
Run Time Storage Organization
ASU Textbook Chapter 7.1–7.4, and 7.7–7.8

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1



Preliminaries

During the execution of a program, the same name in the
source can denote different data objects in the computer.
The allocation and deallocation of data objects is managed by

the run-time support package .

Terminologies:
• name → storage space: the mapping of names to storage spaces is

called an environment .
• storage space → value: the current value of a storage space is called

its state.

• The association of a name to a storage location is called a binding.

Each execution of a procedure is called an activation .
• If it is a recursive procedure, then several of its activations may exist

at the same time.
• Life time: the time between the first and last steps in a procedure.
• A recursive procedure needs not to call itself directly.

Compiler notes #6, Tsan-sheng Hsu, IIS 2



Activation record

returned value

actual parameters

optional control link

optional access link

saved machine status

local data

temporaries

Activation record: data about an execution of a procedure.
• Parameters:

. Formal parameters: the declaration of parameters.

. Actual parameters: the values of parameters for this activation.

• Links:

. Control (or dynamic) link: a pointer to the activation record of the

caller.

. Access (or static) link: a pointer to places of non-local data,

Compiler notes #6, Tsan-sheng Hsu, IIS 3



General run time storage layout

code

static data

stack

heap

dynamic
space

lower memory address

higher memory address

storage space for data
that will not be changed
during the execution:
e.g., global data and
constant, ...

for activation records:
local data, parameters, 
control info, ...

for dynamic memory
allocated by the program

Compiler notes #6, Tsan-sheng Hsu, IIS 4



Issues in storage allocation

There are two different approaches for run time storage
allocation.

• Static allocation.
• Dynamic allocation.

Need to worry about how variables are stored.
• That is the management of activation records.

Need to worry about how variables are accessed.

• Global variables.

• Locally declared variables , that is the ones allocated within the cur-

rent activation record.
• Non-local variables , that is the ones declared and allocated in other

activation records and can be accesses here.
. Non-local variables are different from global variables.

Compiler notes #6, Tsan-sheng Hsu, IIS 5



Static storage allocation (1/3)

Static allocation: uses no stack and heap.
• Strategies:

. For each procedure in the program, allocate a space for its activation
record.

. A.R.’s can be allocated in the static data area.

. Names bound to locations at compiler time.

. Every time a procedure is called, a name always refer to the same
pre-assigned location.

• Used by simple or early programming languages.
Disadvantages:

• No recursion.
• Waste lots of space when inactive.
• No dynamic allocation.

Advantages:
• No stack manipulation or indirect access to names, i.e., faster in

accessing variables.
• Values are retained from one procedure call to the next if block

structure is not allowed.
. For example: static variables in C.

Compiler notes #6, Tsan-sheng Hsu, IIS 6



Static storage allocation (2/3)

On procedure calls,
• the calling procedure:

. First evaluate arguments.

. Copies arguments into parameter space in the A.R. of called procedure.

Convention: call that which is passed to a procedure arguments from

the calling side, and parameters from the called side.

. May save some registers in its own A.R.

. Jump and link: jump to the first instruction of called procedure and
put address of next instruction (return address) into register RA (the
return address register).

• the called procedure:
. Copies return address from RA into its A.R.’s return address field.
. control link := address of the previous A.R.
. May save some registers.
. May initialize local data.

Compiler notes #6, Tsan-sheng Hsu, IIS 7



Static storage allocation (3/3)

On procedure returns,
• the called procedure:

. Restores values of saved registers.

. Jump to address in the return address field.

• the calling procedure:
. May restore some registers.
. If the called procedure is actually a function, that is the one that returns

values, put the return value in the appropriate place.

Compiler notes #6, Tsan-sheng Hsu, IIS 8



Dynamic storage allocation for STACK (1/3)

Stack allocation:
• Each time a procedure is called, a new A.R. is pushed onto the stack.
• A.R. is popped when procedure returns.
• A register (SP for stack pointer) points to top of stack.
• A register (FP for frame pointer) points to start of current A.R.

AR 1

stack
FP

SP
AR 1

AR 2

stack

FP

SP

control link

AR 1

stack

FP

SP

before procedure call after procedure call return from procedure call

Compiler notes #6, Tsan-sheng Hsu, IIS 9



Dynamic storage allocation for STACK (2/3)

On procedure calls,
• the calling procedure:

. May save some registers (in its own A.R.).

. May set optional access link (push it onto stack).

. Pushes parameters onto stack.

. Jump and Link: jump to the first instruction of called procedure and
put address of next instruction into register RA.

• the called procedure:
. Pushes return address in RA.
. Pushes old FP (control link).
. Sets new FP to old SP.
. Sets new SP to be old SP + (size of parameters) + (size of RA) + (size

of FP). (These sizes are computed at compile time.)
. May save some registers.
. Push local data (maybe push actual data if initialized or maybe just

their sizes from SP)

Compiler notes #6, Tsan-sheng Hsu, IIS 10



Dynamic storage allocation for STACK (3/3)

On procedure returns,
• the called procedure:

. Restore values of saved registers if needed.

. Loads return address into special register RA.

. Restores SP (SP := FP).

. restore FP (FP := saved FP).

. return.

• the calling procedure:
. May restore some registers.
. If it is in fact a function that was called, put the return value into the

appropriate place.

Compiler notes #6, Tsan-sheng Hsu, IIS 11



Activation tree

Use a tree structure to record the changing of the activation
records.
Example:

main{
r();
q(1);

}

r{
...
}

q(int i)
{
if(i>0) then q(i-1);
}

stack

main

stack

main

stack

main

q(1)

stack

main

q(1)

q(0)

main

q(1)

q(0)

stack

main

r()
r()

Compiler notes #6, Tsan-sheng Hsu, IIS 12



Dynamic storage allocation for HEAP

Storages requested from programmers during execution:
• Example:

. PASCAL: new and free.

. C: malloc and free.

• Issues:
. Garbage collection.
. Segmentation.
. Dangling reference.

More or less O.S. issues.

Compiler notes #6, Tsan-sheng Hsu, IIS 13



Run time variable accesses

Global variables:
• Access by using names.
• Addresses known at compile time.

Local variables:
• Stored in the activation record of declaring procedure.

• Access a local variable v in a procedure P by offset(v) from the

frame pointer (FP).
. Let local start(P ) be the amount of spaces used by data in the acti-

vation record of procedure P that are allocated before the local data
area.

. The value local start(P ) can be computed at compile time.

. The value offset(v) is the amount of spaces allocated to local variables
declared before v.

. The address of v is FP + local start(P ) + offset(v).

. The actual address is only known at run time, depending on the value
of FP.

Compiler notes #6, Tsan-sheng Hsu, IIS 14



Run time variable accesses – example

int P()
{
int I,J,K;
...
}

FP
A.R. for P
when called

return value
pamateters

control link
access link

saved machine status

I
J

K

local data area

local_start

• Address of J is FP +local start(P ) + offset(v).

• offset(v) is 1 ∗ sizeof(int) and is known at compile time.

• local start(P ) is known at compile time.

• Actual address is only known at run time, i.e., depends on the value of
FP.

Compiler notes #6, Tsan-sheng Hsu, IIS 15



Accessing non-local variables

Two scoping rules for accessing non-local data.
• Lexical or static scoping.

. PASCAL, C and FORTRAN.

. The correct address of a non-local name can be determined at compile
time by checking the syntax.

. Can be with or without block structures.

. Can be with or without nested procedures.

• Dynamic scoping.
. LISP.
. A use of a non-local variable corresponds to the declaration in the “most

recently called, still active” procedure.
. The question of which non-local variable to use cannot be determined

at compile time. It can only be determined at run-time.

Compiler notes #6, Tsan-sheng Hsu, IIS 16



Lexical scoping with block structures

Block: a statement containing its own local data declaration.
Scoping is given by the following so called

most closely nested rule.

• The scope of a declaration in a block B includes B itself.
• If x is used in B, but not declared in B, then we refer to x in a block

B′, where
. B′ has a declaration x, and
. B′ is more closely nested around B than any other block with a decla-

ration of x.

Compiler notes #6, Tsan-sheng Hsu, IIS 17



Lexical scoping without nested procedures

Nested procedure: a procedure that can be declared within
another procedure.
If a language does not allow nested procedures, then

• a variable is either global,
or is local to the proce-
dure containing it;

• at runtime, all the vari-
ables declared (including
those in blocks) in a pro-
cedure are stored in its
A.R., with possible over-
lapping;

• during compiling, proper
offset for each local data
is calculated using infor-
mation known from the
block structure.

test()
{ int a,b;
    { int a;
       {  int  c;
           ...
       }
      ...
     }
     ...
     { int b,d,e;
     ...
     }
}

B1
B2

B4

B3

a(B1)

b(B1)

a(B2) or b(B4)

c(B3) or d(B4)

e(B4)

Compiler notes #6, Tsan-sheng Hsu, IIS 18



Lexical scoping with nested procedures (1/3)

In a program with lexical scoping and nested procedures, what
are the procedures that can be called in a given procedure Q0?

• The procedure Q1 who declares Q0.
• The procedure Qi who declares Qi−1, i > 0.
• The procedure Pi whom is declared together with, but before, Qi, i > 0

In a procedure declaration tree, Q0 can call any procedure that
is its direct ancestor or the older siblings of its direct ancestor.
A procedure can only access the variables that is global in a
procedure that is its direct ancestor.

• When you call a procedure, a variable name follows the lexical scoping
rule.

• Use the access link to link to the procedure that is lexically enclosing
the called procedure.

• Need to set up the access link properly to access the right storage
space.

Compiler notes #6, Tsan-sheng Hsu, IIS 19



Lexical scoping with nested procedures (2/3)

main

a1 a2 a3

b1 b2

c1

d1 d2 d3

procedure main

***

s1

q1

procedure a1
     procedure s1

procedure a2

      procedure b1
         procedure q1

      procedure b2

         procedure c1

             procedure d1

             procedure d2

             procedure d3

Compiler notes #6, Tsan-sheng Hsu, IIS 20



Lexical scoping with nested procedures (3/3)

Nesting depth:
• depth of main program = 1.
• add 1 to depth each time entering a nested procedure.
• substrate 1 from depth each time existing from a nested procedure.
• Each variable is associated with a nesting depth.
• Assume in a depth-h procedure, we access a variable at depth k, then

. h ≥ k.

. follow the access (static) link h − k times, and then use the offset
information to find the address.

program main
   procedure P
       procedure R
       end
       R
    end
    procedure Q
        P
    end
    Q
 end.

depth=1

depth =2

depth=3

depth =2

main(1)

Q(2)

P(2)

R(3)
dynamic link static link

(access)

Compiler notes #6, Tsan-sheng Hsu, IIS 21



Algorithm for setting the links

The control link is set to point to the A.R. of the calling
procedure.
How to properly set the access link at compile time.

• Procedure p at depth np calls procedure x at depth nx:
• If np < nx, then x is enclosed in p and np = nx − 1.

. Same with setting the control link.

• If np ≥ nx, then it is either a recursive call or calling a previously
declared procedure.

. Observation: go up the access link once, then the depth is decreased
by 1.

. Hence, the access link of x is the access link of p going up np − nx + 1
times.

Compiler notes #6, Tsan-sheng Hsu, IIS 22



Example
Program sort

var a: array[0..10] of int;
x: int;

procedure r
var i: int;
begin ... r
end

procedure e(i,j)
begin ... e

a[i] <-> a[j]
end

procedure q
var k,v: int;
procedure p
var i,j;
begin ... p

call e
end

begin ... q
call q or p

end

begin ... sort
call q

end

a,x

k,v
access link

k,v
access link

i,j
access link

access link

sort(1)

q(2)

q(2)

p(3)

e(2)

Compiler notes #6, Tsan-sheng Hsu, IIS 23



Accessing non-local data using DISPLAY

Idea:
• Maintain a global array called DISPLAY.

. Using registers if available.

. Otherwise, stored in the static data area.

• When procedure P at nesting depth k is called,
. DISPLAY[1], . . ., DISPLAY[k-1] hold pointers to the A.R.’s of the most

recent activation of the k − 1 procedures that lexically enclose P .
. DISPLAY[k] holds pointer to P ’s A.R.
. To access a variable with declaration at depth x, use DISPLAY[x] to

get to the A.R. that holds x, then use the usual offset to get x itself.
. Size of DISPLAY equals maximum nesting depth of procedures.

• Bad for languages allow recursions.

To maintain the DISPLAY
• When a procedure at nesting depth k is called

. Save the current value of DISPLAY[k] in the save-display field of the
new A.R.

. Set DISPLAY[k] to point to the new A.R., i.e., to its save-display field.

• When the procedure returns, restore DISPLAY[k] using the value saved
in the save-display field.

Compiler notes #6, Tsan-sheng Hsu, IIS 24



Access links v.s. DISPLAY

Time and space trade-off.
• Access links require more time (at run time) to access non-local data.

Especially when non-local data are many nesting levels away.
• DISPLAY probably require more space (at run time).
• Code generated using DISPLAY is simpler.

Compiler notes #6, Tsan-sheng Hsu, IIS 25



Dynamic scoping

Dynamic scoping: a use of a non-local variable refers to the one
declared in the “most recently called, still active” procedure.
The question of which non-local variable to use cannot be
determined at compile time.
It can only be determined at run time.
May need symbol tables at run time.
Two ways to implement non-local accessing under dynamic
scoping.

• Deep access.
• Shallow access.

Compiler notes #6, Tsan-sheng Hsu, IIS 26



Dynamic scoping – Example

Code:

program main
procedure test
var x : int;
begin

x := 30;
call DeclaresX;
call UsesX;

end
procedure DeclaresX

var x: int;
begin

x := 100;
call UsesX;

end
procedure UsesX
begin
write(x);

end
begin

call test;
end

• Which x is it in the procedure
UsesX?

• If we were to use static scoping,
this is not a legal statement; No
enclosing scope declares x.

Compiler notes #6, Tsan-sheng Hsu, IIS 27



Deep access

Def: given a use of a non-local variable, use control links to
search back in the stack for the most recent A.R. that contains
space for that variable.

• Note: this requires that to be possible to tell the set of variables stored
in each A.R.

• Need to use the symbol tables at run time.

Compiler notes #6, Tsan-sheng Hsu, IIS 28



Shallow access

Idea:
• Maintain a current list of variables.
• Space is allocated (in registers or in the static data area) for every

possible variable name that is in the program (i.e., one space for variable
x even if there are several declarations of x in different procedures).

• For every reference to x, the generated code refers to the same
location.

When a procedure is called,
• it saves, in its own A.R., the current values of all of the variables that

it declares itself (i.e., if it declares x and y, then it saves the values of
x and y that are currently in the space for x and y).

• It restores those values when it finishes.

Comparisons:
• Shallow access allows fast access to non-locals, but there is overhead on

procedure entry and exit proportional to the number of local variables.
• Deep access needs to use a symbol table at run time.

Compiler notes #6, Tsan-sheng Hsu, IIS 29


