
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper.2001;31:615–635 (DOI: 10.1002/spe.379)

JGAP: a Java-based graph
algorithms platform

Ding-Yi Chen1, Tyng-Ruey Chuang1 and Shi-Chun Tsai2,∗,†

1Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
2Department of Information Management, National Chi-Nan University, Nantou 545, Taiwan

SUMMARY

We describe JGAP, a web-based platform for designing and implementing Java-coded graph algorithms.
The platform contains a library of common data structures for implementing graph algorithms, features
a ‘plug-and-play’ modular design for adding new algorithm modules, and includes a performance meter
to measure the execution time of implemented algorithms. JGAP is also equipped with a graph editor to
generate and modify graphs to have specific properties. JGAP’s graphic user interface further allows users
to compose, in a functional way, computation sequences from existing algorithm modules so that output
from an algorithm is used as input for another algorithm. Hence, JGAP can be viewed as a visual graph
calculator for helping experiment with and teach graph algorithm design. Copyright 2001 John Wiley &
Sons, Ltd.

KEY WORDS: graph algorithms; Java; software visualization; web-based software systems

1. MOTIVATION

Building a software system for experimenting and teaching graph algorithms is not an easy task for
several reasons. First, graph algorithms often need to represent graphs by some complex data structures
for efficiency reasons. Different algorithms often use different graph representations. However, to ease
program development, the software system will need a common representation of graphs. Not only
must the common representation satisfy various needs of different algorithms, it must do so in an
efficient way. Secondly, for experimentation and teaching purposes, the system must provide a graphic
user interface (GUI) so that graphs can be concisely displayed and conveniently edited. Last but not
least, the system should allow end users, not just the system designers, to add new algorithms, or new

∗Correspondence to: Shi-Chun Tsai, Department of Information Management, National Chi-Nan University, 1 University Road,
Puli, Nantou 545, Taiwan.
†E-mail: tsai@im.ncnu.edu.tw

Contract/grant sponsor: National Science Council, Taiwan; contract/grant number: NSC 88-2213-E-260-002 and NSC 88-2213-
E-001-007

Copyright 2001 John Wiley & Sons, Ltd.
Received 11 May 2000

Revised 6 September 2000
Accepted 20 November 2000

616 D.-Y. CHEN, T.-R. CHUANG AND S.-C. TSAI

implementations of existing algorithms, to the system with ease. That is, the system architecture must
be modular, with the ability to add and update algorithm modules even after the system has been put
into use. In the following, we further elaborate the above three requirements.

The system needs a common representation of graphs, or at least a common application program
interface (API) for graph operations. A uniform interface helps program graph algorithms. It also
helps in the exchange of graphs among the algorithms. However, it is important that basic graph
operations (such as edge addition and deletion, node enumeration, etc.) on the common representation
are as efficient as those on customized graph representations favored by individual graph algorithms;
otherwise, they will unduly affect the overall performance of the algorithms. Intrinsic properties of
the graphs (e.g., whether the graphs are dense, regular, or multi-edged, etc.) must also be taken into
consideration when selecting a common graph representation.

For users, it is necessary to have a good GUI for generating, editing and displaying graphs. Moreover,
users’ actions and the produced graphs should be kept in a ‘history list’ so that they can be re-used. They
will be used to re-run experiments with new graphs or new algorithms. The system should also provide
a performance meter to measure the performance of algorithms, and to present the results in a visual
way. Ideally, the software system, including its GUI, should be readily portable to multiple computing
systems. This often requires the system being implemented in a standard programming language, with
a portable library and execution environment. Java, with its rich class library and ubiquitous virtual
machine, is very suitable for such a task.

As mentioned above, a common graph representation as well as a good visualization library helps
users to program new algorithms. To allow users to incorporate new algorithms into the system,
however, one needs additional effort in storing and managing the newly developed code. A popular
choice is to use a web-based system, where a web server acts as code repository and new code can be
submitted to the web server via a web browser. After the system is updated, a user then re-loads the
front-end Java applet to bring all the currently available algorithm modules to the local browser for
execution.

We describe in this paper JGAP, a Java-coded web-based platform for experimenting and teaching
graph algorithms designs. The platform contains a library of common data structures for implementing
graph algorithms, is equipped with a visual graph editor for generating and modifying graphs of specific
properties, and features a ‘plug-and-play’ modular design for adding new algorithms.

This paper is organized as follows. We first survey related works in Section2. Section3 outlines the
modular architecture of JGAP. Section4 describes in detail JGAP’s common data structures, including
their interfaces, for graph algorithms. We also consider the advantage and disadvantage of using a
fixed set of common data structures for graphs. Section5 shows how JGAP is used as a visual graph
calculator and how it helps test and teach graph algorithm designs. Section6 concludes the paper.

2. RELATED WORKS

We classify related tools and systems for graph algorithms into three categories: Java-coded algorithm
animation programs, library and datasets for graph algorithm designs and experimentations, and web-
based systems for collaborative research. In the following, we list several representative systems in
each of the three categories and compare them with JGAP.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:615–635

JGAP: A JAVA-BASED GRAPH ALGORITHMS PLATFORM 617

Java-coded algorithm animation. Systems in this category use script languages to control animation
actions and include a Java applet to interpret user scripts for display in a web browser. These
systems can be used to animate general algorithms and data structures, not just graph algorithms.
Representative systems includeJSamba[1], a Java version of theSambaanimation system
[2] andJAWAA[3,4]. For general techniques and various systems for visualization of software
systems, see [5].

Graph library and datasets. There are many libraries for drawing graphs and implementing graph
algorithms. There are also graph datasets for teaching or benchmarking purposes. We name just
a few of the most well-known.GraphVizis a set of graph drawing tools developed at AT&T Labs
[6,7]. It has a graph description language calleddot and it includesGrappa, a Java-coded applet
that interprets and draws graphs that are described in dot.Stanford GraphBasecontains a set
of graph data, a graph library, and a collection of C programs coded in a literate programming
style [8]. LEDA is a C++ library of efficient data structures and algorithms for combinatorial and
geometric computing [9].

Web-based collaborative systems.The web infrastructure, with Java-enabled code mobility, has
been advocated as a general platform to deploy distributed software systems. In a web-based
collaborative system, a web server is used to store and exchange research results among the
researchers, who can use browsers to retrieve and update research information in a dynamic
manner coordinated by the web server [10]. For the geometric computing domain, a system
calledGeoJavahas been built to allow user to execute, even develop, geometric algorithms in a
distributed environment [11]. Geometric algorithms are compiled and executed using the LEDA
library at the server site, while the results are visualized at the client sites using Java applets. The
system also coordinates multiple users to work on an algorithm at the same time.

JGAP differs from JSamba and JAWAA in that it does not use a separate script language to perform
animation. Rather, in addition to providing a common data structure for general graph operations, JGAP
includes a Java library for on-line editing and displaying graphs. It also offers a window-based GUI
to help user manipulate graphs. Because the graph library in JGAP is coded in Java, graph algorithms
developed with JGAP have better code mobility than algorithms developed with GraphViz, GraphBase
and LEDA, which are coded in C/C++. Both JGAP and GeoJava need a web server to distribute the
developed graph programs and their documentations. However, JGAP is a lightweight system in which
both graph computation and visualization occur at the user site inside a web browser. This is contrary
to GeoJava, where computation is performed and coordinated at the web server, while visualization
occurs at the user site. On the other hand, when compared to GeoJava, right now JGAP is not a fully
collaborative system. For example, addition of new functionalities to JGAP itself still needs manual
coordination.

There is also a difference between JGAP—whose problem domain is graph algorithms—and other
Java software tools that use graph representations just to manipulate objects in other problem domains.
In this category of software tools, often the emphasis is on a user-friendly graphic interface for
manipulating domain-specific objects on screen. The graphic interface may contain little algorithmic
content, and the objects being manipulated are not necessarily graphs. A UML editor that models
software processes in a visual way, for example, may be considered to be in this category.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:615–635

618 D.-Y. CHEN, T.-R. CHUANG AND S.-C. TSAI

Generator

Algorithm 1

Algorithm 2

Algorithm 3

Algorithm

Output
Result

Manual
Input

Graph

JGAP
Algorithm

Random
Graph

Figure 1. An overview of the JGAP software architecture.

3. SOFTWARE ARCHITECTURE OF JGAP

JGAP consists mainly of two components: a graph editing component and a graph algorithm
component. The software architecture of JGAP is illustrated in Figure1. It shows aGraph editing
component that edits and visualizes graphs from manual input or from a random graph generator. The
graphs are passed to anAlgorithmcomponent to produce results, which are also graphs and can be fed
back to the graph editing component for further modification and visualization. The graph algorithm
component can apply one of several algorithm modules to a graph. The result can be passed to yet
another algorithm module, and so on. All these are achieved via direct manipulation on JGAP’s graphic
user interface. This results in a highly interactive user experience. It is like using a calculator, except
that the objects of calculation are graphs instead of numbers.

The graph editing component implements the following functionalities.

• Visualization and on-screen modification of graphs. Users can add/delete both nodes and edges
to/from graphs, and visualize the results.

• Graph input/output from/to external storage.
• Random-graph generation. Parameters to the generator include number of nodes, edge density,

edge weight distribution, whether the graph is directed or undirected, and whether self-loop
cycles are allowed.

• History list maintenance. The history list keeps a list of all graphs that have been generated or
computed so far. Graphs in the list can be retrieved for future computation and comparison.

The graph algorithm component provides a library of common graph representations, upon which a
variety of graph algorithms are implemented. Details of the common graph representations and their
interfaces are described in Section4. This component also includes several standard graph algorithms,

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:615–635

JGAP: A JAVA-BASED GRAPH ALGORITHMS PLATFORM 619

so that JGAP can be readily for use as a calculator. An important part of the graph algorithm component
is the performance meter. When applied to an algorithm module, the performance meter measures the
algorithm’s execution time on a series of random graphs of increasing sizes, and plots its asymptotic
performance. Section5 describes how to use the performance meter as well as other JGAP features.

4. COMMON REPRESENTATIONS OF GRAPHS IN JGAP

Graph representations play a central role in the design and implementation of JGAP. Various
representations of graphs (e.g. adjacent matrix, edge list, etc.) have been used in graph algorithms
for efficiency reasons. In JGAP, we use a uniform representation for graphs, where the representation
can be used as a matrix and a list. Thus it is easy in JGAP to pass around a graph object among different
algorithms, where each may demand a different graph representation. Our graph representation is also
designed to maintain the time efficiency of both adjacent matrix and edge list, at the cost of extra space
overhead and initialization time. If a graph algorithm uses the common representation only as a list, the
algorithm’s asymptotic performance will be as good as a list algorithm. This is also true for algorithms
that use the common representation only as a matrix.

In the following subsections, we provide details of the data types used in JGAP. The definitions
of Java classesVertexandEdgeare self-evident. The definition ofGraph uses classesListArray and
ListArray2, which are described in separate subsections. For each class, we list both its data fields and
applicable methods. We also present the time and space complexity of the implementations.

4.1. Data types for graphs

A graphG = (V ,E) consists of a vertex setV and an edge setE. G can either be directed or not.
Graphs, vertices, and edges are all objects. We list in Figure2 the class declarations for vertices, edges,
and graphs. TableI lists the methods that are used to access variables of typesVertex, Edge, andGraph.

4.2. ListArray

In a Graph object, a ListArray object is used to store vertices and a ListArray2 object is used to store
edges. ListArray implements both the functionality of doubly linked list and array. ListArray2 is a
two-dimensional version of ListArray. For an illustration of ListArray, see Figure3.

Data stored in a ListArray object can be accessed either as a linked list or as an array. We call
the linked list part of ListArrayListItem. Each ListItem stores an item in the list. The array part of
ListArray is simply an array of ListItem. Array access methods of ListArray are supported via this part
of the data structure. The class declarations of ListItem and ListArray are shown in Figure4. Each item
in a ListArray object can be accessed by a specific index, as in an array. It can be accessed like a doubly
linked list as well, which is useful, for example, when enumerating all items. Applicable methods of
ListArray are described in the next subsection.

4.2.1. Methods of ListArray

Table II shows the interfaces of the methods for accessing a ListArray object. Each array access
operation takes a constant time. Also, as in doubly linked list, it takes onlyO(1) time to perform

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:615–635

620 D.-Y. CHEN, T.-R. CHUANG AND S.-C. TSAI

class Vertex {
int identity; // Identity of this vertex.
int predecessorNode; // The predecessor of this vertex.
int x; // The x position of this vertex.
int y; // The y position of this vertex.
Color color; // Status of this vertex. Use color representation.
int hopDist; // Hop distance to this vertex.
int inDegree; // In-degree of the vertex.
int outDegree; // Out-degree of the vertex.
double distance; // Distance to this vertex.

class Edge {
int fromNode; // Indicate the node that this edge begins with.
int toNode; // Indicate the node that this edge ends at.
double weight; // The weight or the capacity of the edge.
double flow; // The flow on this edge.
Color color; // Status of this edge. Use color representation.

class Graph {
protected int vertexSerialNo; // Indicate the number of vertices.
ListArray vertexList; // Store all vertices.
ListArray2 edgeList; // Store all edges.
boolean directed; // Indicate whether the graph is directed.

}

Figure 2. Class declarations for vertices, edges, and graphs.

an insert or delete operation in ListArray. To insert an item to a ListArray object, first we prepare a
ListItem object and place it at the specified index of ListArray. We then link it up to its neighbors in
the ListArray object. Thus, we can add one element inO(1) time. To delete an item from a ListArray
object, we just remove the corresponding links as in the case of doubly-linked list. We then remove the
item at the corresponding index in the ListArray object. The time for a delete operation is also constant.

4.3. ListArray2

ListArray2 is ListArray with a two-dimensional support. Figure5 shows an example of ListArray2.
There are three pairs of(prev, next) pointers for each item in ListArray2. Horizontal pointers
(prevX, nextX) can be used to enumerate all elements in a row. It is useful when retrieving all out-
going edges of a vertex. The vertical pointers(prevY, nextY) can be used to enumerate all elements
in a column, which, again, is useful for retrieving all in-coming edges of a vertex. The third pair of

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:615–635

JGAP: A JAVA-BASED GRAPH ALGORITHMS PLATFORM 621

Table I. Methods in classes Vertex, Edge, and Graph: variables
v, e, andG are of classes Vertex, Edge and Graph, respectively.

v.getInDegree() get in-degree of vertexv.
v.getOutDegreee() get out-degree of vertexv.
v.getColor() get color of vertexv.
v.setColor() set color of vertexv.

e.getFromNode() get the starting node of edgee.
e.getToNode() get the ending node of edgee.
e.getColor() get color of edgee.
e.setColor() set color of edgee.

G.getNumOfVertices() get the number of vertices in graphG.
G.getNumOfEdges() get the number of edges in graphG.
G.verticesElements() enumerate all vertices in graphG.
G.allEdgesElements() enumerate all edges in graphG.
G.addVertex(v) add vertexv to graphG.
G.deleteVertex(v) delete vertexv from graphG.
G.addEdge(e) add edgee to graphG.
G.deleteEdge(e) delete edgee of graphG.
G.directedAdjVerticesElements(v) enumerate vertices that are adjacent to vertexv in G.
G.undirectedAdjVerticesElements(v) enumerate vertices that are adjacent to vertexv in G,

ignoring the direction of edges.
G.isEdge(u,v) whether an edge exists at specified ends inG.
G.inEdgesElements(v) enumerate all incoming edges to vertexv in G.
G.outEdgesElements(v) enumerate all outgoing edges from vertexv in G.

(b)

p Item n

p I 1 n p I 5 n p I 3 n

0 1 2

(a)

3 4 5

First

Index

Last

Figure 3. A ListArray structure with three list items and an array
of five entries. All non-null array elements appear in the list.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:615–635

622 D.-Y. CHEN, T.-R. CHUANG AND S.-C. TSAI

public class ListItem implements Cloneable, Serializable {
public static final int NUL = -1; // Used to indicate a null item.
private Object obj; // The object is stored here.
private int dimension; // The dimension of the ListArray.
private int coord[]; // Coordinate of this item.
private ListItem prev[]; // Previous items.
private ListItem next[]; // Next items.
boolean link; // Indicate whether this item is a link.

}

public class ListArray implements Cloneable, Serializable{
protected int capacity; // The maximum capacity of the ListArray.
protected int numOfItem; // The number of items in the ListArray.
private int maxItemIndex; // Maximum index that is currently used.
protected ListItem itemArray[]; // An array of items.
protected ListItem first=null; // The first item of this ListArray.
protected ListItem last=null; // The last item of this ListArray.

}

Figure 4. Class declarations of ListItem and ListArray.

Table II. Methods to access a ListArray object. The first three
methods treat the object as an array, and the rest treat it as a list.

Object itemAt(x) Get the item at the specified indexx.
void setItemAt(o, x) Store an itemo at indexx.
boolean itemExistAt(x) Check whether an item exists at indexx.

ListItem getPrev(ListItemli) Get the previous item ofli .
int getPrevIndex(inti) Get the index of previous item.
ListItem getNext(ListItemli) Get the next item ofli .
int getNextIndex(inti) Get the index of next item.
ListItem getFirst(); int getFirstIndex() Get the first item; get its index.
ListItem getLast(); int getLastIndex() Get the last item; get its index.
Object elements(), nextElement(), Extract items one by one, via the Java
hasMoreElement() java.lang.Enumeration interface [12].

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:615–635

JGAP: A JAVA-BASED GRAPH ALGORITHMS PLATFORM 623

last 2L0 L1 L2 L3

first0

last 1first 1

last0

first 2

Figure 5. A ListArray2 structure with four list items and a 4× 4 array. All non-null array elements appear in the
list and are interlinked in both dimensions.

pointers(prevZ, nextZ) is used to enumerate all edges in a graph. Methods and their costs of inserting
and deleting items in ListArray2 are similar to those in ListArray.

4.4. Adjacency ListArray

There are many ways to represent a graph. For example, a graph can be represented by an edge list, an
adjacency list, or an adjacency matrix [13,14]. The edge list and the adjacency list representations have
the advantage of efficient enumeration of adjacency edges with economical usage of storage space.
But for both of the representations, it takes more time to find out whether or not there exists an edge
adjacent at a specific vertex. The adjacency matrix representation can perform this operation inO(1)

time, but it is less efficient in edge enumeration. The adjacency matrix also consumes more space than
the edge list and the adjacency list.

We have designed a data structure calledAdjacency ListArrayto represent a graph. It provides the
functionality of both adjacency list and adjacency matrix. For each operation it supports and maintains
the minimum time complexity as required by adjacency list and adjacency matrix. However, it incurs
extra space overhead compared to that required for the adjacency list and adjacency matrix. The
usage of a common graph representation like Adjacency ListArray is crucial in the design of JGAP,
as it eliminates the need of representation conversion between different graph algorithms, while still
maintaining the asymptotic performance of each algorithm.

Figure6 shows an illustration of an Adjacency ListArray representation for a graph of five vertices
and seven edges. Part (a) shows the directed graph. Part (b) shows the data structure for a vertex, where
in points to the incoming edges to the vertex, andout points to the outgoing edges from the vertex.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:615–635

624 D.-Y. CHEN, T.-R. CHUANG AND S.-C. TSAI

(c)

A B C D E

A

B C

D E

1 2

3
4

5

6

7

A B D EC

A

B

C

D

E

Edge(B,A)
Weight 1

Edge(C,C)
Weight 7

Edge(E,D)
Weight 6

Edge(A,C)
Weight 2

Edge(D,B)
Weight 3

Edge(E,C)
Weight 4

Edge(D,E)
Weight 5

Vertex V:

Edge E:

prev

next

(a)

(d)

Vertex out

in

(b)

prev Edge next

prev

next

Figure 6. An Adjacency ListArray structure for a graph of 5 vertices and 7 edges.

Part (c) shows the data structure for an edge, where the horizontalprev/nextpointers link up edges of
the same source vertex, the verticalprev/nextpointers link up edges of the same destination vertex,
and the diagonalprev/nextpointers link up all edges in the graph. Part (d) is the Adjacency ListArray
representation of the graph. As is clearly shown in the illustration, the representation makes use of the
ListArray2 to maintain two collections of (orthogonal) list structures in a two dimensional array. The
third list structure, the edge list, is also maintained by the edge items in the ListArray2 data structure
via their diagonalprev/nextpointers.

TableIII summarizes the time complexity of graph methods for various graph representations. The
graph methods are already described in TableI. In TableIII , ideg indicates the in-degree of a vertex,
odegindicates the out-degree of a vertex, anddegcan be ideg or odeg. As shown in the table, for each
graph method, the cost of Adjacency ListArray is the minimum of all graph representations. On the
other hand, the space complexity of Adjacency ListArray isO(n2).

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:615–635

JGAP: A JAVA-BASED GRAPH ALGORITHMS PLATFORM 625

Table III. Space and time complexity of four graph representations:n
is the number of vertices andm the number of edges.

Graph representations
Graph
methods Edge List Adj. List Adj. Mat Adj. ListArray

getNumOfVertices O(1) O(1) O(1) O(1)
getNumOfEdges O(1) O(1) O(1) O(1)
verticesElements O(n) O(n) O(n) O(n)

allEdgesElements O(m) O(m) O(n2) O(m)
addVertex O(1) O(1) O(1) O(1)
deleteVertex O(m) O(odeg(v) + ideg(v)) O(n) O(odeg(v) + ideg(v))
addEdge O(1) O(1) O(1) O(1)
deleteEdge O(1) O(1) O(1) O(1)
getInDegree O(1) O(1) O(1) O(1)
getOutDegree O(1) O(1) O(1) O(1)
undirected- O(m) O(deg(v)) O(n) O(deg(v))
AdjVertices-
Elements(v)

directed- O(m) O(odeg(v) + ideg(v)) O(n) O(odeg(v) + ideg(v))
AdjVertices-
Elements(v)

isEdge(u,v) O(m) O(min(odeg(u), ideg(v))) O(1) O(1)
inEdgesElements O(m) O(ideg(v)) O(n) O(ideg(v))
outEdgesElements O(m) O(odeg(v)) O(n) O(odeg(v))
getFromNode O(1) O(1) O(1) O(1)
getToNode O(1) O(1) O(1) O(1)

Space required O(n + m) O(n + m) O(n2) O(n2)

5. JGAP: A VISUAL GRAPH CALCULATOR

For arithmetic, people frequently use calculators to assist numerical computation. For graph problems,
it is very useful to have a similar tool to help users to deal with graph computation in a visual way.
JGAP provides tools to help users to generate graph instances that serve as input to graph algorithms.
JGAP also has a GUI to visualize and directly manipulate graphs. JGAP currently provides graph
algorithms for breadth-first search, depth-first search, spanning tree, shortest paths and maximum flow.
Users can also implement and add new graph algorithms to JGAP. Consequently, one can view JGAP
as a visual graph calculator.

The following outlines a typical scenario of using JGAP as a visual graph calculator. A graph is first
generated, manually or automatically, and used as input to an algorithm. The result is then displayed in
a separate window, and can be used as input for yet another algorithm. A history of results is kept by
JGAP so that they can be referenced later on. Graphs can also be directly edited between computations.
The supported editing functions include graph union, graph difference, and addition and deletion of
vertex and edge. All editing operations are initiated by the user’s direct input, such as mouse-button

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:615–635

626 D.-Y. CHEN, T.-R. CHUANG AND S.-C. TSAI

Figure 7. The JGAP main window.

clicking and keyboard input. With JGAP, one can test and evaluate a graph algorithm quickly; it can
also be used to verify properties of input graphs. Since JGAP is coded in Java, it can be loaded from the
Web and executed inside a browser. It therefore provides users with a friendly platform for designing
and learning graph algorithms.

The rest of this section gives an overview of the JGAP graphic user interface, and briefly describes
how to add a new algorithm module to JGAP.

5.1. The JGAP main window

JGAP starts when its applet is executed inside a web browser. A main window will pop up with a
title: Interactive graph algorithm platform. Below the title is the menu bar with the following menu
items:File, Edit, View, Algorithm, History andHelp. Each of these items contains additional menu
items, a some of which can be further extended by users by the addition of new algorithm modules. For
example, Figure7 shows the JGAP main window which displays a small graph ready for calculation.

File menu. Users can select theNewitem under the menu to manually create a graph or to generate a
random graph. One can also select theOpenitem to load an existing graph saved from a previous
session. The graphs can be directed or undirected, weighted or unit-weighted. They are generated
by selecting appropriate sub-menu items. Users can select theSaveitem to store a graph. Because
of the security restriction imposed on earlier versions of Java applets and browsers, theOpenand
Savefunctions are not available in the current applet version. A future extension of JGAP is to use
Java RMI (Remote Method Invocation) or HTTP (Hypertext Transfer Protocol) to save/restore

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:615–635

JGAP: A JAVA-BASED GRAPH ALGORITHMS PLATFORM 627

graphs to/from the web server, from which the applet is loaded. This may incur additional system
overhead for user administration.

Edit menu. This menu contains menu items to edit a graph. There are four groups of commands. The
first group is for editing edges, from which one can add edges, delete edges and change edge
weight. The second group is used to delete and rename vertices. Items in the third group are for
deleting ‘special edges’, which are generated after executing a graph algorithm. For example,
when we select DFS (depth first search) under theAlgorithmmenu for a graph, the output can
producediscovery, back, crossandforward edges to indicate how the search is done [13]. We
specify special edges in the output window with different colors and we may use the output as
input for the next algorithm. During the selection, we can keep or discard the special edges, since
these edges are mostly for visual purposes. Once the special edges are kept, we can edit them as
regular edges. The last group of items are used to make a union or a difference of two graphs.
We can prepare the first operand fromFile menu orHistory menu and select one of these two
operations. Then a dialogue box will pop up and ask for the second input graph, which can be
selected from the history menu only. The results of these two operations are shown in the main
window and cloned in the history list. These two graph operations are very useful for testing and
developing graph algorithms.

View menu. This menu allows one to view different representations of the same graph, (i.e., visual
representation, adjacent matrix representation, adjacent list) by selecting the corresponding menu
items.

Algorithm menu. JGAP includes many commonly used graph algorithms: depth-first search, breadth-
first search, Prim’s algorithm for minimum spanning tree, Kruskal’s algorithm for minimum
spanning tree, Dijkstra’s algorithm for shortest path, Bellman–Ford’s algorithm for shortest
path, Floyd–Warshall’s algorithm for all pair shortest path, and Ford–Fulkerson’s maximum flow
algorithm. The listed algorithms may not be the most efficient ones for the problems they solve;
they are included so that JGAP can be readily used as a platform for graph computation. Users
can also execute their own algorithms by selecting theCustomitem, which will load their Java
class library into JGAP. Again, because of security issues, this function is only available in the
application version of JGAP, but not in the applet version.

The algorithms included in JGAP are implemented faithfully so that their asymptotic
performance is fully reflected, and can be observed by a performance meter for evaluational
and educational purposes. Graph output from an algorithm execution is shown on a new window,
which can be used as input to another algorithm. All outputs are kept in a list, and can be accessed
from theHistory menu.

History menu. Under this menu, JGAP keeps a list of graphs that have been generated or computed so
far. If one needs to access a graph from this list, one just goes through the history list and selects
it. This way, we can compose the effect of several graph algorithms. The graphs are stored in
a vector (of typejava.util.Vector), and can be easily identified by its index in the vector. For
the current version, each graph is about 100 kB, and the history list can handle up to 50 graphs
without difficulty. If users need to handle more graphs at a time, the virtual memory of the host
operating system will take care of the space problem.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:615–635

628 D.-Y. CHEN, T.-R. CHUANG AND S.-C. TSAI

Figure 8. The dialog box to generate a random graph with specified edge density and weight range.

Figure 9. The generated random graph.

Help menu. This menu provides basic guidelines on how to use the system. When selected, a window
pops up showing the content of a readme file.

We use the following sequence of screen shots to show how JGAP is used to perform, visually, a
sequence of graph calculations. Figure8 shows the dialog box which one uses to generate a random
graph for input. As shown, the dialog box is configured to generate a directed graph of seven vertices
whose edge density is 0.4 and whose edge weight is in the range of 0 to 100. The graph is instructed to
contain no self-loop. The generated graph is shown in Figure9.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:615–635

JGAP: A JAVA-BASED GRAPH ALGORITHMS PLATFORM 629

Figure 10. The dialog box for entering the starting vertex of a breadth-first search.

Figure 11. Result of the breadth-first search. The traversed edges are (5, 2), (2, 4),
(4, 3), (5, 1), (5, 0), (0, 6). They are highlighted on the screen.

To perform a breadth-first search on the generated graph, one just selects BFS (breadth first search)
under the Algorithm menu of the main window. A dialog box, as in Figure10, will pop up asking for
the starting vertex of the search. The result of the search is shown in Figure11, where the breadth-first
search tree is shown with other edges. One can use the result as input to another graph algorithm by
clicking the buttonUse the above graph as input. Figure12 shows the result, which contains only
the breadth-first search tree. Then, as an example, one can supply this graph as an input to the Ford–
Fulkerson maximum flow algorithm, by selecting theFord–Fulkersonitem under the Algorithm menu.
Again, a dialog box pops up, as shown in Figure13, asking for input from users. The result is shown
in Figure14.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:615–635

630 D.-Y. CHEN, T.-R. CHUANG AND S.-C. TSAI

Figure 12. Result of the breadth-first search, only the traversed edges are shown.

Figure 13. Entering the source and sink vertices for the maximum flow algorithm.

5.2. Performance meter

JGAP includes a performance meter, the concept of which is illustrated in Figure15. When applied
to an algorithm module, JGAP performance meter will estimate its asymptotic performance. The
Performance Meteritem is in the Algorithm menu. When selected, a dialog box pops up as in Figure16,
where users can specify the algorithm to be measured, the graph size range, the edge weight range,
the edge density, and other graph properties. More precisely, the first two fields after theVertices
Start label specify the range of graph size, and the third field specifies the increment of graph size
in each iteration. Graphs of the same number of vertices can have different edge density. With each
specific vertex number and edge density, JGAP repeatedly and randomly generates graphs, measures

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:615–635

JGAP: A JAVA-BASED GRAPH ALGORITHMS PLATFORM 631

Figure 14. Result of the Ford–Fulkerson maximum flow algorithm. The graph from Figure12
serves as input, where vertex 5 and vertex 3 are the source and the sink.

the execution time as many times as indicated in theRetryfield, and calculates the average execution
time for this graph size. Edge density starts with the number specified in the field ofDensity step.
The density increases by the same number for subsequent iterations until it reaches 1. By sampling
the execution time for graphs of different sizes and edge density, JGAP gives out realistic information
on the efficiency of the tested algorithm. The result is shown in a window, where users can select
to show the result in line chart or raw data format. In Figure16, the meter is set up to measure the
performance of breadth-first search, and in Figure17the performance results are displayed using a line
chart by the meter. Different algorithms for solving the same graph problem can be metered, and their
performance compared. One can also use the performance meter to evaluate an algorithm on different
types of graphs, and use it to help design specialized but more efficient algorithms for those graphs.
Also, for any user-defined graph, the execution time for the graph is already available in the message
field of JGAP’s main window.

5.3. Adding algorithm modules to JGAP

New algorithm modules can be added to JGAP. Not only can algorithm designers use JGAP to develop
new algorithms, they can also combine and extend existing algorithm modules in JGAP with new
modules. An algorithm module is developed by inheriting theAlgorithmclass. It is provided in JGAP
to encapsulate routine and tedious implementation details, so that algorithm designers can spend most
of their time on the intrinsics of their algorithms, instead of on GUI and other system issues.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:615–635

632 D.-Y. CHEN, T.-R. CHUANG AND S.-C. TSAI

Random

Graph

Graph

Graph

Graph

Graph

Algorithm

Performance Meter
Result

Algorithm Timer

Performance Meter

Algorithm
LoaderGenerator

Graph

Figure 15. Concept of the JGAP performance meter.

Figure 16. Set-up of the performance meter for breadth-first search.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:615–635

JGAP: A JAVA-BASED GRAPH ALGORITHMS PLATFORM 633

Figure 17. Output of the performance meter for breadth-first search.

In the following, we use an example to illustrate how to implement a new algorithm module for
JGAP. Suppose we want to design a moduleFindPath to find a path from vertexu to vertexv in a
graph.FindPathcan be added to JGAP by the following steps.

Inheriting from class Algorithm. Make class FindPath inherit from class Algorithm. In class
FindPath, one needs to define a constructor so that a problem instance can be created. One also
needs to describe how the output graph will be shown. As the path is described by a sequence of
connecting edges, one will need to define the colors of the edges so that the path will stand out
clearly. TheAlgorithmclass defines two methods,showandrepaint, of painting the graph in a
window before it is used by theFindPathalgorithm, and after it has been altered by theFindPath
algorithm. The graph is an data member in classAlgorithm, and must be used in the abstract
methodalgorImpl (which actually implementsFindPath, see the next item) to reflect change to
the graph as a result of applying the algorithm.

Implementing methodalgorImpl. ThealgorImpl method, whichFindPathinherits fromAlgorithm,
is where one puts the actual implementation of the algorithm. It is defined as an abstract method,
and left undefined inAlgorithm. MethodalgorImpl will return an instance of classObject—
which stores an instance of graphs, vertices, edges, Boolean values, or of whatever class—that
will be returned as the result of the algorithm. It is the user’s responsibility to ensure that the
returned object will meet the specifications of all the methods that will take it as an argument.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:615–635

634 D.-Y. CHEN, T.-R. CHUANG AND S.-C. TSAI

Note that the user need not define a visualization method for the returned object, as visualization
of the input graph, as well as any change to it, has been provided by theshowandrepaintmethods
described in the previous item.

Setting the parameters.MethodalgorImpldoes not accept parameters. Instead, methodsetArgmust
be explicitly defined to accept an array of parameters from the users. SinceFindPathneeds two
parameters, the starting and ending vertices, methodsetArgmust recognize that the two integers
in the input parameter array are the indices of the two vertices. If one wants to use theAdditional
argumentitem under theCustom Algorithmmenu, methodsetArgmust be defined to recognize
string parameters which will represent customized input. MethodsetArgmust accept the null
parameter array as well, as it indicates the default input to the algorithm.

One can also select predefined data structures and algorithms included in the JGAP package
to help program one’s algorithm. For instance, one may use binary heaps or pair heaps (which
both are available in JGAP) to implement a priority queue. In order to use these predefined data
structures, the user must implement methodsetArgso that they are explicitly selected and passed
to the algorithm.

Selecting a preferred dialog.JGAP provides several classes for user/system dialogs, and one can
choose the dialog box that best fits the need of the algorithm. For example,FindPathneeds two
vertices as input, so one can use classJGAP.UI.Ask2VertexDialog, which is designed for this
purpose. Algorithm designers may override thegetPreferedDialogmethod to use a customized
dialog for their algorithms.

Adding modules to main menu. To add a new algorithm to JGAP, one needs to make sure that
CLASSPATH is modified accordingly so that implementation of the algorithm can be located by
the Java run-time system. To test a new algorithm locally, the developer can select theCustom
item in theAlgorithm menu to load the implementation, where one needs to specify the fully
qualified class name. For example, ifFindPathbelongs to packagetest, then one needs to type
test.FindPath.

To incorporate a new algorithm item into the JGAP main window menu so that all JGAP
users can access it, however, will need more work. One must modify and recompile class
AlgorithmMenu, which is in packageJGAP.UI, to reflect the addition of new items in the
algorithm menu. It is not necessary to download the entire JGAP source for the above
modification and recompilation process, one just needs to import the packages required by class
AlgorithmMenu. One can probably use Java’s reflection mechanism to provide a more flexible
way to add new program modules in a system like JGAP, though we have not used it in the
current version.

After all the steps are completed, theFindPathmodule is added to JGAP and is ready for use under
theAlgorithmmenu.

6. CONCLUSION

We have presented JGAP, a platform for graph operations and graph algorithm design. The platform
contains a library of common data structures for implementing graph algorithms and features a modular

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:615–635

JGAP: A JAVA-BASED GRAPH ALGORITHMS PLATFORM 635

design for adding new algorithm modules. JGAP can be used as a visual graph calculator, hence it helps
to experiment with and to teach graph algorithms. The current version of JGAP appears as a Java applet,
and can be downloaded for execution in a Web browser. Source code and documentation of JGAP can
be found at http://im.ncnu.edu.tw/˜ tsai/definite/JGAP/JGAP.html.

Future work on JGAP includes user-account management, which is necessary if JGAP is to be used
in a multi-user environment for collaborative graph algorithm designs and experimentations. This will
involve security and load-sharing issues. Another direction is to add interoperability to JGAP so that it
can work with other graph library and tools, and enhance its usability.

REFERENCES

1. JSAMBA—Java version of the SAMBA Animation Program. http://www.cc.gatech.edu/gvu/softviz/algoanim/jsamba/.
2. Stasko JT. Using student-built algorithm animations as learning aids.Technical Report GIT-GVU-96-19, Graphics,

Visualization, and Usability Center, Georgia Institute of Technology, 1996.
3. JAWAA—Java and web based algorithm animation. http://www.cs.duke.edu/˜ wcp/JAWAA.html.
4. Pierson WC, Rodger SH. Web-based animation of data structures using JAWAA.29th SIGCSE Technical Symposium on

Computer Science Education, 1998.
5. Stasko JT, Domingue JB, Brown MH, Price BA (eds).Software Visualization. MIT Press, 1998.
6. Graphviz — Graph Drawing Software. http://www.research.att.com/sw/tools/graphviz/.
7. Gansner E, North S. An open graph visualization system and its applications to software engineering.Software—Practice

and Experience2000;30(11):1203–1233.
8. Knuth DE.The Stanford GraphBase: A Platform for Combinatorial Computing. Addison-Wesley: Reading, MA, 1993.
9. Mehlhorn K, Naher S.Leda: A Platform for Combinatorial and Geometric Computing. Cambridge University Press, 2000.

10. Beca L, Cheng G, Fox G, Jurga T, Olszewski K, Podgorny M, Sokolowski P, Walczak K. Java enabling collaborative
education, health care, and computing.Concurrency: Practice and Experience1997;9(6):521–533.

11. Aoki KF, Lee DT. Towards Web-based computing.International Journal of Computational Geometry and Applications,
to appear.

12. Sun Microsystems Inc. Java Platform 1.2 API Specification. http://java.sun.com/products/jdk/1.2/docs/api/.
13. Cormen TH, Leiserson CE, Rivest RL.Introduction To Algorithms(2nd edn). McGraw-Hill, 1990.
14. Goodrich MT, Tamassia R.Data Structures and Algorithms in Java. Wiley, 1998.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:615–635

	1 MOTIVATION
	2 RELATED WORKS
	3 SOFTWARE ARCHITECTURE OF JGAP
	4 COMMON REPRESENTATIONS OF GRAPHS IN JGAP
	4.1 Data types for graphs
	4.2 ListArray
	4.2.1 Methods of ListArray

	4.3 ListArray2
	4.4 Adjacency ListArray

	5 JGAP: A VISUAL GRAPH CALCULATOR
	5.1 The JGAP main window
	5.2 Performance meter
	5.3 Adding algorithm modules to JGAP

	6 CONCLUSION

