
Basics of functional programming
Fold/unfold functions; Parametric modules

Functional Programming

Tyng–Ruey Chuang

Institute of Information Science
Academia Sinica, Taiwan

2010 Formosan Summer School
on Logic, Language, and Computation

June 28 – July 9, 2010

1 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

This course note . . .

I . . . is prepared for the 2010 Formosan Summer School on
Logic, Language, and Computation (FLOLAC) held in Taipei,
Taiwan,

I . . . is made available from the FLOLAC ’10 web site:

http://flolac.iis.sinica.edu.tw/flolac10/

(please also check the above site for updated version)

I . . . and is released to the public under a Creative Commons
Attribution-ShareAlike 3.0 Taiwan license:

http://creativecommons.org/licenses/by-sa/3.0/

2 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Course outline

Unit 1. Basics of functional programming.

Unit 2. Fold/unfold functions; Parametric modules.

Each unit consists of 2 hours of lecture and 1 hour of lab/tutor.
Examples will be given in Objective Caml (O’Caml). Useful online
resources about O’Caml:

I Web site: http://caml.inria.fr/

I Book: Developing Applications with Objective Caml.
URL: http://caml.inria.fr/pub/docs/oreilly-book/

3 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Functions, I

let x = 1

let y = x + 1

let succ n = n + 1

let z = succ y

I val x : int = 1

val y : int = 2

val succ : int -> int = <fun>

val z : int = 3

4 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Functions, I

let x = 1

let y = x + 1

let succ n = n + 1

let z = succ y

I val x : int = 1

val y : int = 2

val succ : int -> int = <fun>

val z : int = 3

4 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Functions, II

let sum x y = x + y

let five = sum 2 3

I val sum : int -> int -> int = <fun>

val five : int = 5

let plus3 = sum 3

let seven = plus3 4

I val plus3 : int -> int = <fun>

val seven : int = 7

5 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Functions, II

let sum x y = x + y

let five = sum 2 3

I val sum : int -> int -> int = <fun>

val five : int = 5

let plus3 = sum 3

let seven = plus3 4

I val plus3 : int -> int = <fun>

val seven : int = 7

5 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Functions, II

let sum x y = x + y

let five = sum 2 3

I val sum : int -> int -> int = <fun>

val five : int = 5

let plus3 = sum 3

let seven = plus3 4

I val plus3 : int -> int = <fun>

val seven : int = 7

5 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Anonymous functions, I

let succ = fun n -> n + 1

let one = succ 0

let two = (fun n -> n + 1) one

I val succ : int -> int = <fun>

val one : int = 1

val two : int = 2

6 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Anonymous functions, I

let succ = fun n -> n + 1

let one = succ 0

let two = (fun n -> n + 1) one

I val succ : int -> int = <fun>

val one : int = 1

val two : int = 2

6 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Anonymous functions, II

let sum = fun x -> fun y -> x + y

let plus3 = sum 3

I val sum : int -> int -> int = <fun>

val plus3 : int -> int = <fun>

let twice = fun f -> fun x -> f (f x)

let plus6 = twice plus3

let seven = plus6 one

I val twice : (’a -> ’a) -> ’a -> ’a = <fun>

val plus6 : int -> int = <fun>

val seven : int = 7

7 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Anonymous functions, II

let sum = fun x -> fun y -> x + y

let plus3 = sum 3

I val sum : int -> int -> int = <fun>

val plus3 : int -> int = <fun>

let twice = fun f -> fun x -> f (f x)

let plus6 = twice plus3

let seven = plus6 one

I val twice : (’a -> ’a) -> ’a -> ’a = <fun>

val plus6 : int -> int = <fun>

val seven : int = 7

7 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Anonymous functions, II

let sum = fun x -> fun y -> x + y

let plus3 = sum 3

I val sum : int -> int -> int = <fun>

val plus3 : int -> int = <fun>

let twice = fun f -> fun x -> f (f x)

let plus6 = twice plus3

let seven = plus6 one

I val twice : (’a -> ’a) -> ’a -> ’a = <fun>

val plus6 : int -> int = <fun>

val seven : int = 7

7 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Functions as arguments and as results, I

let compose f g = fun x -> f (g x)

let plus3 n = n + 3

let times2 n = n * 2

let this = compose plus3 times2 1

let that = compose times2 plus3 1

I val compose : (’a -> ’b) -> (’c -> ’a) ->

’c -> ’b = <fun>

val plus3 : int -> int = <fun>

val times2 : int -> int = <fun>

val this : int = 5

val that : int = 8

8 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Functions as arguments and as results, I

let compose f g = fun x -> f (g x)

let plus3 n = n + 3

let times2 n = n * 2

let this = compose plus3 times2 1

let that = compose times2 plus3 1

I val compose : (’a -> ’b) -> (’c -> ’a) ->

’c -> ’b = <fun>

val plus3 : int -> int = <fun>

val times2 : int -> int = <fun>

val this : int = 5

val that : int = 8

8 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Functions as arguments and as results, II

let twice f = compose f f

let what = twice (fun n -> n + n)

let guess = what 1

I val twice : (’a -> ’a) -> ’a -> ’a = <fun>

val what : int -> int = <fun>

val guess : int = 4

9 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Functions as arguments and as results, II

let twice f = compose f f

let what = twice (fun n -> n + n)

let guess = what 1

I val twice : (’a -> ’a) -> ’a -> ’a = <fun>

val what : int -> int = <fun>

val guess : int = 4

9 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Notations in O’Caml, I

Function application is just juxtaposition, and is left
associative. These two definitions are the same:

I let this = compose plus3 times2 1

I let this = ((compose plus3) times2) 1

10 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Notations in O’Caml, II

Function abstraction is right associative. These two
definitions are the same:

I let sum = fun x -> fun y -> x + y

val sum : int -> int -> int = <fun>

I let sum = fun x -> (fun y -> x + y)

val sum : int -> (int -> int) = <fun>

11 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Evaluation in O’Caml

I Expressions are evaluated before they are passed
as arguments to the function body.

I The function body is evaluated only when all
the arguments are evaluated.

I Functions can be partially applied.

12 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Binding in O’Caml, I

I Lexical binding: Expressions are evaluated and
bound to the corresponding identifiers in the
order they appear in the program text.

I Nested binding: Outer bindings are shadowed by
inner bindings.

let x = 100

let f y = let x = x + y in x

let x = 10

let z = f x

13 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Binding in O’Caml, I

I Lexical binding: Expressions are evaluated and
bound to the corresponding identifiers in the
order they appear in the program text.

I Nested binding: Outer bindings are shadowed by
inner bindings.

let x = 100

let f y = let x = x + y in x

let x = 10

let z = f x

13 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Binding in O’Caml, II

I Simultaneous binding: Several bindings occur at
the same time under the same environment.

let x = z

and z = x

I Recursive binding: Identifiers can be referred to
when they are being defined.

let rec fac n =

if n <= 0 then 1

else n * (fac (n -1))

let six = fac 3

14 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Binding in O’Caml, II

I Simultaneous binding: Several bindings occur at
the same time under the same environment.

let x = z

and z = x

I Recursive binding: Identifiers can be referred to
when they are being defined.

let rec fac n =

if n <= 0 then 1

else n * (fac (n -1))

let six = fac 3

14 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Recursive functions: Example I

I Expressiveness: Euclid’s algorithm for greatest
common divisor (gcd), assuming integers
m, n > 0:

let rec gcd m n =

if m mod n = 0

then n

else gcd n (m mod n)

let u = gcd 57 38

let v = gcd 38 59

15 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Recursive functions: Example II

I The danger of non-terminating computation:

let rec loop x = loop x

let oops = loop 0

16 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Built-in data types in O’Caml, I

type int
0, -1, . . .

type char
’a’, ’\’’, . . .

type string
"\"O’Caml\" is a fine

language.\n", . . .

type float
3.14159, 0.314159e1, . . .

17 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Built-in data types in O’Caml, II

type unit = ()

type bool = false | true

type ’a list = [] | :: of ’a * ’a list
[], true::false::[], [1; 2; 3], . . .

type ’a option = None | Some of ’a
None, Some 17, Some [None; Some

true], . . .

18 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Built-in type operators in O’Caml, I

Cartesian product

type int_pair = int * int

let rec gcd (m, n) =

if m mod n = 0

then n else gcd (n, m mod n)

val gcd : int * int -> int = <fun>

19 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Built-in type operators in O’Caml, II

Function space

type int2int2int = int -> int -> int

let rec gcd m n =

if m mod n = 0

then n else gcd n (m mod n)

val gcd : int -> int -> int = <fun>

20 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Expressions, values, and types, I

I Well-typed expressions:

0, (1 + 2), (sum 2 3), (2, true),

(fun x -> fun y -> x + y)

I Ill-typed expressions:

(1 + ’2’), (sum 2 3.0),

((fun x -> fun y -> x + y) 0 1 2)

21 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Expressions, values, and types, II

I All O’Caml values have types:

val sum : int -> int -> int = <fun>

val five : int = 5

I Some values are polymorphic:

val twice : (’a -> ’a) -> ’a -> ’a = <fun>

val empty_list : ’a list = []

I Expressions are statically checked to ensure they
always evaluate to values.

22 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

O’Caml is strict, I

I O’Caml insists on evaluating the arguments in a
function application though the arguments may
not be required for the computation in the
function body. O’Caml is called a strict
language.

I Some functional language, e.g., Haskell, will
evaluate the function arguments only when they
are demanded by the computation in the
function body. These languages are non-strict.

23 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

O’Caml is strict, II

I What is wrong in this picture (in O’Caml):

let oracle () = ...

let choice this that =

if oracle () then this else that

I let rec loop x = loop x

let oops = choice (loop 0) 0

24 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

O’Caml is strict, II

I What is wrong in this picture (in O’Caml):

let oracle () = ...

let choice this that =

if oracle () then this else that

I let rec loop x = loop x

let oops = choice (loop 0) 0

24 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Functions to the rescue!

let new_choice this that =

if oracle () then this () else that ()

let was = choice (loop 0) 0

let now = new_choice (fun () -> loop 0)

(fun () -> 0)

val choice : ’a -> ’a -> ’a = <fun>

val new_choice : (unit -> ’a) ->

(unit -> ’a) -> ’a = <fun>

25 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

What about variables?

I We can bind values to identifiers; once an
identifier is bound, its value never changes. Of
course, bindings can be nested hence, for the
same identifier, the inner binding may shadow
outer binding.

I Can one implement a counter using only
functions?

I We can implement many counters using only
functions!

26 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

What about variables?

I We can bind values to identifiers; once an
identifier is bound, its value never changes. Of
course, bindings can be nested hence, for the
same identifier, the inner binding may shadow
outer binding.

I Can one implement a counter using only
functions?

I We can implement many counters using only
functions!

26 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

What about variables?

I We can bind values to identifiers; once an
identifier is bound, its value never changes. Of
course, bindings can be nested hence, for the
same identifier, the inner binding may shadow
outer binding.

I Can one implement a counter using only
functions?

I We can implement many counters using only
functions!

26 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Counters!

I We can implement many counters using only
functions!

I let init value = fun () -> value

let read counter = counter ()

let step counter more =

fun () -> read counter + more

val init : ’a -> unit -> ’a = <fun>

val read : (unit -> ’a) -> ’a = <fun>

val step : (unit -> int) -> int ->

unit -> int = <fun>

27 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Counters!

I We can implement many counters using only
functions!

I let init value = fun () -> value

let read counter = counter ()

let step counter more =

fun () -> read counter + more

val init : ’a -> unit -> ’a = <fun>

val read : (unit -> ’a) -> ’a = <fun>

val step : (unit -> int) -> int ->

unit -> int = <fun>

27 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Counters via functions, I

let init value = fun () -> value

let read counter = counter ()

let step counter more =

fun () -> read counter + more

let mem = init 0

let x = step mem 1

let y = step mem 2

let z = step x 100

let x_y_z = (read x, read y, read z)

28 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Counters via functions, II

val init : ’a -> unit -> ’a = <fun>

val read : (unit -> ’a) -> ’a = <fun>

val step : (unit -> int) -> int ->

unit -> int = <fun>

val mem : unit -> int = <fun>

val x : unit -> int = <fun>

val y : unit -> int = <fun>

val z : unit -> int = <fun>

val x_y_z : int * int * int = (1, 2, 101)

29 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Programming by pattern-matching, I

type ’a table = (string * ’a) list

let rec lookup key table =

match table with

[] -> None

| (name, value) :: rest ->

if key = name then Some value

else lookup key rest

30 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Programming by pattern-matching, II

type color = Red | Yellow | Green

let fruits = [("banana", Yellow);

("guava", Green)]

let this = lookup "guava" fruits

let that = lookup "mango" fruits

val lookup : ’a -> (’a * ’b) list -> ’b option = <fun>
val fruits : (string * color) list =

[("banana", Yellow); ("guava", Green)]
val this : color option = Some Green
val that : color option = None

31 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

List reversal: Example I

I let rec reverse list =

match list with

[] -> []

| head :: tail ->

(reverse tail) @ [head]

32 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

List reversal: Example II

I let reverse list =

let rec rev rest accumulator =

match rest with

[] -> accumulator

| hd :: tl ->

rev tl (hd :: accumulator)

in rev list []

I Both have type:

val reverse : ’a list -> ’a list = <fun>

I Which one is better?

33 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Functions over lists, I

let rec filter p list =

match list with

[] -> []

| head :: tail ->

if p head then head :: (filter p tail)

else filter p tail

let rec append front rear =

match front with

[] -> rear

| head :: tail -> head :: (append tail rear)

34 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Functions over lists, II

let this = filter (fun n -> n mod 2 = 0) [1; 2; 3]

let that = append [1; 2; 3] [100; 101; 102]

val filter : (’a -> bool) -> ’a list -> ’a list = <fun>

val append : ’a list -> ’a list -> ’a list = <fun>

val this : int list = [2]

val that : int list = [1; 2; 3; 100; 101; 102]

35 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

User-defined type constructors, I

type ’a tree = Leaf

| Node of ’a * ’a tree * ’a tree

I tree is a type constructor: it construct a type α tree
whenever given a type α.

I Leaf and Node are the two value constructors for type
α tree.

Leaf: ’a tree

Node: ’a * ’a tree * ’a tree -> ’a tree

36 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

User-defined type constructors, II

type ’a tree = Leaf

| Node of ’a * ’a tree * ’a tree

I In O’Caml, type constructors start with lower-case letters;
value constructors start with upper-case letters.

I In O’Caml, type constructors and value constructors are
unary. Type construction uses postfix notation; value
construction, prefix.

Some (Node (1, Node (0, Leaf, Leaf),

Node (2, Leaf, Leaf)))

has type

int tree option

37 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Functions over trees

let rec swap tree =
match tree with

Leaf -> Leaf
| Node (here, left, right) ->
Node (here, swap right, swap left)

let rec insert key tree =
match tree with

Leaf -> Node (key, Leaf, Leaf)
| Node (here, left, right) ->
if key < here

then Node (here, insert key left, right)
else Node (here, left, insert key right)

val swap : ’a tree -> ’a tree = <fun>
val insert : ’a -> ’a tree -> ’a tree = <fun>

38 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Function, evaluation, and binding
Data types

Functions over trees, continued

let rec build f s =
match f s with

None -> Leaf
| Some (a, left, right) ->
Node (a, build f left, build f right)

let range (low, high) =
if low > high

then None
else let mid = (low + high) / 2 in

Some (mid, (low, mid - 1), (mid + 1, high))

let tree1to7 = build range (1, 7)

val build : (’a -> (’b * ’a * ’a) option) -> ’a -> ’b tree = <fun>

val range : int * int -> (int * (int * int) * (int * int)) option = <fun>

val tree1to7 : int tree = Node (4, Node (2, Node (1, Leaf, Leaf), Node (3, Leaf, Leaf)),

Node (6, Node (5, Leaf, Leaf), Node (7, Leaf, Leaf)))

39 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

Functions over lists, re-visited

let rec filter p list =
match list with

[] -> []
| head :: tail ->

if p head then head :: (filter p tail)
else filter p tail

let rec append front rear =
match front with

[] -> rear
| head :: tail -> head :: (append tail rear)

I Both functions work on lists in a bottom-up manner.

I What is the base case, and what is the inductive step?

40 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

Fold function for lists

let rec fold (base, step) list =
match list with

[] -> base
| hd :: tl -> step (hd, fold (base, step) tl)

let filter p list =
let step (hd, acc) = if p hd then (hd :: acc)

else acc
in

fold ([], step) list

let append front rear =
fold (rear, fun (hd, acc) -> hd :: acc) front

val fold : ’a * (’b * ’a -> ’a) -> ’b list -> ’a = <fun>
val filter : (’a -> bool) -> ’a list -> ’a list = <fun>
val append : ’a list -> ’a list -> ’a list = <fun> 41 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

Fold function for trees

let rec swap tree =
match tree with

Leaf -> Leaf
| Node (here, left, right) ->

Node (here, swap right, swap left)

let rec fold (base, step) tree =
match tree with

Leaf -> base
| Node (here, left, right) ->

step (here, fold (base, step) left,
fold (base, step) right)

let swap’ tree = fold (Leaf,
fun (here,left,right) -> Node (here,right,left)) tree

42 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

What is a tree, anyway?

fold : ’b * (’a * ’b * ’b -> ’b) ->

’a tree -> ’b

I A tree of type α tree is a value that can be
folded.

I Whenever given a base value of type β, and an
inductive function of type α× β × β → β, a
tree can be folded into a value of type β.

43 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

A new data type for trees

type (’a, ’b) t = Leaf

| Node of ’a * ’b * ’b

type ’a tree = Rec of (’a, ’a tree) t

let rec fold f tree =

match tree with

Rec Leaf -> f Leaf

| Rec (Node (here, left, right)) ->

f (Node (here, fold f left,

fold f right))

type (’a, ’b) t = Leaf | Node of ’a * ’b * ’b
type ’a tree = Rec of (’a, ’a tree) t
val fold : ((’a, ’b) t -> ’b) -> ’a tree -> ’b = <fun>

44 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

A new swap function

let swap tree =
let f t = match t with Leaf -> Rec Leaf

| Node (here, left, right) ->
Rec (Node (here, right, left))

in fold f tree
let tree123 = Rec (Node (2,

Rec (Node (1, Rec Leaf, Rec Leaf)),
Rec (Node (3, Rec Leaf, Rec Leaf))))

let tree321 = swap tree123

val swap : ’a tree -> ’a tree = <fun>
val tree123 : int tree =
Rec (Node (2, Rec (Node (1, Rec Leaf, Rec Leaf)),

Rec (Node (3, Rec Leaf, Rec Leaf))))
val tree321 : int tree =
Rec (Node (2, Rec (Node (3, Rec Leaf, Rec Leaf)),

Rec (Node (1, Rec Leaf, Rec Leaf))))
45 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

Look at a tree this way!

type (’a, ’b) t = Leaf | Node of ’a * ’b * ’b

type ’a tree = Rec of (’a, ’a tree) t

val fold : ((’a, ’b) t -> ’b) -> ’a tree -> ’b = <fun>

I Type constructor (α, β) t defines (the only) two forms of a
tree node.

I Type constructor α tree defines a tree as a recursive structure
via type constructor (α, β) t. The recursion occurs at the
second type argument to t.

I A function of type (α, β) t → β comprises both the base case
and the inductive step necessary for folding a value of type
α tree to a value of type β.

46 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

A new data type for trees, continued

type (’a, ’b) t = Leaf

| Node of ’a * ’b * ’b

type ’a tree = Rec of (’a, ’a tree) t

let rec unfold g seed =

match g seed with

Leaf -> Rec Leaf

| Node (here, left, right) ->

Rec (Node (here, unfold g left,

unfold g right))

type (’a, ’b) t = Leaf | Node of ’a * ’b * ’b
type ’a tree = Rec of (’a, ’a tree) t
val unfold : (’a -> (’b, ’a) t) -> ’a -> ’b tree = <fun>

47 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

We saw this before!

let rec build f s =
match f s with

None -> Leaf
| Some (a, left, right) ->

Node (a, build f left, build f right)

let range (low, high) =
if low > high

then None
else let mid = (low + high) / 2 in

Some (mid, (low, mid - 1), (mid + 1, high))

let tree1to7 = build range (1, 7)

48 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

Rewrite it using unfold

let rec unfold g seed =
match g seed with

Leaf -> Rec Leaf
| Node (here, left, right) ->

Rec (Node (here, unfold g left,
unfold g right))

let range (low, high) =
if low > high

then Leaf
else let mid = (low + high) / 2 in

Node (mid, (low, mid - 1), (mid + 1, high))

let balanced = unfold range
let tree1to7 = balanced (1, 7)

49 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

Look at a tree the other way!

type (’a, ’b) t = Leaf | Node of ’a * ’b * ’b

type ’a tree = Rec of (’a, ’a tree) t

val unfold: (’b -> (’a, ’b) t) -> ’b -> ’a tree = <fun>

I Type constructor (α, β) t defines (the only) two forms of a
tree node.

I Type constructor α tree defines a tree as a recursive structure
via type constructor (α, β) t. The recursion occurs at the
second type argument to t.

I A function of type β → (α, β) t comprises the co-inductive
step necessary for unfolding a value of type β to a value of
type α tree.

50 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

Fold and unfold for trees

let rec fold f tree =
match tree with

Rec Leaf -> f Leaf
| Rec (Node (here, left, right)) ->

f (Node (here, fold f left, fold f right))

let rec unfold g seed =
match g seed with

Leaf -> Rec Leaf
| Node (here, left, right) ->

Rec (Node (here, unfold g left, unfold g right))

val fold : ((’a, ’b) t -> ’b) -> ’a tree -> ’b = <fun>
val unfold : (’a -> (’b, ’a) t) -> ’a -> ’b tree = <fun>

Functions fold and unfold look strangely similar to each other!
51 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

Fold and unfold for trees, the third round (I)

type (’a, ’b) t = Leaf

| Node of ’a * ’b * ’b

let map (f, g) t =

match t with Leaf -> Leaf

| Node (h, l, r) ->

Node (f h, g l, g r)

type ’a tree = Rec of (’a, ’a tree) t

let down (Rec t) = t

let up t = Rec t
val map : (’a->’b) * (’c->’d) -> (’a,’c) t -> (’b,’d) t = <fun>
val down : ’a tree -> (’a, ’a tree) t = <fun>
val up : (’a, ’a tree) t -> ’a tree = <fun>

52 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

Fold and unfold for trees, the third round (II)

type (’a, ’b) t = Leaf
| Node of ’a * ’b * ’b

type ’a tree = Rec of (’a, ’a tree) t

let id x = x

let rec fold f tree = f (map (id, fold f) (down tree))

let rec unfold g seed = up (map (id, unfold g) (g seed))

val id : ’a -> ’a = <fun>
val fold : ((’a, ’b) t -> ’b) -> ’a tree -> ’b = <fun>
val unfold : (’a -> (’b, ’a) t) -> ’a -> ’b tree = <fun>

53 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

Fold and unfold for trees — ever more functional!
Fold and unfold are functions that each takes in a (basis) function
as the argument and return a (tree) function as the result.

let ($) f g x = f (g x)

let rec fold f tree = (f $ map (id, fold f) $ down) tree
let rec unfold g seed = (up $ map (id, unfold g) $ g) seed

let this = fold up
let that = unfold down

val ( $ ) : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b = <fun>
val fold : ((’a, ’b) t -> ’b) -> ’a tree -> ’b = <fun>
val unfold : (’a -> (’b, ’a) t) -> ’a -> ’b tree = <fun>
val this : ’a tree -> ’a tree = <fun>
val that : ’a tree -> ’a tree = <fun>

54 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

Functional diagram for fold

In the diagram, functions are arrows, and types are
objects.

α tree
down

- (α, α tree) t

β

fold f

?
�

f
(α, β) t

map (id, fold f )

?

let rec fold f tree = (f $ map (id, fold f) $ down) tree

55 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

Functional diagram for unfold

In the diagram, functions are arrows, and types are
objects.

β
g

- (α, β) t

α tree

unfold f

?
�

up
(α, α tree) t

map (id, unfold f )

?

let rec unfold g seed = (up $ map (id, unfold g) $ g) seed

56 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

Let’s not forget lists!

type (’a, ’b) t = Null
| Cons of ’a * ’b

type ’a list = Rec of (’a, ’a list) t

let rec fold f list = (f $ map (id, fold f) $ down) list
let rec unfold g seed = (up $ map (id, unfold g) $ g) seed

α list
down - (α, α list) t

β

fold f

?
� f

(α, β) t

map (id, fold f )

?

β
g - (α, β) t

α list

unfold f

?
� up

(α, α list) t

map (id, unfold f )

?

57 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

Modules, I

I A module, also called structure, packs together
related definitions (types, values, and even
modules).

I The module name acts as a “name space” to
avoid name conflicts.

58 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

Modules, II

module MyStack =

struct

type ’a t = ’a list

let empty = []

let push elm stack = elm :: stack

let pop stack =

match stack with

[] -> None

| head :: tail -> Some (head, tail)

end

let whatever = MyStack.push 1 []
59 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

Module interfaces, I

I A module interface, also called signature,
specifies which components of a structure are
accessible from the outside, and with which
type.

I It acts as a contract between the user and the
implementer of a module. Interface checking is
always enforced in O’Caml.

60 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

Module interfaces, II

module type STACK =

sig

type ’a t

val empty: ’a t

val push: ’a -> ’a t -> ’a t

val pop: ’a t -> (’a * ’a t) option

end

module S: STACK = MyStack

let whatever = S.push 1 S.empty

61 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

Parametric modules, I

I A parametric module, also called functor, is a
structure parameterized by other structures. It
accepts modules as arguments and returns a
module as the result.

I Type sharing and structure sharing constraints
can be used to relate the arguments and the
result.

62 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

Parametric modules, II

module type QUEUE = STACK

module type S2Q = functor (S: STACK) -> QUEUE

module MakeQueue: S2Q = functor (S: STACK) ->

struct

type ’a t = ’a S.t * ’a S.t

let empty = (S.empty, S.empty)

let push elm (front, rear) = (front, S.push elm rear)

let pop (front, rear) =

match S.pop front with

Some (e, s) -> Some (e, (s, rear))

| None -> ...

end

63 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

Tree folding

type (’a, ’b) t = Leaf

| Node of ’a * ’b * ’b

let map (f, g) t =

match t with Leaf -> Leaf

| Node (h, l, r) ->

Node (f h, g l, g r)

type ’a tree = Rec of (’a, ’a tree) t

α tree
down- (α, α tree) t

β

fold f

?
� f

(α, β) t

map (id, fold f )

?

64 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

List folding

type (’a, ’b) t = Null

| Cons of ’a * ’b

let map (f, g) t =

match t with Null -> Null

| Cons (hd, tl) ->

Cons (f hd, g tl)

type ’a list = Rec of (’a, ’a list) t

α list
down- (α, α list) t

β

fold f

?
� f

(α, β) t

map (id, fold f )

?

65 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

A fold for all seasons?

I Wanted: A way to describe the derivation of a
unary type constructor by recursing over a
binary type constructor, and to define the
accompanying fold function at the same time.

I This is exactly what a parametric module can
do!

I Input: a module with a binary type constructor
and its map function.

I Output: a module with a unary type
constructor, its map function, and its fold and
unfold functions.

66 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

Module interfaces FUN and FIX

module type FUN =

sig

type (’a, ’u) t

val map: (’a -> ’b) * (’u -> ’v) -> (’a, ’u) t

-> (’b, ’v) t

end

module type FIX =

sig

module Base: FUN

type ’a t = Rec of (’a, ’a t) Base.t

val down: ’a t -> (’a, ’a t) Base.t

val up: (’a, ’a t) Base.t -> ’a t

val map: (’a -> ’b) -> ’a t -> ’b t

val fold: ((’a, ’x) Base.t -> ’x) -> ’a t -> ’x

end 67 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

Mu, the fixed-pointing module

module type MU = functor (B: FUN) ->

FIX with module Base = B

module Mu: MU = functor (B: FUN) ->

struct

module Base = B

type ’a t = Rec of (’a, ’a t) Base.t

let down (Rec t) = t

let up t = Rec t

let rec fold f (Rec t) = f (Base.map (id, fold f) t)

let rec map f (Rec t) = Rec (Base.map (f, map f) t)

end

68 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

Module Tree

module T =

struct

type (’a, ’b) t = Leaf

| Node of ’a * ’b * ’b

let map (f, g) t =

match t with Leaf -> Leaf

| Node ( h, l, r) ->

Node (f h, g l, g r)

end

module Tree = Mu(T)

69 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

Module List

module L =

struct

type (’a, ’b) t = Null

| Cons of ’a * ’b

let map (f, g) t =

match t with Null -> Null

| Cons ( hd, tl) ->

Cons (f hd, g tl)

end

module List = Mu(L)

70 / 71



Basics of functional programming
Fold/unfold functions; Parametric modules

Fold/unfold functions for data types
Parametric Modules

Finale: modules as lego blocks

t

FUN

map

FUN

! "

(!, ")

fold

define
new map fold

define

!

! t map

MU

71 / 71


	Basics of functional programming
	Function, evaluation, and binding
	Data types

	Fold/unfold functions; Parametric modules
	Fold/unfold functions for data types
	Parametric Modules


