge.

I In O’Caml, the evaluation for zero will diverge.

let rec loop x = loop x
let const y = 0
let zero = const (loop true)

I In Haskell, zero evaluates to 0.

loop x = loop x
const y = 0
zero = const (loop True)

I For call-by-name/need languages, strictness analysis is used to
determine if functions in a program are strict or not.

56 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Strictness Analysis
I A function f ∈ D → D ′ is strict if and only if f (⊥D) = ⊥D′ .
I In call-by-value functional languages, function application is

strict: computation always diverges if an argument diverges.

I In call-by-name/need functional languages, function
application is non-strict: computation may terminate even if
all arguments diverge.

I In O’Caml, the evaluation for zero will diverge.

let rec loop x = loop x
let const y = 0
let zero = const (loop true)

I In Haskell, zero evaluates to 0.

loop x = loop x
const y = 0
zero = const (loop True)

I For call-by-name/need languages, strictness analysis is used to
determine if functions in a program are strict or not.

56 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Strictness Analysis
I A function f ∈ D → D ′ is strict if and only if f (⊥D) = ⊥D′ .
I In call-by-value functional languages, function application is

strict: computation always diverges if an argument diverges.
I In call-by-name/need functional languages, function

application is non-strict: computation may terminate even if
all arguments diverge.

I In O’Caml, the evaluation for zero will diverge.

let rec loop x = loop x
let const y = 0
let zero = const (loop true)

I In Haskell, zero evaluates to 0.

loop x = loop x
const y = 0
zero = const (loop True)

I For call-by-name/need languages, strictness analysis is used to
determine if functions in a program are strict or not.

56 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Strictness Analysis
I A function f ∈ D → D ′ is strict if and only if f (⊥D) = ⊥D′ .
I In call-by-value functional languages, function application is

strict: computation always diverges if an argument diverges.
I In call-by-name/need functional languages, function

application is non-strict: computation may terminate even if
all arguments diverge.

I In O’Caml, the evaluation for zero will diverge.

let rec loop x = loop x
let const y = 0
let zero = const (loop true)

I In Haskell, zero evaluates to 0.

loop x = loop x
const y = 0
zero = const (loop True)

I For call-by-name/need languages, strictness analysis is used to
determine if functions in a program are strict or not.

56 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Strictness Analysis
I A function f ∈ D → D ′ is strict if and only if f (⊥D) = ⊥D′ .
I In call-by-value functional languages, function application is

strict: computation always diverges if an argument diverges.
I In call-by-name/need functional languages, function

application is non-strict: computation may terminate even if
all arguments diverge.

I In O’Caml, the evaluation for zero will diverge.

let rec loop x = loop x
let const y = 0
let zero = const (loop true)

I In Haskell, zero evaluates to 0.

loop x = loop x
const y = 0
zero = const (loop True)

I For call-by-name/need languages, strictness analysis is used to
determine if functions in a program are strict or not.

56 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Strictness Analysis
I A function f ∈ D → D ′ is strict if and only if f (⊥D) = ⊥D′ .
I In call-by-value functional languages, function application is

strict: computation always diverges if an argument diverges.
I In call-by-name/need functional languages, function

application is non-strict: computation may terminate even if
all arguments diverge.

I In O’Caml, the evaluation for zero will diverge.

let rec loop x = loop x
let const y = 0
let zero = const (loop true)

I In Haskell, zero evaluates to 0.

loop x = loop x
const y = 0
zero = const (loop True)

I For call-by-name/need languages, strictness analysis is used to
determine if functions in a program are strict or not. 56 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Language Constructs May Be Non-strict

For the if . . . then . . . else . . . language construct (in both
call-by-value and call-by-name/need languages), we define function
if-then-else ∈ B → N → N → N below as its semantics:

if-then-else ⊥ x y = ⊥
if-then-else T x y = x
if-then-else F x y = y

Note that if-then-else is strict in its first argument, non-strict in its
third argument if its first argument is T, and non-strict in its
second argument if its first argument is F.

57 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Language Constructs May Be Non-strict

For the if . . . then . . . else . . . language construct (in both
call-by-value and call-by-name/need languages), we define function
if-then-else ∈ B → N → N → N below as its semantics:

if-then-else ⊥ x y = ⊥
if-then-else T x y = x
if-then-else F x y = y

Note that if-then-else is strict in its first argument, non-strict in its
third argument if its first argument is T, and non-strict in its
second argument if its first argument is F.

57 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Abstract Interpretation for Strictness Analysis

I For domains such as B and N , we now use 2 as the abstract
domain with the intention that ⊥ denotes non-termination
while > denotes values that may or may not terminate.

I For domains such as N → N , we now use the abstract
domain 2 → 2 below to denote all possible strictness
properties for all elements in N → N (which are continuous
functions):

{(⊥,>), (>,>)}

{(⊥,⊥), (>,>)}

{(⊥,⊥), (>,⊥)}

58 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Abstract Interpretation for Strictness Analysis

I For domains such as B and N , we now use 2 as the abstract
domain with the intention that ⊥ denotes non-termination
while > denotes values that may or may not terminate.

I For domains such as N → N , we now use the abstract
domain 2 → 2 below to denote all possible strictness
properties for all elements in N → N (which are continuous
functions):

{(⊥,>), (>,>)}

{(⊥,⊥), (>,>)}

{(⊥,⊥), (>,⊥)}

58 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Abstract Interpretation for Strictness Analysis, Continued

I Constant like if-then-else is now a function in the domain
2 → 2 → 2 → 2 . It is defined by

if-then-else b x y = b u (x t y)

Note: An if-then-else expression will not terminate if the
conditional part b will not terminate, or if both branches x
and y will not terminate.

I For a user-defined term, construct an abstract semantic
equation based on its definition, and from the abstract
semantics of existing terms and constants.

I If the definition is recursive, compute the least fixed point.

59 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Abstract Semantics for Strictness Analysis

if-then-else b x y = b u (x t y)

eq x y = x u y

not x = x

minus x y = x u y

times x y = x u y

60 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

The Factorial Program, Revisited
For the following program fac:

let rec fac n = if n = 0 then 1 else n * (fac (n - 1))

We now compose the following function f ∈ (2 → 2)→ (2 → 2):

f fac n = (n u >) u (> t (n u (fac (n u >)))

= n

Start with ⊥2→2 = {(⊥,⊥), (>,⊥)}, the least fixed point
iteration becomes

f (0)(⊥2→2) = {(⊥,⊥), (>,⊥)}
f (1)(⊥2→2) = {(⊥,⊥), (>,>)}
f (2)(⊥2→2) = {(⊥,⊥), (>,>)}

We reach the least fixed point at {(⊥,⊥), (>,>)}. That is, fac is
strict. When fac is applied to a non-terminating argument, it will
diverge. When it is applied to others, it may or may not diverge.

61 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

The Factorial Program, Revisited
For the following program fac:

let rec fac n = if n = 0 then 1 else n * (fac (n - 1))

We now compose the following function f ∈ (2 → 2)→ (2 → 2):

f fac n = (n u >) u (> t (n u (fac (n u >)))

= n

Start with ⊥2→2 = {(⊥,⊥), (>,⊥)}, the least fixed point
iteration becomes

f (0)(⊥2→2) = {(⊥,⊥), (>,⊥)}
f (1)(⊥2→2) = {(⊥,⊥), (>,>)}
f (2)(⊥2→2) = {(⊥,⊥), (>,>)}

We reach the least fixed point at {(⊥,⊥), (>,>)}. That is, fac is
strict. When fac is applied to a non-terminating argument, it will
diverge. When it is applied to others, it may or may not diverge.

61 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

The Factorial Program, Revisited
For the following program fac:

let rec fac n = if n = 0 then 1 else n * (fac (n - 1))

We now compose the following function f ∈ (2 → 2)→ (2 → 2):

f fac n = (n u >) u (> t (n u (fac (n u >)))

= n

Start with ⊥2→2 = {(⊥,⊥), (>,⊥)}, the least fixed point
iteration becomes

f (0)(⊥2→2) = {(⊥,⊥), (>,⊥)}
f (1)(⊥2→2) = {(⊥,⊥), (>,>)}
f (2)(⊥2→2) = {(⊥,⊥), (>,>)}

We reach the least fixed point at {(⊥,⊥), (>,>)}. That is, fac is
strict. When fac is applied to a non-terminating argument, it will
diverge. When it is applied to others, it may or may not diverge.

61 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

The Factorial Program, Revisited
For the following program fac:

let rec fac n = if n = 0 then 1 else n * (fac (n - 1))

We now compose the following function f ∈ (2 → 2)→ (2 → 2):

f fac n = (n u >) u (> t (n u (fac (n u >)))

= n

Start with ⊥2→2 = {(⊥,⊥), (>,⊥)}, the least fixed point
iteration becomes

f (0)(⊥2→2) = {(⊥,⊥), (>,⊥)}
f (1)(⊥2→2) = {(⊥,⊥), (>,>)}
f (2)(⊥2→2) = {(⊥,⊥), (>,>)}

We reach the least fixed point at {(⊥,⊥), (>,>)}. That is, fac is
strict. When fac is applied to a non-terminating argument, it will
diverge. When it is applied to others, it may or may not diverge.

61 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Formalizing Abstract Interpretation

Let abs ∈ D → D̄ be an (intuitive) abstraction function that maps
from a concrete domain D to an abstract domain D̄. We can
define on the Hoare power domain the abstraction and
corresponding concretization functions

Abs ∈ P(D)→ P(D̄)

Conc ∈ P(D̄)→ P(D)

by

Abs (S) = P(abs) (S), where P(f) (X) = {f (x) | x ∈ X}∗

Conc (S) =
⋃
{T | Abs (T) vP(D̄) S , T ∈ P(D)}

62 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Formalizing Abstract Interpretation

Let abs ∈ D → D̄ be an (intuitive) abstraction function that maps
from a concrete domain D to an abstract domain D̄. We can
define on the Hoare power domain the abstraction and
corresponding concretization functions

Abs ∈ P(D)→ P(D̄)

Conc ∈ P(D̄)→ P(D)

by

Abs (S) = P(abs) (S), where P(f) (X) = {f (x) | x ∈ X}∗

Conc (S) =
⋃
{T | Abs (T) vP(D̄) S , T ∈ P(D)}

62 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Strictness Analysis, Revisited

For strictness analysis, it is straightforward to define abs ∈ D → 2
for a concrete (basis) domain D as

abs (d) =

{
⊥2 if d = ⊥D

>2 if d 6= ⊥D

Then we have

Abs (X) =

{
{⊥2} if X = {⊥D}
2 otherwise

Conc (X) =

{
{⊥D} if X = {⊥2}
D if X = 2

63 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Strictness Analysis, Revisited

For strictness analysis, it is straightforward to define abs ∈ D → 2
for a concrete (basis) domain D as

abs (d) =

{
⊥2 if d = ⊥D

>2 if d 6= ⊥D

Then we have

Abs (X) =

{
{⊥2} if X = {⊥D}
2 otherwise

Conc (X) =

{
{⊥D} if X = {⊥2}
D if X = 2

63 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Formalizing Abstract Interpretation, Continued
Let f ∈ C → D be a function, we define the abstraction function
abs ∈ (C → D)→ (C̄ → D̄) as

abs (f) =
⊔
◦ Abs ◦ P(f) ◦ Conc ◦ {·}

so that abs (f) ∈ C̄ → D̄ is an abstraction of f .

This is illustrated
by the following diagram:

C̄
abs (f)

−−−−−−− −→ D̄
| ↑

{·} | |
⊔

↓ |
P(C̄) P(D̄)
| ↑

Conc | | Abs
↓ |

P(C)
P(f)

−−−−−−− −→ P(D)

64 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Formalizing Abstract Interpretation, Continued
Let f ∈ C → D be a function, we define the abstraction function
abs ∈ (C → D)→ (C̄ → D̄) as

abs (f) =
⊔
◦ Abs ◦ P(f) ◦ Conc ◦ {·}

so that abs (f) ∈ C̄ → D̄ is an abstraction of f . This is illustrated
by the following diagram:

C̄
abs (f)

−−−−−−− −→ D̄
| ↑

{·} | |
⊔

↓ |
P(C̄) P(D̄)
| ↑

Conc | | Abs
↓ |

P(C)
P(f)

−−−−−−− −→ P(D)
64 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Formalizing Abstract Interpretation, Continued
This definition of abstraction for function is safe.

Theorem (Burn, Hankin, Abramsky)

Let function f ∈ C → D. Then

P(f) vP(C)→P(D) Conc ◦ P(abs (f)) ◦ Abs

2

This is illustrated by the following diagram:

P(C)
P(f)

−−−−−−− −→ P(D)
| ∩|

Abs | ↑ Conc
↓ |

P(C̄)
P(abs (f))

−−−−−−− −→ P(D̄)

65 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Formalizing Abstract Interpretation, Continued
This definition of abstraction for function is safe.

Theorem (Burn, Hankin, Abramsky)

Let function f ∈ C → D. Then

P(f) vP(C)→P(D) Conc ◦ P(abs (f)) ◦ Abs

2

This is illustrated by the following diagram:

P(C)
P(f)

−−−−−−− −→ P(D)
| ∩|

Abs | ↑ Conc
↓ |

P(C̄)
P(abs (f))

−−−−−−− −→ P(D̄)

65 / 66

Basic Domain Theory
Denotational Semantics

Non-standard Semantics

Abstract Interpretation
Strictness Analysis

Strictness Analysis (Burn, Hankin, and Abramsky)
The following abstractions for built-in functions are safe.

1. If f is strict in all of its n arguments, then define

(abs (f)) x1 x2 . . . xn = x1 u x2 u . . . u xn

2. Let if-then-else ∈ B → D → D → D be the standard
semantics of the “if then else” construct. Then define

(abs (if-then-else)) x y z = x and (y t z),

where and ∈ 2 → D̄ → D̄ is defined by

⊥ and e = ⊥D̄

> and e = e

3. If f ∈ D → D, then define

abs (fix (f)) = fix (abs (f))
66 / 66

	Basic Domain Theory
	Giving Meaning to Programs
	Semantic Domains

	Denotational Semantics
	Functional Programs
	While Programs

	Non-standard Semantics
	Abstract Interpretation
	Strictness Analysis

