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Main tasks

a program represented
by a sequence of tokens −→ parser −→

if it is a legal program,
then output some ab-
stract representation of
the program

Abstract representations of the input program:
• abstract-syntax tree + symbol table
• intermediate code
• object code

Context free grammar (CFG) is used to specify the structure of
legal programs.
Deals with errors.

• Syntactic errors.

• Static semantic errors .

. Example: a variable is not declared or declared twice in a language
where a variable must be declared before its usage.
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Error handling

Goals:
• Report errors clearly and accurately.
• Recover from errors quickly enough to detect subsequent errors.
• Spend minimal overhead.

Strategies:
• Panic-mode recovery: skip until synchronizing tokens are found.

. “;” marks the end of a C-sentence;

. “}” closes a C-scope.

• Phrase-level recovery: perform local correction and then continue.
. Assume a un-declared variable is declared with the default type “int.”

• Error productions: anticipating common errors using grammars.
. Example: write a grammar rule for the case when “;” is missing be-

tween two var-declarations in C.

• Global correction: choose a minimal sequence of changes to obtain a
globally least-cost correction.

. A very difficult task!

. May have more than one interpretations.

. C example: In “y = ∗x;”, whether an operand is missing in multiplica-
tion or the type of x should be pointer?
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Context free grammar (CFG)

Definitions: G = (T,N, P, S).
. T : a set of terminals;
. N : a set of nonterminals;
. P : productions of the form

A → α1α2 · · ·αm, where A ∈ N and αi ∈ T ∪ N ;
. S: the starting nonterminal where S ∈ N .

Notations:
• terminals : strings with lower-cased English letters and printable

characters.
. Examples: a, b, c, int and int 1.

• nonterminals: strings started with an upper-cased English letter.
. Examples: A, B, C and Procedure.

• α, β, γ,. . . ∈ (T ∪N)∗
. α, β, γ and ε: alpha, beta, gamma and epsilon.

•
A → α1
A → α2

}
≡ A→ α1 | α2
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How does a CFG define a language?

The language defined by the grammar is the set of strings
(sequence of terminals) that can be “derived” from the starting
nonterminal.
How to “derive” something?

• Start with:
. “current sequence” = the starting nonterminal.

• Repeat
. find a nonterminal X in the current sequence;
. find a production in the grammar with X on the left of the form X → α,

where α is ε or a sequence of terminals and/or nonterminals;
. create a new “current sequence” in which α replaces X;

• Until “current sequence” contains no nonterminals;

We derive either ε or a string of terminals.

This is how we derive a string of the language.
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Example

Grammar:
• E → int

• E → E − E

• E → E / E

• E → ( E )

E

=⇒ E − E

=⇒ 1− E

=⇒ 1− E/E

=⇒ 1− E/2

=⇒ 1− 4/2

Details:
• The first step was done by choosing the second production.
• The second step was done by choosing the first production.
• · · ·

Conventions:
• =⇒: means “derives in one step”;

• +=⇒: means “derives in one or more steps”;

• ∗=⇒: means “derives in zero or more steps”;

• In the above example, we can write E
+=⇒ 1− 4/2.
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Language

The language defined by a grammar G is

L(G) = {w | S +=⇒ ω},

where S is the starting nonterminal and ω is a sequence of
terminals or ε.
An element in a language is ε or a sequence of terminals in
the set defined by the language.
More terminology:

• E =⇒ · · · =⇒ 1− 4/2 is a derivation of 1− 4/2 from E.
• There are several kinds of derivations that are important:

. The derivation is a leftmost one if the leftmost nonterminal always

gets to be chosen (if we have a choice) to be replaced.

. It is a rightmost one if the rightmost nonterminal is replaced all the

times.
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A way to describe derivations

Construct a derivation or parse tree as follows:

• start with the starting nonterminal as a single-node tree
• Repeat

. choose a leaf nonterminal X

. choose a production X → α

. symbols in α become the children of X

• Until no more leaf nonterminal left

This is called top-down parsing or expanding of the parse tree.

• Construct the parse tree starting from the root.

• Other parsing methods, such as bottom-up , are known.
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Top-down parsing

Need to annotate the order of derivation on the nodes.

E

=⇒ E − E

=⇒ 1− E

=⇒ 1− E/E

=⇒ 1− E/2

=⇒ 1− 4/2

E

E − E

1 E / E

24

(1)

(2) (3)

(4)(5)

It is better to keep a systematic order in parsing for the sake of
performance or ease-to-understand.

• leftmost
• rightmost
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Parse tree examples

Example:

Grammar:
E → int

E → E − E

E → E/E

E → (E)

E

E − E

1 E / E

4 2

leftmost derivation
�

• Using 1 − 4/2 as the in-
put, the left parse tree is
derived.

• A string is formed by
reading the leaf nodes
from left to right, which
gives 1− 4/2.

• The string 1 − 4/2 has
another parse tree on the
right.

1

E

E

−

E

E

/

E

4

2

rightmost derivation

Some standard notations:
• Given a parse tree and a fixed order (for example leftmost or rightmost)

we can derive the order of derivation.
• For the “semantic” of the parse tree, we normally “interpret” the

meaning in a bottom-up fashion. That is, the one that is derived last
will be “serviced” first.
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Ambiguous grammar

If for grammar G and string α, there are
• more than one leftmost derivation for α, or
• more than one rightmost derivation for α, or
• more than one parse tree for α,

then G is called ambiguous .

• Note: the above three conditions are equivalent in that if one is true,
then all three are true.

• Q: How to prove this?
. Hint: Any un-annotated tree can be annotated with a leftmost num-

bering.

Problems with an ambiguous grammar:
• Ambiguity can make parsing difficult.
• Underlying structure is ill-defined.

. In the previous example, the precedence is not uniquely defined, e.g.,
the leftmost parse tree groups 4/2 while the rightmost parse tree groups
1− 4, resulting in two different semantics.
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How to use CFG

Breaks down the problem into pieces.
• Think about a C program:

. Declarations: typedef, struct, variables, . . .

. Procedures: type-specifier, function name, parameters, function body.

. function body: various statements.

• Example:
. Procedure → TypeDef id OptParams OptDecl {OptStatements}
. TypeDef → integer | char | float | · · ·
. OptParams → ( ListParams )
. ListParams → ε | NonEmptyParList
. NonEmptyParList → NonEmptyParList, id | id
. · · ·

One of purposes to write a grammar for a language is for others
to understand. It will be nice to break things up into different
levels in a top-down easily understandable fashion.
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Non-context free grammars

Some grammar is not CFG, that is, it may be context sensitive.
Expressive power of grammars (in the order of small to large):

• Regular expression ≡ FA.
• Context-free grammar
• Context-sensitive grammar
• · · ·

{ωcω | ω is a string of a and b’s} cannot be expressed by CFG.
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Common grammar problems (CGP)

A grammar may have some bad “styles” or ambiguity.
Some common grammar problems (CGP’s) are:

• Ambiguity;
• Left factor;
• Left recursion.

Need to rewrite a grammar G1 into another grammar G2 so

that G2 has no CGP’s and the two grammars are equivalent

and G2 contains no CGP’s.
• G1 and G2 must accept the same set of strings, that is, L(G1) = L(G2).
• The “semantic” of a given string α must stay the same using G2.

. The “main structure” of the parse tree may need to stay unchanged.
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CGP: ambiguity (1/2)

Sometimes an ambiguous grammar can be rewritten to eliminate
the ambiguity.
Example:

• G1
. S → if E then S
. S → if E then S else S
. S → Others

• Input: if E1 then if E2 then S1 else S2
• G1 is ambiguous given the above input.

. Have two parse trees.

. Dangling-else ambiguity.

if then S

S

if then else

E1

E2 S1 S2

if then S

S

if then

elseE1

E2 S1

S2
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CGP: ambiguity (2/2)

Rewrite G1 into the following:
• G2

. S → M | O

. M → if E then M else M | Others

. O → if E then S

. O → if E then M else O

• Only one parse tree for the input
if E1 then if E2 then S1 else S2

using grammar G2.
• Intuition: “else” is matched with the nearest “then.”

if then S

S

if then else

E1

E2 S1
S2

O

M
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CGP: left factor

Left factor: a grammar G has two productions whose right-
hand-sides have a common prefix.

. Have left-factors.

. Potentially difficult to parse.

Example: S → (S) | ()
In this example, the common prefix is “(”.

This problem can be solved by using the left-factoring trick.
• A→ αβ1 | αβ2
• Transform to:

. A → αA′

. A′ → β1 | β2

Example:
• S → (S) | ()
• Transform to

. S → (S′

. S′ → S) | )
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Algorithm for left-factoring

Input: context free grammar G

Output: equivalent left-factored context-free grammar G′

for each nonterminal A do
• find the longest non-ε prefix α that is common to right-hand sides of

two or more productions;
• replace

. A → αβ1 | · · · | αβn | γ1 | · · · | γm

with
. A → αA′ | γ1 | · · · | γm

. A′ → β1 | · · · | βn

• repeat the above step until the grammar has no two productions with
a common prefix;

Example:
• S → aaWaa | aaaa | aaTcc | bb
• Transform to

. S → aaS′ | bb

. S′ → Waa | aa | Tcc

Compiler notes #3, 20070503, Tsan-sheng Hsu 18



CGP: left recursion

Definitions:
• recursive grammar: a grammar is recursive if this grammar contains

a nonterminal X such that
X

+=⇒ αXβ.

• G is left-recursive if X
+=⇒ Xβ.

• G is immediately left-recursive if X =⇒ Xβ.

Why left recursion is bad?
• Potentially difficult to parse if you read input from left to right.
• Difficult to know when recursion should be stopped.
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Example of removing immediate left-recursion

Example:
• Grammar G: A→ Aα | β, where β does not start with A
• Revised grammar G′:

. A → βA′

. A′ → αA′ | ε

• The above two grammars are equivalent. That is L(G) ≡ L(G′).

Example:
input baa
β ≡ b
α ≡ a

A

A a

b

a

b A’

a A’

a A’

ε
leftmost derivation
revised grammar G’

A

original grammar G
leftmost derivation

A
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Rule for removing immediate left-recursion

Both grammars recognize the same string, but G′ is not
left-recursive.
However, G is clear and intuitive.
General rule for removing immediately left-recursion:

• Replace A→ Aα1 | · · · | Aαm | β1 | · · · | βn
• with

. A → β1A
′ | · · · | βnA′

. A′ → α1A
′ | · · · | αmA′ | ε

This rule does not work if αi = ε for some i.
• This is called a direct cycle in a grammar.

May need to worry about whether the semantics are equivalent
between the original grammar and the transformed grammar.
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Algorithm 4.19

Algorithm 4.19 systematically eliminates left recursion and
works only if the input grammar has no cycles or ε-productions.

. Cycle: A
+

=⇒ A
. ε-production: A → ε
. Can remove cycles and all but one ε-production using other algorithms.

Input: grammar G without cycles and ε-productions.
Output: An equivalent grammar without left recursion.
Number the nonterminals in some order A1, A2, . . . , An

for i = 1 to n do
• for j = 1 to i− 1 do

. replace Ai → Ajγ
with Ai → δ1γ | · · · | δkγ
where Aj → δ1 | · · · | δk are all the current Aj-productions.

• Eliminate immediate left-recursion for Ai

. New nonterminals generated above are numbered Ai+n
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Algorithm 4.19 — Discussions

Intuition:
• Consider only the productions where the leftmost item on the right

hand side are nonterminals.
• If it is always the case that

. Ai
+

=⇒ Ajα implies i < j, then

it is not possible to have left-recursion.

Why cycles are not allowed?
• For the procedure of removing immediate left-recursion.

Why ε-productions are not allowed?
• Inside the loop, when Aj → ε, that is some δg = ε, and the prefix of γ

is some Ak where k < i, it generates Ai → Ak, k < i.

Time and space complexities:
• The size may be blowed up exponentially.
• Works well in real cases.
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Trace an instance of Algorithm 4.19

After each i-loop, only productions of the form Ai→ Akγ, i < k
remain.
i = 1

• allow A1 → Akα, ∀k before removing immediate left-recursion
• remove immediate left-recursion for A1

i = 2
• j = 1: replace A2 → A1γ by

A2 → (Ak1α1 | · · · | Akpαp)γ, where
A1 → (Ak1α1 | · · · | Akpαp) and kj > 1 ∀kj

• remove immediate left-recursion for A2

i = 3
• j = 1: replace A3 → A1γ1
• j = 2: replace A3 → A2γ2
• remove immediate left-recursion for A3

· · ·
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Example

Original Grammar:
• (1) S → Aa | b
• (2) A→ Ac | Sd | e

Ordering of nonterminals: S ≡ A1 and A ≡ A2.
i = 1

• do nothing as there is no immediate left-recursion for S

i = 2
• replace A→ Sd by A→ Aad | bd
• hence (2) becomes A→ Ac | Aad | bd | e
• after removing immediate left-recursion:

. A → bdA′ | eA′

. A′ → cA′ | adA′ | ε

Resulting grammar:
. S → Aa | b

. A → bdA′ | eA′

. A′ → cA′ | adA′ | ε
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Left-factoring and left-recursion removal

Original grammar:
S → (S) | SS | ()
To remove immediate left-recursion, we have

• S → (S)S′ | ()S′

• S′ → SS′ | ε
To do left-factoring, we have

• S → (S′′

• S′′ → S)S′ | )S′

• S′ → SS′ | ε
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Top-down parsing

There are O(n3)-time algorithms to parse a language defined by
CFG, where n is the number of input tokens.
For practical purpose, we need faster algorithms. Here we make
restrictions to CFG so that we can design O(n)-time algorithms.

Recursive-descent parsing : top-down parsing that allows

backtracking.
• Top-down parsing naturally corresponds to leftmost derivation.
• Attempt to find a leftmost derivation for an input string.
• Try out all possibilities, that is, do an exhaustive search to find a parse

tree that parses the input.
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Example for recursive-descent parsing

S → cAd

A→ bc | a
Input: cad

S

c A d

S

c A d

S

c A d

b c a
error!! backtrack

Problems with the above approach:
• still too slow!
• want to select a derivation without ever causing backtracking!

. Predictive parser : a recursive-descent parser needing no backtrack-

ing.
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Predictive parser — (1/2)

Goal: Find a rich class of grammars that can be parsed using
predictive parsers.
The class of LL(1) grammars [Lewis & Stearns 1968] can be
parsed by a predictive parser in O(n) time.

• First “L”: scan the input from left-to-right.
• Second “L”: find a leftmost derivation.
• Last “(1)”: allow one lookahead token!

Based on the current lookahead symbol, pick a derivation when
there are multiple choices.

• Using a STACK during implementation to avoid recursion.
• Build a PARSING TABLE T , using the symbol X on the top of STACK

and the lookahead symbol s as indexes, to decide the production to be
used.

. If X is a terminal, then X = s. Input s is matched.

. If X is a nonterminal, then T (X, s) tells you the production to be used
in the next derivation.
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Predictive parser — (2/2)

How a predictive parser works:
• start by pushing the starting nonterminal into the STACK and calling

the scanner to get the first token.
LOOP: if top-of-STACK is a nonterminal, then

. use the current token and the PARSING TABLE to choose a production

. pop the nonterminal from the STACK

. push the above production’s right-hand-side to the STACK from right
to left

. GOTO LOOP.

• if top-of-STACK is a terminal and matches the current token, then
. pop STACK and ask scanner to provide the next token
. GOTO LOOP.

• if STACK is empty and there is no more input, then ACCEPT!
• If none of the above succeed, then FAIL!

. STACK is empty and there is input left.

. top-of-STACK is a terminal, but does not match the current token

. top-of-STACK is a nonterminal, but the corresponding PARSING TA-
BLE entry is ERROR!
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Example for parsing an LL(1) grammar

grammar: S → a | (S) | [S] input: ([a])

STACK INPUT ACTION
S ([a]) pop, push “(S)”
)S( ([a]) pop, match with input
)S [a]) pop, push “[S]”
)]S[ [a]) pop, match with input
)]S a]) pop, push “a”
)]a a]) pop, match with input
)] ]) pop, match with input
) ) pop, match with input

accept

S

( S )

[ S ]

leftmost derivation
a

Use the current input token to decide which production to
derive from the top-of-STACK nonterminal.
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About LL(1) — (1/2)

It is not always possible to build a predictive parser given a
CFG; It works only if the CFG is LL(1)!

• LL(1) is a proper subset of CFG.

For example, the following grammar is not LL(1), but is LL(2).
Grammar: S → (S) | [S] | () | [ ]
Try to parse the input ().

STACK INPUT ACTION
S () pop, but use which production?

In this example, we need 2-token look-ahead.
• If the next token is ), push “()” from right to left.
• If the next token is (, push “(S)” from right to left.
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About LL(1) — (2/2)

A grammar is not LL(1) if it
• is ambiguous,
• is left-recursive, or
• has left-factors.

However, grammars that are not ambiguous, are not left-
recursive and have no left-factors may still not be LL(1).

• Q: Any examples?

Two questions:
• How to tell whether a grammar G is LL(1)?
• How to build the PARSING TABLE if it is LL(1)?
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Definition of LL(1) grammars

To see if a grammar is LL(1), we need to compute its FIRST
and FOLLOW sets, which are used to build its parsing table.
FIRST sets:

• Definition: let α be a sequence of terminals and/or nonterminals or ε
. FIRST(α) is the set of terminals that begin the strings derivable from

α;
. ε ∈ FIRST(α) if and only if α can derive ε.

FIRST(α) =
{t | (t is a terminal and α

∗=⇒ tβ) or ( t = ε and α
∗=⇒ ε)}
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How to compute FIRST(X)? (1/2)

X is a terminal:
• FIRST(X) = {X}

X is ε:
• FIRST(X) = {ε}

X is a nonterminal: must check all productions with X on the
left-hand side.

That is, for all X → Y1Y2 · · ·Yk perform the following steps:

• FIRST(X) = FIRST(Y1)− {ε};
• if ε ∈ FIRST(Y1), then

. put FIRST(Y2)− {ε} into FIRST(X);

• if ε ∈ FIRST(Y1) ∩ FIRST(Y2), then
. put FIRST(Y3)− {ε} into FIRST(X);

• · · ·
• if ε ∈ ∩k−1

i=1 FIRST(Yi), then
. put FIRST(Yk)− {ε} into FIRST(X);

• if ε ∈ ∩k
i=1FIRST(Yi), then

. put ε into FIRST(X).
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How to compute FIRST(X)? (2/2)

Algorithm to compute FIRST’s for all non-terminals.
• compute FIRST’s for ε and all terminals;
• initialize FIRST’s for all non-terminals to ∅;
• Repeat

for all nonterminals X do
. apply the steps to compute FIRST (X)

• Until no items can be added to any FIRST set;

What to do when recursive calls are encountered?
• Types of recursive calls: direct or indirect recursive calls.
• Actions: do not go further.

. why?

The time complexity of this algorithm.
• at least one item, terminal or ε, is added to some FIRST set in an

iteration;
. maximum number of items in all FIRST sets are (|T |+ 1) · |N |, where

T is the set of terminals and N is the set of nonterminals.

• Each iteration takes O(|N |+ |T |) time.
• O(|N | · |T | · (|N |+ |T |)).
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Example for computing FIRST(X)

Start with computing FIRST for the last production and walk
your way up.

Grammar
E → E′T

E′ → −TE′ | ε

T → FT ′

T ′ → / FT ′ | ε

F → int | (E)

FIRST(F ) = {int, (}

FIRST(T ′) = {/, ε}

FIRST(T ) = {int, (},
since ε 6∈ FIRST(F ), that’s all.

FIRST(E′) = {−, ε}

FIRST(E) = {−, int, (},
since ε ∈ FIRST(E′).
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How to compute FIRST(α)?

To build a parsing table, we need FIRST(α) for all α such that
X → α is a production in the grammar.

• Need to compute FIRST(X) for each nonterminal X first.

Let α = X1X2 · · ·Xn. Perform the following steps in sequence:
• FIRST(α) = FIRST(X1)− {ε};
• if ε ∈ FIRST(X1), then

. put FIRST(X2)− {ε} into FIRST(α);

• if ε ∈ FIRST(X1) ∩ FIRST(X2), then
. put FIRST(X3)− {ε} into FIRST(α);

• · · ·
• if ε ∈ ∩n−1

i=1 FIRST(Xi), then
. put FIRST(Xn)− {ε} into FIRST(α);

• if ε ∈ ∩n
i=1FIRST(Xi), then

. put {ε} into FIRST(α).

What to do when recursive calls are encountered?
What are the time and space complexities?
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Example for computing FIRST(α)

Grammar
E → E′T

E′ → −TE′ | ε

T → FT ′

T ′ → /FT ′ | ε

F → int | (E)

FIRST(F ) = {int, (}

FIRST(T ′) = {/, ε}

FIRST(T ) = {int, (}

FIRST(E′) = {−, ε}

FIRST(E) = {−, int, (}

FIRST(E′T ) = {−, int, (}

FIRST(−TE′) = {−}

FIRST(ε) = {ε}

FIRST(FT ′) = {int, (}

FIRST(/FT ′) = {/}

FIRST(ε) = {ε}

FIRST(int) = {int}

FIRST((E)) = {(}

• FIRST(T ′E′) =
. (FIRST(T ′)− {ε})∪
. (FIRST(E′)− {ε})∪
. {ε}
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Why do we need FIRST(α)?

During parsing, suppose top-of-STACK is a nonterminal A and
there are several choices

• A→ α1
• A→ α2
• · · ·
• A→ αk

for derivation, and the current lookahead token is a
If a ∈ FIRST(αi), then pick A → αi for derivation, pop, and
then push αi.
If a is in several FIRST(αi)’s, then the grammar is not LL(1).
Question: if a is not in any FIRST(αi), does this mean the
input stream cannot be accepted?

• Maybe not!
• What happen if ε is in some FIRST(αi)?
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FOLLOW sets

Assume there is a special EOF symbol “$” ends every input.
Add a new terminal “$”.
Definition: for a nonterminal X, FOLLOW(X) is the set of
terminals that can appear immediately to the right of X in
some partial derivation.

• That is, S
+=⇒ α1Xtα2, where t is a terminal.

If X can be the rightmost symbol in a derivation, then $ is in
FOLLOW(X).
FOLLOW(X) =
{t | (t is a terminal and S

+=⇒ α1Xtα2) or ( t is $ and S
+=⇒ αX)}.
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How to compute FOLLOW(X)?

Initialization:
• If X is the starting nonterminal, initial value of FOLLOW(X) is {$}.
• If X is not the starting nonterminal, initial value of FOLLOW(X) is ∅.

Repeat
for all nonterminals X do
• Find the productions with X on the right-hand-side.
• for each production of the form Y → αXβ, put FIRST(β) − {ε} into

FOLLOW(X).
• if ε ∈ FIRST(β), then put FOLLOW(Y ) into FOLLOW(X).
• for each production of the form Y → αX, put FOLLOW(Y ) into

FOLLOW(X).

until nothing can be added to any FOLLOW set.
Questions:

• What to do when recursive calls are encountered?
• What are the time and space complexities?
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Examples for FIRST’s and FOLLOW’s

Grammar
• S → Bc | DB
• B → ab | cS
• D → d | ε

α FIRST(α) FOLLOW(α)
D {d, ε} {a, c}
B {a, c} {c, $}
S {a, c, d} {c, $}
Bc {a, c}
DB {d, a, c}
ab {a}
cS {c}
d {d}
ε {ε}
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Why do we need FOLLOW sets?

Note FOLLOW(S) always includes $.
Situation:

• During parsing, the top-of-STACK is a nonterminal X and the looka-
head symbol is a.

• Assume there are several choices for the nest derivation:
. X → α1

. · · ·

. X → αk

• If a ∈ FIRST(αi) for exactly one i, then we use that derivation.
• If a ∈ FIRST(αi), a ∈ FIRST(αj), and i 6= j, then this grammar is not

LL(1).
• If a 6∈ FIRST(αi) for all i, then this grammar can still be LL(1)!

If there exists some i such that αi
∗=⇒ ε and a ∈ FOLLOW(X),

then we can use the derivation X → αi.
• αi

∗=⇒ ε if and only if ε ∈ FIRST(αi).
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Whether a grammar is LL(1)? (1/2)

To see whether a given grammar is LL(1), or to to build its
parsing table:

• Compute FIRST(α) for every α such that X → α is a production;
. Need to first compute FIRST(X) for every nonterminal X.

• Compute FOLLOW(X) for all nonterminals X;
. Need to compute FIRST(α) for every α such that Y → βXα is a

production.

Note that FIRST and FOLLOW sets are always sets of terminals,
plus, perhaps, ε for some FIRST sets.
A grammar is not LL(1) if there exists productions

X → α | β
and any one of the followings is true:

• FIRST(α) ∩ FIRST(β) 6= ∅.
. It may be the case that ε ∈ FIRST(α) and ε ∈ FIRST(β).

• ε ∈ FIRST(α), and FIRST(β) ∩ FOLLOW(X) 6= ∅.
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Whether a grammar is LL(1)? (2/2)

If a grammar is not LL(1), then
• you cannot write a linear-time predictive parser as described previously.

If a grammar is not LL(1), then
we do not know to use the production X → α or the production
X → β when the lookahead symbol is a in any of the following
cases:

• a ∈ FIRST(α) ∩ FIRST(β);
• ε ∈ FIRST(α) and ε ∈ FIRST(β);
• ε ∈ FIRST(α), and a ∈ FIRST(β) ∩ FOLLOW(X).
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A complete example (1/2)

Grammar:
• ProgHead→ prog id Parameter semicolon
• Parameter→ ε | id | l paren Parameter r paren

FIRST and FOLLOW sets:

α FIRST(α) FOLLOW(α)
ProgHead {prog} {$}
Parameter {ε, id, l paren} {semicolon, r paren}
prog id Parameter semicolon {prog}
l paren Parameter r paren {l paren}
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A complete example (2/2)

Input: prog id semicolon

STACK INPUT ACTION
$ ProgHead prog id semicolon $ pop, push
$ semicolon Parameter id prog prog id semicolon $ match with input
$ semicolon Parameter id id semicolon $ match with input
$ semicolon Parameter semicolon $ WHAT TO DO?

Last actions:
• Three choices:

. Parameter → ε | id | l paren Parameter r paren

• semicolon 6∈ FIRST(ε) and
semicolon 6∈ FIRST(id) and
semicolon 6∈ FIRST(l paren Parameter r paren)

• Parameter
∗=⇒ ε and semicolon ∈ FOLLOW(Parameter)

• Hence we use the derivation
Parameter→ ε
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LL(1) parsing table (1/2)

Grammar:
• S → XC

• X → a | ε

• C → a | ε

α FIRST(α) FOLLOW(α)
S {a, ε} {$}
X {a, ε} {a, $}
C {a, ε} {$}
ε {ε}
a {a}
XC {a, ε}

Check for possible conflicts in X → a | ε.
• FIRST(a) ∩ FIRST(ε) = ∅
• ε ∈ FIRST(ε) and FOLLOW(X) ∩ FIRST(a) = {a}

Conflict!!
• ε 6∈ FIRST(a)

Check for possible conflicts in C → a | ε.
• FIRST(a) ∩ FIRST(ε) = ∅
• ε ∈ FIRST(ε) and FOLLOW(C) ∩ FIRST(a) = ∅
• ε 6∈ FIRST(a)
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LL(1) parsing table (2/2)

Parsing table:

a $
S S → XC S → XC
X conflict X → ε
C C → a C → ε
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Bottom-up parsing (Shift-reduce parsers)

Intuition: construct the parse tree from the leaves to the root.

Example:

Grammar:
S → AB

A→ x | Y

B → w | Z
Y → xb

Z → wp

S

A B

x w

A

x

B

w

A

x w x w

Input xw.
This grammar is not LL(1).

• Why?
• It can be written into an LL(1) grammar.
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Definitions (1/2)

Rightmost derivation:
• S =⇒

rm
α: the rightmost nonterminal is replaced.

• S
+=⇒

rm
α: α is derived from S using one or more rightmost derivations.

. α is called a right-sentential form .

• In the previous example: S =⇒
rm

AB =⇒
rm

Aw =⇒
rm

xw.

Define similarly for leftmost derivation and left-sentential form.

Handle : a handle for a right-sentential form γ
• is the combining of the following two information:

. a production rule A → β and

. a position w in γ where β can be found.

• Let γ′ be obtained by replacing β at the position w with A in γ.
. γ = αβη and is a right-sentential form.
. γ′ = αAη and is also a right-sentential form.
. γ′ =⇒

rm
γ and thus η contains no nonterminals.
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Definitions (2/2)

Example:

S → aABe

A→ Abc | b
B → d

input: abbcde

γ ≡ aAbcde is a right-sentential
form

A → Abc and position 2 in γ is a
handle for γ

Reduce : replace a handle in a right-sentential form with its
left-hand-side. In the above example, replace Abc starting at
position 2 in γ with A.
A right-most derivation in reverse can be obtained by handle
reducing.
Problems:

• How to find handles?
• What to do when there are two possible handles?

. Have a common prefix or suffix.

. Have overlaps.
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STACK implementation

Four possible actions:
• shift: shift the input to STACK.
• reduce: perform a reversed rightmost derivation.

. The first item popped is the rightmost item in the right hand side of
the reduced production.

• accept
• error

Make sure handles are always on the top of STACK.

STACK INPUT ACTION
$ xw$ shift
$x w$ reduce by A→ x
$A w$ shift
$Aw $ reduce by B → w
$AB $ reduce by S → AB
$S $ accept

S

A B

x w

A

x

B

w

A

x w x w

S =⇒
rm

AB =⇒
rm

Aw =⇒
rm

xw.
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Viable prefix (1/2)

Definition: the set of prefixes of right-sentential forms that can
appear on the top of the stack.

• Some suffix of a viable prefix is a prefix of a handle.
• Some suffix of a viable prefix may be a handle.

Some prefix of a right-sentential form cannot appear on the top
of the stack during parsing.

• Grammar:
. S → AB
. A → x | Y
. B → w | Z
. Y → xb
. Z → wp

• Input: xw
. xw is a right-sentential form.
. The prefix xw is not a viable prefix.
. You cannot have the situation that some suffix of xw is a handle.
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Viable prefix (2/2)

Note: when doing bottom-up parsing, that is reversed rightmost
derivation,

• it cannot be the case a handle on the right is reduced before a handle
on the left in a right-sentential form;

• the handle of the first reduction consists of all terminals and can be
found on the top of the stack;

. That is, some substring of the input is the first handle.

Strategy:
• Try to recognize all possible viable prefixes.

. Can recognize them incrementally.

• Shift is allowed if after shifting, the top of STACK is still a viable
prefix.

• Reduce is allowed if after a handle is found on the top of STACK and
after reducing, the top of STACK is still a viable prefix.

• Questions:
. How to recognize a viable prefix efficiently?
. What to do when multiple actions are allowed?
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Model of a shift-reduce parser

Push-down automata!

s s...s0 1 m

driver

... $a0 a1

stack input

action
table

output

$ ... ai a n

GOTO
table

• Current state Sm encodes the symbols that has been shifted and the
handles that are currently being matched.

• $S0S1 · · ·Smaiai+1 · · · an$ represents a right-sentential form.
• GOTO table:

. when a “reduce” action is taken, which handle to replace;

• Action table:
. when a “shift” action is taken, which state currently in, that is, how to

group symbols into handles.

The power of context free grammars is equivalent to nondeter-
ministic push down automata.

. Not equal to deterministic push down automata.
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LR parsers

By Don Knuth at 1965.
LR(k): see all of what can be derived from the right side with
k input tokens lookahead.

• First L: scan the input from left to right.
• Second R: reverse rightmost derivation.
• Last (k): with k lookahead tokens.

Be able to decide the whereabout of a handle after seeing all of
what have been derived so far plus k input tokens lookahead.

X1, X2, . . . , Xi, Xi+1, . . . , Xi+j, Xi+j+1, . . . , Xi+j+k, . . .

a handle lookahead tokens

Top-down parsing for LL(k) grammars: be able to choose
a production by seeing only the first k symbols that will be
derived from that production.
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Recognizing viable prefixes

Use an LR(0) item ( item for short) to record all possible

extensions of the current viable prefix.
• It is a production, with a dot at some position in the RHS (right-hand

side).
. The production is the handle.
. The dot indicates the prefix of the handle that has seen so far.

Example:
• A→ XY

. A → ·XY

. A → X · Y

. A → XY ·
• A→ ε

. A → ·

Augmented grammar G′ is to add a new starting symbol S′

and a new production S′→ S to a grammar G with the original
starting symbol S.

. We assume working on the augmented grammar from now on.
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High-level ideas for LR(0) parsing

Grammar:
• S′ → S
• S → AB | CD
• A→ a
• B → b
• C → c
• D → d

Approach:
. Use a STACK to record the current vi-

able prefix.
. Use NFA to record information about

the next possible handle.
. push down automata = FA + stack.
. Need to use DFA for simplicity.

S’ −> . S

S’ −> S .

if we actually saw S

ε

ε

S  −> . AB

S −> . CD

the first derivation is S−> AB

the first derivation is S −> CD

...

if we actually saw C

ε
C −> . c

actually saw c

C −> c .

S’ −> S −> CD −> Cd −> cd

if we actually saw D

S −> C D .

S −> C . D

ε

D −> . d D −> d .

actually saw d
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Closure

The closure operation closure(I), where I is a set of items, is
defined by the following algorithm:

• If A→ α ·Bβ is in closure(I), then
. at some point in parsing, we might see a substring derivable from Bβ

as input;
. if B → γ is a production, we also see a substring derivable from γ at

this point.
. Thus B → ·γ should also be in closure(I).

What does closure(I) mean informally?
• When A → α · Bβ is encountered during parsing, then this means we

have seen α so far, and expect to see Bβ later before reducing to A.
• At this point if B → γ is a production, then we may also want to see

B → ·γ in order to reduce to B, and then advance to A→ αB · β.

Using closure(I) to record all possible things

about the next handle that we have seen in the past and
expect to see in the future.
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Example for the closure function

Example: E′ is the new starting symbol, and E is the original
starting symbol.

• E′ → E
• E → E + T | T
• T → T ∗ F | F
• F → (E) | id

closure({E′→ ·E}) =
• {E′ → ·E,
• E → ·E + T ,
• E → ·T ,
• T → ·T ∗ F ,
• T → ·F ,
• F → ·(E),
• F → ·id}
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GOTO table

GOTO(I,X), where I is a set of items and X is a legal symbol,
means

• If A→ α ·Xβ is in I, then
• closure({A→ αX · β}) ⊆ GOTO(I,X)

Informal meanings:
• currently we have seen A→ α ·Xβ
• expect to see X
• if we see X,
• then we should be in the state closure({A→ αX · β}).

Use the GOTO table to denote the state to go to once we are
in I and have seen X.
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Sets-of-items construction

Canonical LR(0) items : the set of all possible DFA states,

where each state is a set of LR(0) items.
Algorithm for constructing LR(0) parsing table.

• C ← {closure({S′ → ·S})}
• Repeat

. for each set of items I in C and each grammar symbol X such that
GOTO(I, X) 6= ∅ and not in C do

. add GOTO(I, X) to C

• Until no more sets can be added to C

Kernel of a state:
• Definitions: items

. not of the form X → ·β or

. of the form S′ → ·S
• Given the kernel of a state, all items in this state can be derived.
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Example of sets of LR(0) items

Grammar:

E′ → E

E → E + T | T

T → T ∗ F | F

F → (E) | id

I0 = closure({E′→ ·E}) =
{E′ → ·E,

E → ·E + T ,

E → ·T ,

T → ·T ∗ F ,

T → ·F ,

F → ·(E),

F → ·id}

Canonical LR(0) items:
• I1 = GOTO(I0, E) =

. {E′ → E·,

. E → E ·+T}
• I2 = GOTO(I0, T ) =

. {E → T ·,

. T → T · ∗F}
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Transition diagram (1/2)

I0
E’ −> .E
E −> . E+T
E −> .T
T −> .T*F
T −> .F
F −> .(E)
F −> .id

E −> E+ . T
T −> . T*F
T −> .F
F −> .(E)
F −> .id

I6

E −> E+T.
T −> T.*F

I9

T −> T*F .
I10

T −> T*.F
F −> .(E)
F −> . id

I7
E −> T.
T −> T.*F

I2

T −> F .
I3

F −> ( E ) .
I11

F −> ( E . )
E −> E . + T

I8

F −> ( . E )
E −> . E + T
E −> .T
T −> . T * F
T −> . F
F −> . ( E )
F −> . id

I4

F −> id .
I5

E + T
*

F

(

idT

*
F

(

id

F(id

id

(

E

T

F

)

+

I7

I4

I5

I6
I2

I3

I3

I5

I4

E’ −> E.
E −> E . + T

1I
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Transition diagram (2/2)

I0
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idF
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id id
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Meaning of LR(0) transition diagram

E + T ∗ is a viable prefix that can happen on the top of the
stack while doing parsing.

After seeing E+T ∗, we are in state I7. I7 =

• {T → T ∗ ·F,

• F → ·(E),

• F → ·id}
We expect to follow one of the following three possible
derivations:

E′ =⇒
rm

E

=⇒
rm

E + T

=⇒
rm

E + T ∗ F

=⇒
rm

E + T ∗ id

=⇒
rm

E + T ∗ F ∗ id

· · ·

E′ =⇒
rm

E

=⇒
rm

E + T

=⇒
rm

E + T ∗ F

=⇒
rm

E + T ∗ (E)

· · ·

E′ =⇒
rm

E

=⇒
rm

E + T

=⇒
rm

E + T ∗ F

=⇒
rm

E + T ∗ id

· · ·
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Meanings of closure(I) and GOTO(I, X)

closure(I): a state/configuration during parsing recording all
possible information about the next handle.

• If A→ α ·Bβ ∈ I, then it means
. in the middle of parsing, α is on the top of the stack;
. at this point, we are expecting to see Bβ;
. after we saw Bβ, we will reduce αBβ to A and make A top of stack.

• To achieve the goal of seeing Bβ, we expect to perform some operations
below:

. We expect to see B on the top of the stack first.

. If B → γ is a production, then it might be the case that we shall see γ
on the top of the stack.

. If it does, we reduce γ to B.

. Hence we need to include B → ·γ into closure(I).

GOTO(I,X): when we are in the state described by I, and
then a new symbol X is pushed into the stack,

• If A→ α ·Xβ is in I, then closure({A→ αX · β}) ⊆ GOTO(I,X).
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LR(0) parsing

LR parsing without lookahead symbols.
Initially,

• Push I0 into the stack.
• Begin to scan the input from left to right.

In state Ii
• if {A→ α · aβ} ⊆ Ii then perform “shift i” while seeing the terminal a

in the input, and then go to the state Ij = closure({A→ αa · β}).
. Push a into the STACK first.
. Then push Ij into the STACK.

• if {A→ β·} ⊆ Ii, then perform “reduce by A→ β” and then go to the
state Ij = GOTO(I,A) where I is the state on the top of the stack
after removing β

. Pop β and all intermediate states from the STACK.

. Push A into the STACK.

. Then push Ij into the STACK.

• Reject if none of the above can be done.
• Report “conflicts” if more than one can be done.

Accept an input if EOF is seen at I0.
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Parsing example

STACK input action
$ I0 id*id+id$ shift 5
$ I0 id I5 * id + id$ reduce by F → id
$ I0 F * id + id$ in I0, saw F, goto I3

$ I0 F I3 * id + id$ reduce by T → F
$ I0 T * id + id$ in I0, saw T, goto I2

$ I0 T I2 * id + id$ shift 7
$ I0 T I2 * I7 id + id$ shift 5
$ I0 T I2 * I7 id I5 + id$ reduce by F → id
$ I0 T I2 * I7 F + id$ in I7, saw F, goto I10

$ I0 T I2 * I7 F I10 + id$ reduce by T → T ∗ F
$ I0 T + id$ in I0, saw T, goto I2

$ I0 T I2 + id$ reduce by E → T
$ I0 E + id$ in I0, saw E, goto I1

$ I0 E I1 + id$ shift 6
$ I0 E I1 + I6 id$ shift 5
$ I0 E I1 + I6 F $ reduce by F → id
· · · · · · · · ·
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Problems of LR(0) parsing

Conflicts: handles have overlaps, thus multiple actions are
allowed at the same time.

• shift/reduce conflict
• reduce/reduce conflict

Very few grammars are LR(0). For example:
• In I2 of our example, you can either perform a reduce or a shift when

seeing “*” in the input.
• However, it is not possible to have E followed by “*”. Thus we should

not perform “reduce.”

Idea: use FOLLOW(E) as look ahead information to resolve
some conflicts.
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SLR(1) parsing algorithm

Using FOLLOW sets to resolve conflicts in constructing SLR(1)
[DeRemer 1971] parsing table, where the first “S” stands for
“Simple”.

• Input: an augmented grammar G′

• Output: the SLR(1) parsing table

Construct C = {I0, I1, . . . , In} the collection of sets of LR(0)
items for G′.
The parsing table for state Ii is determined as follows:

• If A → α · aβ is in Ii and GOTO(Ii, a) = Ij, then action(Ii, a) is “shift
j” for a being a terminal.

• If A → α· is in Ii, then action(Ii, a) is “reduce by A → α” for all
terminal a ∈ FOLLOW(A); here A 6= S′

• If S′ → S· is in Ii, then action(Ii, $) is “accept”.

If any conflicts are generated by the above algorithm, we say
the grammar is not SLR(1).
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SLR(1) parsing table

(1) E′→ E
(2) E → E + T
(3) E → T
(4) T → T ∗ F
(5) T → F
(6) F → (E)
(7) F → id

action GOTO
state id + * ( ) $ E T F
0 s5 s4 1 2 3
1 s6 accept
2 r2 s7 r2 r2
3 r5 r5 r5 r5
4 s5 s4 8 2 3
5 r7 r7 r7 r7
6 s5 s4 9 3
7 s5 s4 10
8 s6 s11
9 r2 s7 r2 r2
10 r4 r4 r4 r4
11 r6 r6 r6 r6

ri means reduce by the ith production.
si means shift and then go to state Ii.
Use FOLLOW sets to resolve some conflicts.
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Discussion (1/3)

Every SLR(1) grammar is unambiguous, but there are many
unambiguous grammars that are not SLR(1).

Grammar:
• S → L = R | R
• L→ ∗R | id
• R→ L

States:
I0:

. S′ → ·S

. S → ·L = R

. S → ·R

. L → · ∗ R

. L → ·id

. R → ·L
I1: S′ → S·
I2:

. S → L· = R

. R → L·

I3: S → R·
I4:

. L → ∗ · R

. R → ·L

. L → · ∗ R

. L → ·id

I5: L→ id·

I6:
. S → L = ·R
. R → ·L
. L → · ∗ R
. L → ·id

I7: L→ ∗R·
I8: R→ L·
I9: S → L = R·
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Discussion (2/3)

I0
S’ −> .S
S −> .L = R
S −> .R
L −> . * R
L −> . id
R −> . L

I5
L −> id .

I1
S’ −> S.

I3

S −> R.

I2

S −> L . = R
R −> L.

I4

L −> * . R
R −> . L
L −> . * R
L −> . id

I8
R −> L.

I9

S −> L = R .

I7
L −> * R .

I6
S −> L = . R
R −> . L
L −> . * R
L −> . id

S

L

R =

R*

*

*

L

id

R

I8

L I5
id

id
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Discussion (3/3)

Suppose the STACK has “$ I0 L I2” and the input is “=”. We
can either

• shift 6, or
• reduce by R→ L, since =∈ FOLLOW(R).

This grammar is ambiguous for SLR(1) parsing.
However, we should not perform a R→ L reduction.

• After performing the reduction, the viable prefix is $R;
• =6∈ FOLLOW($R);
• =∈ FOLLOW(∗R);
• That is to say, we cannot find a right-sentential form with the prefix

R = · · · .
• We can find a right-sentential form with · · · ∗R = · · ·
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Canonical LR — LR(1)

In SLR(1) parsing, if A→ α· is in state Ii, and a ∈ FOLLOW(A),
then we perform the reduction A→ α.
However, it is possible that when state Ii is on the top of the
stack, we have the viable prefix βα on the top of the stack, and
βA cannot be followed by a.

• In this case, we cannot perform the reduction A→ α.

It looks difficult to find the FOLLOW sets for every viable
prefix.
We can solve the problem by knowing more left context using

the technique of lookahead propagation .

• Construct FOLLOW(ω) on the fly.
• Assume ω = ω′X and FOLLOW(ω′) is known.
• Can FOLLOW(ω′X) be computed efficiently?
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LR(1) items

An LR(1) item is in the form of
[A → α · β, a], where the first field is an LR(0) item and
the second field a is a terminal belonging to a subset of
FOLLOW(A).
Intuition: perform a reduction based on an LR(1) item
[A→ α·, a] only when the next symbol is a.

• Instead of maintaining FOLLOW sets of viable prefixes, we maintain
FIRST sets of possible future extensions of the current viable prefix.

Formally: [A→ α · β, a] is valid (or reachable) for a viable prefix
γ if there exists a derivation

S
∗=⇒

rm
δAω =⇒

rm
δ α︸ ︷︷ ︸

γ

β ω,

where
• either a ∈ FIRST(ω) or
• ω = ε and a = $.
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Examples of LR(1) items

Grammar:
• S → BB
• B → aB | b

S
∗=⇒

rm
aaBab =⇒

rm
aaaBab

viable prefix aaa can reach [B → a ·B, a]

S
∗=⇒

rm
BaB =⇒

rm
BaaB

viable prefix Baa can reach [B → a ·B, $]
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Finding all LR(1) items

Ideas: redefine the closure function.
• Suppose [A→ α ·Bβ, a] is valid for a viable prefix γ ≡ δα.
• In other words,

S
∗=⇒

rm
δ A aω =⇒

rm
δ αBβ aω.

. ω is ε or a sequence of terminals.

• Then for each production B → η, assume βaω derives the sequence of
terminals beaω.

S
∗=⇒

rm
δαB βaω

∗=⇒
rm

δαB beaω
∗=⇒

rm
δαη beaω

Thus [B → ·η, b] is also valid for γ for each b ∈ FIRST(βa).
Note a is a terminal. So FIRST(βa) = FIRST(βaω).

Lookahead propagation .
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Algorithm for LR(1) parsers

closure1(I)
• Repeat

. for each item [A → α · Bβ, a] in I do

. if B → ·η is in G′

. then add [B → ·η, b] to I for each b ∈ FIRST(βa)

• Until no more items can be added to I
• return I

GOTO1(I, X)
• let J = {[A→ αX · β, a] | [A→ α ·Xβ, a] ∈ I};
• return closure1(J)

items(G′)
• C ← {closure1({[S′ → ·S, $]})}
• Repeat

. for each set of items I ∈ C and each grammar symbol X such that
GOTO1(I, X) 6= ∅ and GOTO1(I, X) 6∈ C do

. add GOTO1(I, X) to C

• Until no more sets of items can be added to C
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Example for constructing LR(1) closures

Grammar:
• S′ → S
• S → CC
• C → cC | d

closure1({[S′→ ·S, $]}) =
• {[S′ → ·S, $],
• [S → ·CC, $],
• [C → ·cC, c/d],
• [C → ·d, c/d]}

Note:
• FIRST(ε$) = {$}
• FIRST(C$) = {c, d}
• [C → ·cC, c/d] means

. [C → ·cC, c] and

. [C → ·cC, d].
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LR(1) transition diagram

I0
�

S’ −> . S, $
�

S −> . CC, $
C −> . cC, c/d
C −>.d, c/d

S’ −> S., $
�

I1

S −> C.C, $
�

C −> .cC, $
C −> .d, $

I2
�

S −> CC., $
�

I5
�

C −> c.C, $
C −> .cC, $
C −> .d, $

I6
�

C −> cC., $

I9
�

C −> d., $
I7

�

I3
�

C −> cC., c/d
I8

�

C −> d., c/d
I4

	

S

C

c

d

d
C

C

c

d

d

c

C
C −> c.C, c/d
C −> .cC, c/d
C −> .d, c/d

c
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LR(1) parsing example

Input cdccd

STACK INPUT ACTION
$ I0 cdccd$
$ I0 c I3 dccd$ shift 3
$ I0 c I3 d I4 ccd$ shift 4
$ I0 c I3 C I8 ccd$ reduce by C → d
$ I0 C I2 ccd$ reduce by C → cC
$ I0 C I2 c I6 cd$ shift 6
$ I0 C I2 c I6 c I6 d$ shift 6
$ I0 C I2 c I6 c I6 d$ shift 6
$ I0 C I2 c I6 c I6 d I7 $ shift 7
$ I0 C I2 c I6 c I6 C I9 $ reduce by C → cC
$ I0 C I2 c I6 C I9 $ reduce by C → cC
$ I0 C I2 C I5 $ reduce by S → CC
$ I0 S I1 $ reduce by S′ → S
$ I0 S′ $ accept
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Generating LR(1) parsing table

Construction of canonical LR(1) parsing tables.
• Input: an augmented grammar G′

• Output: the canonical LR(1) parsing table, i.e., the ACTION1 table

Construct C = {I0, I1, . . . , In} the collection of sets of LR(1)
items form G′.
Action table is constructed as follows:

• if [A→ α · aβ, b] ∈ Ii and GOTO1(Ii, a) = Ij, then
action1[Ii, a] = “shift j” for a is a terminal.

• if [A→ α·, a] ∈ Ii and A 6= S′, then
action1[Ii, a] = “reduce by A→ α”

• if [S′ → S·, $] ∈ Ii, then
action1[Ii, $] = “accept.”

If conflicts result from the above rules, then the grammar is
not LR(1).
The initial state of the parser is the one constructed from the
set containing the item [S′→ ·S, $].
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Example of an LR(1) parsing table

action1 GOTO1

state c d $ S C
0 s3 s4 1 2
1 accept
2 s6 s7 5
3 s3 s4 8
4 r3 r3
5 r1
6 s6 s7 9
7 r3
8 r2 r2
9 r2

Canonical LR(1) parser:
• Most powerful!
• Has too many states and thus occupies too much space.
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LALR(1) parser — Lookahead LR

The method that is often used in practice.
Most common syntactic constructs of programming languages
can be expressed conveniently by an LALR(1) grammar
[DeRemer 1969].
SLR(1) and LALR(1) always have the same number of states.
Number of states is about 1/10 of that of LR(1).
Simple observation:

• an LR(1) item is of the form [A→ α · β, c]

We call A→ α · β the first component .

Definition: in an LR(1) state, set of first components is called
its core .
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Intuition for LALR(1) grammars

In an LR(1) parser, it is a common thing that several states
only differ in lookahead symbols, but have the same core.
To reduce the number of states, we might want to merge states
with the same core.

• If I4 and I7 are merged, then the new state is called I4,7.
• After merging the states, revise the GOTO1 table accordingly.

Merging of states can never produce a shift-reduce conflict that
was not present in one of the original states.

• I1 = {[A→ α·, a], . . .}
. For I1, one of the actions is to perform a reduce when the lookahead

symbol is “a”.

• I2 = {[B → β · aγ, b], . . .}
. For I2, one of the actions is to perform a shift on input “a”.

• Merging I1 and I2, the new state I1,2 has shift-reduce conflicts.
• However, we merge I1 and I2 because they have the same core.

. That is, [A → α·, c] ∈ I2 and [B → β · aγ, d] ∈ I1.

. The shift-reduce conflict already occurs in I1 and I2.

Merging of states can produce a new reduce-reduce conflict.
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LALR(1) transition diagram

I0
�

S’ −> . S, $
�

S −> . CC, $
C −> . cC, c/d
C −>.d, c/d

S’ −> S., $
�

I1

S −> C.C, $
�

C −> .cC, $
C −> .d, $

I2
�

S −> CC., $
�

I5
�

C −> c.C, $
C −> .cC, $
C −> .d, $

I6
�

C −> cC., $

I9
�

C −> d., $
I7

�

I3
�

C −> cC., c/d
I8

�

C −> d., c/d
I4

	

S

C

c

d

d

C

C

c

d

d

c

C
C −> c.C, c/d
C −> .cC, c/d
C −> .d, c/d

c
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Possible new conflicts from LALR(1)

May produce a new reduce-reduce conflict.
For example (textbook page 267, Example 4.58), grammar:

• S′ → S
• S → aAd | bBf | aBe | bAe
• A→ c
• B → c

The language recognized by this grammar is {acd, ace, bcd, bce}.
You may check that this grammar is LR(1) by constructing the
sets of items.
You will find the set of items {[A→ c·, d], [B → c·, e]} is valid for
the viable prefix ac, and {[A→ c·, e], [B → c·, d]} is valid for the
viable prefix bc.
Neither of these sets generates a conflict, and their cores are
the same. However, their union, which is

• {[A→ c·, d/e],
• [B → c·, d/e]},

generates a reduce-reduce conflict, since reductions by both
A→ c and B → c are called for on inputs d and e.
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How to construct LALR(1) parsing table

Naive approach:
• Construct LR(1) parsing table, which takes lots of intermediate spaces.
• Merging states.

Space and/or time efficient methods to construct an LALR(1)
parsing table are known.

• Constructing and merging on the fly.
• · · ·
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Summary

LR(1)

LL(1)

LALR(1)

SLR(1)
LR(1)

LALR(1)

SLR(1)

LR(0)

LR(1) and LALR(1) can almost express all important program-
ming languages issues, but LALR(1) is easier to write and uses
much less space.
LL(1) is easier to understand and uses much less space, but
cannot express some important common-language features.

• May try to use it first for your own applications.
• If it does not succeed, then use more powerful ones.
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