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Preliminaries

During the execution of a program, the same name in the
source can denote different data objects in the computer.
The allocation and deallocation of data objects is managed by

the run-time support package .

Terminologies:
• name → storage space: the mapping of names to storage spaces is

called an environment .
• storage space → value: the current value of a storage space is called

its state.

• The association of a name to a storage location is called a binding.

Each execution of a procedure is called an activation .
• If it is a recursive procedure, then several of its activations may exist

at the same time.
• Life time: the time between the first and last steps in a procedure.
• A recursive procedure needs not to call itself directly.
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Activation record

returned value

actual parameters

optional control link

optional access link

saved machine status

local data

temporaries

Activation record: data about an execution of a procedure.
• Parameters:

. Formal parameters: the declaration of parameters.

. Actual parameters: the values of parameters for this activation.

• Links:

. Control (or dynamic) link: a pointer to the activation record of the

caller.

. Access (or static) link: a pointer to places of non-local data,
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General run time storage layout

code

static data

stack

heap

dynamic
space

lower memory address

higher memory address

storage space for data
that will not be changed
during the execution:
e.g., global data and
constant, ...

for activation records:
local data, parameters, 
control info, ...

for dynamic memory
allocated by the program
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Issues in storage allocation

There are two different approaches for run time storage
allocation.

• Static allocation.
• Dynamic allocation.

Need to worry about how variables are stored.
• That is the management of activation records.

Need to worry about how variables are accessed.

• Global variables.

• Locally declared variables , that is the ones allocated within the cur-

rent activation record.
• Non-local variables , that is the ones declared and allocated in other

activation records and can be accesses here.
. Non-local variables are different from global variables.
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Static storage allocation (1/3)

Static allocation: uses no stack and heap.
• Strategies:

. For each procedure in the program, allocate a space for its activation
record.

. A.R.’s can be allocated in the static data area.

. Names bound to locations at compiler time.

. Every time a procedure is called, a name always refer to the same
pre-assigned location.

• Used by simple or early programming languages.
Disadvantages:

• No recursion.
• Waste lots of space when inactive.
• No dynamic allocation.

Advantages:
• No stack manipulation or indirect access to names, i.e., faster in

accessing variables.
• Values are retained from one procedure call to the next if block

structure is not allowed.
. For example: static variables in C.
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Static storage allocation (2/3)

On procedure calls,
• the calling procedure:

. First evaluate arguments.

. Copies arguments into parameter space in the A.R. of called procedure.

Convention: call that which is passed to a procedure arguments from

the calling side, and parameters from the called side.

. May save some registers in its own A.R.

. Jump and link: jump to the first instruction of called procedure and
put address of next instruction (return address) into register RA (the
return address register).

• the called procedure:
. Copies return address from RA into its A.R.’s return address field.
. control link := address of the previous A.R.
. May save some registers.
. May initialize local data.
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Static storage allocation (3/3)

On procedure returns,
• the called procedure:

. Restores values of saved registers.

. Jump to address in the return address field.

• the calling procedure:
. May restore some registers.
. If the called procedure is actually a function, that is the one that returns

values, put the return value in the appropriate place.
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Dynamic storage allocation for STACK (1/3)

Stack allocation:
• Each time a procedure is called, a new A.R. is pushed onto the stack.
• A.R. is popped when procedure returns.
• A register (SP for stack pointer) points to top of stack.
• A register (FP for frame pointer) points to start of current A.R.

AR 1

stack
FP

SP
AR 1

AR 2

stack

FP

SP

control link

AR 1

stack

FP

SP

before procedure call after procedure call return from procedure call
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Dynamic storage allocation for STACK (2/3)

On procedure calls,
• the calling procedure:

. May save some registers (in its own A.R.).

. May set optional access link (push it onto stack).

. Pushes parameters onto stack.

. Jump and Link: jump to the first instruction of called procedure and
put address of next instruction into register RA.

• the called procedure:
. Pushes return address in RA.
. Pushes old FP (control link).
. Sets new FP to old SP.
. Sets new SP to be old SP + (size of parameters) + (size of RA) + (size

of FP). (These sizes are computed at compile time.)
. May save some registers.
. Push local data (maybe push actual data if initialized or maybe just

their sizes from SP)
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Dynamic storage allocation for STACK (3/3)

On procedure returns,
• the called procedure:

. Restore values of saved registers if needed.

. Loads return address into special register RA.

. Restores SP (SP := FP).

. restore FP (FP := saved FP).

. return.

• the calling procedure:
. May restore some registers.
. If it is in fact a function that was called, put the return value into the

appropriate place.
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Activation tree

Use a tree structure to record the changing of the activation
records.
Example:

main{
r();
q(1);

}

r{
...
}

q(int i)
{
if(i>0) then q(i-1);
}

stack

main

stack

main

stack

main

q(1)

stack

main

q(1)

q(0)

main

q(1)

q(0)

stack

main

r()
r()

Compiler notes #6, Tsan-sheng Hsu, IIS 12



Dynamic storage allocation for HEAP

Storages requested from programmers during execution:
• Example:

. PASCAL: new and free.

. C: malloc and free.

• Issues:
. Garbage collection.
. Segmentation.
. Dangling reference.

More or less O.S. issues.
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Run time variable accesses

Global variables:
• Access by using names.
• Addresses known at compile time.

Local variables:
• Stored in the activation record of declaring procedure.

• Access a local variable v in a procedure P by offset(v) from the

frame pointer (FP).
. Let local start(P ) be the amount of spaces used by data in the acti-

vation record of procedure P that are allocated before the local data
area.

. The value local start(P ) can be computed at compile time.

. The value offset(v) is the amount of spaces allocated to local variables
declared before v.

. The address of v is FP + local start(P ) + offset(v).

. The actual address is only known at run time, depending on the value
of FP.
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Run time variable accesses – example

int P()
{
int I,J,K;
...
}

FP
A.R. for P
when called

return value
pamateters

control link
access link

saved machine status

I
J

K

local data area

local_start

• Address of J is FP +local start(P ) + offset(v).

• offset(v) is 1 ∗ sizeof(int) and is known at compile time.

• local start(P ) is known at compile time.

• Actual address is only known at run time, i.e., depends on the value of
FP.
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Accessing non-local variables

Two scoping rules for accessing non-local data.
• Lexical or static scoping.

. PASCAL, C and FORTRAN.

. The correct address of a non-local name can be determined at compile
time by checking the syntax.

. Can be with or without block structures.

. Can be with or without nested procedures.

• Dynamic scoping.
. LISP.
. A use of a non-local variable corresponds to the declaration in the “most

recently called, still active” procedure.
. The question of which non-local variable to use cannot be determined

at compile time. It can only be determined at run-time.
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Lexical scoping with block structures

Block: a statement containing its own local data declaration.
Scoping is given by the following so called

most closely nested rule.

• The scope of a declaration in a block B includes B itself.
• If x is used in B, but not declared in B, then we refer to x in a block

B′, where
. B′ has a declaration x, and
. B′ is more closely nested around B than any other block with a decla-

ration of x.
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Lexical scoping without nested procedures

Nested procedure: a procedure that can be declared within
another procedure.
If a language does not allow nested procedures, then

• a variable is either global,
or is local to the proce-
dure containing it;

• at runtime, all the vari-
ables declared (including
those in blocks) in a pro-
cedure are stored in its
A.R., with possible over-
lapping;

• during compiling, proper
offset for each local data
is calculated using infor-
mation known from the
block structure.

test()
{ int a,b;
    { int a;
       {  int  c;
           ...
       }
      ...
     }
     ...
     { int b,d,e;
     ...
     }
}

B1
B2

B4

B3

a(B1)

b(B1)

a(B2) or b(B4)

c(B3) or d(B4)

e(B4)
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Lexical scoping with nested procedures (1/3)

In a program with lexical scoping and nested procedures, what
are the procedures that can be called in a given procedure Q0?

• The procedure Q1 who declares Q0.
• The procedure Qi who declares Qi−1, i > 0.
• The procedure Pi whom is declared together with, but before, Qi, i > 0

In a procedure declaration tree, Q0 can call any procedure that
is its direct ancestor or the older siblings of its direct ancestor.
A procedure can only access the variables that is global in a
procedure that is its direct ancestor.

• When you call a procedure, a variable name follows the lexical scoping
rule.

• Use the access link to link to the procedure that is lexically enclosing
the called procedure.

• Need to set up the access link properly to access the right storage
space.
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Lexical scoping with nested procedures (2/3)

main

a1 a2 a3

b1 b2

c1

d1 d2 d3

procedure main

***

s1

q1

procedure a1
     procedure s1

procedure a2

      procedure b1
         procedure q1

      procedure b2

         procedure c1

             procedure d1

             procedure d2

             procedure d3
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Lexical scoping with nested procedures (3/3)

Nesting depth:
• depth of main program = 1.
• add 1 to depth each time entering a nested procedure.
• substrate 1 from depth each time existing from a nested procedure.
• Each variable is associated with a nesting depth.
• Assume in a depth-h procedure, we access a variable at depth k, then

. h ≥ k.

. follow the access (static) link h − k times, and then use the offset
information to find the address.

program main
   procedure P
       procedure R
       end
       R
    end
    procedure Q
        P
    end
    Q
 end.

depth=1

depth =2

depth=3

depth =2

main(1)

Q(2)

P(2)

R(3)
dynamic link static link

(access)
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Algorithm for setting the links

The control link is set to point to the A.R. of the calling
procedure.
How to properly set the access link at compile time.

• Procedure p at depth np calls procedure x at depth nx:
• If np < nx, then x is enclosed in p and np = nx − 1.

. Same with setting the control link.

• If np ≥ nx, then it is either a recursive call or calling a previously
declared procedure.

. Observation: go up the access link once, then the depth is decreased
by 1.

. Hence, the access link of x is the access link of p going up np − nx + 1
times.
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Example
Program sort

var a: array[0..10] of int;
x: int;

procedure r
var i: int;
begin ... r
end

procedure e(i,j)
begin ... e

a[i] <-> a[j]
end

procedure q
var k,v: int;
procedure p
var i,j;
begin ... p

call e
end

begin ... q
call q or p

end

begin ... sort
call q

end

a,x

k,v
access link

k,v
access link

i,j
access link

access link

sort(1)

q(2)

q(2)

p(3)

e(2)
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Accessing non-local data using DISPLAY

Idea:
• Maintain a global array called DISPLAY.

. Using registers if available.

. Otherwise, stored in the static data area.

• When procedure P at nesting depth k is called,
. DISPLAY[1], . . ., DISPLAY[k-1] hold pointers to the A.R.’s of the most

recent activation of the k − 1 procedures that lexically enclose P .
. DISPLAY[k] holds pointer to P ’s A.R.
. To access a variable with declaration at depth x, use DISPLAY[x] to

get to the A.R. that holds x, then use the usual offset to get x itself.
. Size of DISPLAY equals maximum nesting depth of procedures.

• Bad for languages allow recursions.

To maintain the DISPLAY
• When a procedure at nesting depth k is called

. Save the current value of DISPLAY[k] in the save-display field of the
new A.R.

. Set DISPLAY[k] to point to the new A.R., i.e., to its save-display field.

• When the procedure returns, restore DISPLAY[k] using the value saved
in the save-display field.
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Access links v.s. DISPLAY

Time and space trade-off.
• Access links require more time (at run time) to access non-local data.

Especially when non-local data are many nesting levels away.
• DISPLAY probably require more space (at run time).
• Code generated using DISPLAY is simpler.
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Dynamic scoping

Dynamic scoping: a use of a non-local variable refers to the one
declared in the “most recently called, still active” procedure.
The question of which non-local variable to use cannot be
determined at compile time.
It can only be determined at run time.
May need symbol tables at run time.
Two ways to implement non-local accessing under dynamic
scoping.

• Deep access.
• Shallow access.
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Dynamic scoping – Example

Code:

program main
procedure test
var x : int;
begin

x := 30;
call DeclaresX;
call UsesX;

end
procedure DeclaresX

var x: int;
begin

x := 100;
call UsesX;

end
procedure UsesX
begin
write(x);

end
begin

call test;
end

• Which x is it in the procedure
UsesX?

• If we were to use static scoping,
this is not a legal statement; No
enclosing scope declares x.
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Deep access

Def: given a use of a non-local variable, use control links to
search back in the stack for the most recent A.R. that contains
space for that variable.

• Note: this requires that to be possible to tell the set of variables stored
in each A.R.

• Need to use the symbol tables at run time.
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Shallow access

Idea:
• Maintain a current list of variables.
• Space is allocated (in registers or in the static data area) for every

possible variable name that is in the program (i.e., one space for variable
x even if there are several declarations of x in different procedures).

• For every reference to x, the generated code refers to the same
location.

When a procedure is called,
• it saves, in its own A.R., the current values of all of the variables that

it declares itself (i.e., if it declares x and y, then it saves the values of
x and y that are currently in the space for x and y).

• It restores those values when it finishes.

Comparisons:
• Shallow access allows fast access to non-locals, but there is overhead on

procedure entry and exit proportional to the number of local variables.
• Deep access needs to use a symbol table at run time.
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