
Introduction to Compiler Construction
ASU Textbook Chapter 1

Tsan-sheng Hsu
tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1



What is a compiler?

Definitions:
• A recognizer.

• A translator.

source program ⇒ compiler ⇒ target program

• Source and target must be equivalent!

Compiler writing spans:
• programming languages
• machine architecture
• language theory
• algorithms and data structures
• software engineering

History:
• 1950: the first FORTRAN compiler took 18 man-years;
• now: using software tools, can be done in a few months as a student’s

project.

Compiler notes #1, Tsan-sheng Hsu, IIS 2



Applications

Computer language compilers.
Translator: from one format to another.

• query interpreter
• text formatter
• silicon compiler
• infix notation → postfix notation:

3 + 5 - 6 * 6 ====> 3 5 + 6 6 * -
• pretty printers
• · · ·

Computational theory:
• power of certain machines
≡ the set of languages that can be recognized by this machine;

• grammar ≡ definition of this machine.

Compiler notes #1, Tsan-sheng Hsu, IIS 3



Flow chart of a typical compiler

source code

target code

lexical analyzer (scanner)

syntax analyzer (parser)

semantic analyzer

intermediate code generator

code optimizer

code generator

sequence of characters

sequence of tokens

abstract−syntax tree

annoted abstract−syntax tree

intermediate code

optimized intermediate code

error handler
symbol
table

Compiler notes #1, Tsan-sheng Hsu, IIS 4



Scanner

Actions:
• Reads characters from the source program;
• Groups characters into LEXEMES (sequences of characters that “go

together”) following a given pattern;
• Each lexeme corresponds to a TOKEN

. the scanner returns the next token (plus maybe some additional infor-
mation) to the parser;

• The scanner may also discover lexical errors (i.e., erroneous characters).

The definitions of what a lexeme, token or bad character is
depend on the definition of the source language.

Compiler notes #1, Tsan-sheng Hsu, IIS 5



Scanner example for C

Lexeme: C sentence

L1: x = y2 + 12;

(Lexeme) L1 : x = y2 + 12 ;

(Token) ID COLON ID ASSIGN ID PLUS INT SEMI-COL

Arbitrary number of blanks between lexemes.
Erroneous sequence of characters (not parts of comments) for
C language:

• control characters
• @
• 2abc

Compiler notes #1, Tsan-sheng Hsu, IIS 6



Parser

Actions:
• Group tokens into grammatical phrases, to discover the underlying

structure of the source
• Find syntax errors, e.g., the following C source line:

(Lexeme) index = * 12 ;

(Token) ID ASSIGN TIMES INT SEMI-COL

Every token is legal, but the sequence is erroneous!

May find some static semantic errors, e.g., use of undeclared
variables or multiple declared variables.
May generate code, or build some intermediate representation
of the source program, such as an abstract-syntax tree.

Compiler notes #1, Tsan-sheng Hsu, IIS 7



Parser example for C

Source code: Position = initial + rate * 60;
Abstract-syntax tree:

=

position +

initial *
rate 60

• interior nodes of the tree are OPERATORS;
• a node’s children are its OPERANDS;
• each subtree forms a logical unit.
• the subtree with * at its root shows that multiplication has higher

precedence than +, this operation must be performed as a unit, not
“initial + rate”.

Compiler notes #1, Tsan-sheng Hsu, IIS 8



Semantic analyzer

Actions:
• Check for more static semantic errors, e.g., type errors.
• May annotate and/or change the abstract syntax tree.

=

position +

initial *
rate 60

=

position +

initial *
rate

60

(float)

(float)
(float)

int−to−float()

Compiler notes #1, Tsan-sheng Hsu, IIS 9



Intermediate code generator

Actions: translate from abstract-syntax tree to intermediate
code.

One choice for intermediate code is 3-address code :
Each statement contains

• at most 3 operands;
• in addition to “:=” (assignment), at most one operator;
• an”easy” and “universal” format to be translated into most assembly

languages.

Example:

=

position +

initial *
rate

60

(float)

(float)
(float)

int−to−float()

temp1 := int-to-
float(60)

temp2 := rate * temp1

temp3 := initial + temp2

position := temp3

Compiler notes #1, Tsan-sheng Hsu, IIS 10



Optimizer

Improve the efficiency of intermediate code.

Goal may be to make code run faster , and/or make the code

smaller and/or using least number of registers and/or less
power consumption . . .

Example:

temp1 := int-to-
float(60)

temp2 := rate * temp1

temp3 := initial + temp2

position := temp3

=⇒
temp2 := rate * 60.0

position := initial +
temp2

Current trend: to obtain smaller, but maybe slower, equivalent
code for embedded systems.

Compiler notes #1, Tsan-sheng Hsu, IIS 11



Code generation

A compiler may generate
• pure machine codes (machine dependent assembly language) directly,

which is rare now ;
• virtual machine code.

Example:

• PASCAL → compiler → P-code → interpreter . → execution

• Speed is roughly 4 times slower than running directly generated machine
codes.

Advantages:
• simplify the job of a compiler;

• decrease the size of the generated code: 1/3 for P-code ;

• can be run easily on a variety of platforms
. P-machine is an ideal general machine whose interpreter can be written

easily;
. divide and conquer;
. recent example: JAVA.

Compiler notes #1, Tsan-sheng Hsu, IIS 12



Code generation example

temp2 := rate * 60.0

position := initial + temp2
=⇒

LOADF rate, R1

MULF #60.0, R1

LOADF initial, R2

ADDF R2, R1

STOREF R1, position

Compiler notes #1, Tsan-sheng Hsu, IIS 13



Practical considerations

Preprocessing phase:
• macro substitution:

. #define MAXC 10

• rational preprocessing: add new features for old languages.
. BASIC
. C

• compiler directives:
. #include <stdio.h>

• non-standard language extensions.

Compiler notes #1, Tsan-sheng Hsu, IIS 14



Practical considerations II

Passes of compiling

• First pass reads the text file once.

• May need to read the text one more time for any forward addressed
objects, i.e., anything that is used before its declaration.

• Example: C language

goto error handling;

· · ·
error handling:

· · ·

Compiler notes #1, Tsan-sheng Hsu, IIS 15



Reduce number of passes

Each pass takes I/O time.

Back-patching : leave a blank slot for missing information, and

fill in the empty slot when the information becomes available.
Example: C language
when a label is used

• if it is not defined before, save a trace into the to-be-processed table
. label name corresponds to LABEL TABLE[i]

• code generated: GOTO LABEL TABLE[i]

when a label is defined
• check known labels for redefined labels
• if it is not used before, save a trace into the to-be-processed table
• if it is used before, then find its trace and fill the current address into

the trace

Time and Space trade-off!

Compiler notes #1, Tsan-sheng Hsu, IIS 16


