Intermediate Code Generation

ALSU Textbook Chapter 6.1-6.4, 6.5.1-6.5.3, 6.6-6.8

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/ " tshsu

Intermediate code generation

Compiler usually generate intermediate codes.
o Ease of re-targeting different machines.
o Perform machine-independent code optimization.

Intermediate language:
o Postfix language: a stack-based machine-like language.
o Syntax tree: a graphical representation.

o Three-address code: a statement containing at most 3 addresses or
operands.

> A sequence of statements of the general form: | :(= y op 2z, where

“op” is an operator, x is the result, and y and z are operands.
> Consists of at most 3 addresses for each statement.
> A linearized representation of a binary syntax tree.

Compiler notes #6, 20070608, Tsan-sheng Hsu 2

Types of three-address statements

Assignment
e Binary: z:=y op 2
e Unary: z:=op y
e “op” can be any reasonable arithmetic or logic operator.

Copy
o Simple: z .=y
o Indexed: x :=yli| or z[i] :==y
e Address and pointer manipulation:
> x = &y
> X = %y
> xxr 1=y
Jump
e Unconditional: goto L
o Conditional: if = relop y goto L; [else goto L;, where relop is

<,=,>,2>,< or £,
Procedure call DARAM X1
PARAM X2
o Call procedure P(X1,X2,...,Xn) e
PARAM Xn
CALL P,n

Compiler notes #6, 20070608, Tsan-sheng Hsu 3

Declarations: storage addresses (1/2)

The storage space for variables with the same scope is “usually”
allocated together.

Examples:
o Example 1:

> Static data area: for global data.

> Allocated when the program starts and remains to be so for the entire
execution.

o Example 2:

> So called ' activation record (A.R.) when a procedure is invoked.

> This area holds all data that are local to this procedure.
> This area is active only when the associated procedure is called.
> May have multiple copies when recursive calls are allowed.

Compiler notes #6, 20070608, Tsan-sheng Hsu 4

Declarations: storage addresses (2/2)

Storage addresses for variables are thus two-tuples.
o Class of variables: determine which area.
o Offset: the relative address within this area.

Example:

o A is a global variable with the offset 8.

o Meaning: the storage address of A is 8 plus the starting of the static
data area.

Depend on the target machine, determine data alignment.

o For example: if a word has 2 bytes and an integer variable is represented
with a word, then we may require all integers to start on even addresses.

Need to maintain an offset for each scope that is not closed.

Compiler notes #6, 20070608, Tsan-sheng Hsu 5

Symbol table operations

Treat symbol tables as objects.

Accessing objects by service routines.

Symbol tables: assume using a multiple symbol table approach.

mktable(previous):

> create a new symbol table.
> link it to the symbol table previous.

enter(table,name,type,of f set):

> insert a new identifier name with type type and of fset into table;
> check for possible duplication.

addwidth(table,width):
> increase the size of the symbol table table by width.

enterproc(table, name, newtable):

> insert a procedure name into table;
> the symbol table of name is newtable.

lookup(name,table):
> check whether name is declared in symbol table table,
> return the entry if it is in table.

Compiler notes #6, 20070608, Tsan-sheng Hsu

Stack operations

Treat stacks as objects.

Stacks: many stacks for different objects such as offsets, and
symbol tables.

o push(object,stack)

o pop(stack)

o top(stack): top of stack element

Compiler notes #6, 20070608, Tsan-sheng Hsu 7

Declarations — examples

e Declaration — My D

[M1 — €
> {top(offset) := 0;}

o D— D;D

o D—d:T
> {enter(top(tblptr),id.name,T.type,top(offset));
> top(offset) := top(offset) + T.width; }

o T'— integer
> { T.type := integer;
> T.width := 4; }

o T'— double
> { T.type := double;
> T.width := 8; }

o ' — *Tl
> { T.type := pointer(T;.type);
> T.width := 4; }

Compiler notes #6, 20070608, Tsan-sheng Hsu

Handling blocks

Need to remember the current offset before entering the block,
and to restore it after the block is closed.

Example:

e Block — begin M, Declarations Statements end
> { pop(tblptr);
> pop(offset); }

o My— €
> { t := mbktable(top(tblptr));
> push(t,tblptr);
> push(top(offset),offset);}

Can also use the block number technique to avoid creating a
new symbol table.

Compiler notes #6, 20070608, Tsan-sheng Hsu 9

Handling names in records

A record declaration is treated as entering a block in terms of
“offset” is concerned.

Need to use a new symbol table.

Example:

o I' — record Ms D end
> { T.type := record(top(tblptr));
> T.width := top(offset);
> pop(tblptr);
> pop(offset); }

® M5 — €
> { t := mktable(null);
> push(t,tblptr);
> push(0,offset);}

Compiler notes #6, 20070608, Tsan-sheng Hsu 10

Nested procedures

When a nested procedure is seen, processing of declarations in
the enclosing procedure is temporarily suspended.
o Proc — procedure id ; My Declaration ; Mz Statements

> {t := top(tblptr); /+* symbol table for this procedure */
> addwidth(t,top(offset));
> generate code for de-allocating A.R.;

> pop(tblptr); pop(offset);
> enterproc(top(tblptr),id.name,t);}
[M2 — €
> { /* enter a new scope x/
> t := mbktable(top(tblptr));
> push(t,tblptr); push(0,offset); }
° M3 — €
> {generate code for allocating A.R.; }

There is a better way to handle nested procedures.
e Avoid using e-productions.
> e-productions easily trigger conflicts.

Compiler notes #6, 20070608, Tsan-sheng Hsu 11

Yet another better grammar

Split a lengthy production at the place when in-production

semantic

actions are required.

e Proc — Proc_Head Proc_Decl Statements

>
>
>
>

>

e Proc_

>
>
>

{t := top(tblptr); /+ symbol table for this procedure */
addwidth(t,top(offset));

generate code for de-allocating A.R.;

pop(tblptr); pop(offset);
enterproc(top(tblptr),id.name,t);}

Head — procedure id ;

{ /* enter a new scope */

t := mktable(top(tblptr));

push(t,tblptr); push(0,offset); }

o Proc_Decl — Declaration ;

>

{generate code for allocating A.R.; }

Compiler notes #6, 20070608, Tsan-sheng Hsu

12

Code generation routine

Code generation:
o gen([address #1], [assignment], [address #2], operator, address #3);
> Use switch statement to actually print out the target code;
> Can have different gen() for different target codes;

Variable accessing: depend on the type of [address #i],

generate different codes.
o Watch out the differences between [-address and r-address.
o Types of [address #:i]:
> Local temp space.
Parameter.
Local variable.
Non-local variable.
Global variable.
Registers, constants, . . .

v VvV VvV VvV V

Run-time memory management, allocating of memory spaces
for different types of variables during run time, is an important
issue and will be discussed in the next topic.

Compiler notes #6, 20070608, Tsan-sheng Hsu 13

Code generation service routines

Error handling routine: error_msg(error information);
o Use switch statement to actually print out the error message;
o The messages can be written and stored in other file.

Temp space management:
o This is needed in generating code for expressions.
o newtemp(): allocate a temp space.

> Using a bit array to indicate the usage of temp space.
> Usually use a circular array data structure.

o freetemp(t): free ¢ if it is allocated in the temp space.

Label management:
e This is needed in generated branching statements.

o newlabel(): generate a label in the target code that has never been

used.

Compiler notes #6, 20070608, Tsan-sheng Hsu

14

Assignment statements

o S—ud:=F
> { p := lookup(id.name,top(tblptr));
> if p is not null then gen(p, “:=",E.place);
else error(“var undefined”,id.name); }
o F — FEi+ E5
> {E.place := newtemp();
> gen(E.place, “:=",F;.place,”+"”,FE5.place);
> freetemp(FE;.place);freetemp(E;.place);}
o F — —E1
> {E.place := newtemp();
> gen(E.place, “:=",“uminus”,F;.place);
> freetemp(FE;.place);}
o F — (El)

> {E.place := F;.place;}

o I/ —id
> {p := lookup(id.name,top(tblptr));

> if p # null then E.place := p.place else error(‘“var undefined”,id.name);}

Compiler notes #6, 20070608, Tsan-sheng Hsu

15

Type conversions

Assume there are only two data types, namely integer and float.

Assume automatic type conversions.
o May have different rules.

E — E1 —|— EQ
o if E1.type = Es.type then
> generate no conversion code
> E.type = E;.type

o else
> FE.type = Hoat
> temp; = newtemp();
> if F.type = integer then

gen(tempq,“:=", int-to-float,F.place);
gen(E,“:="temp.,“+”,FE>.place);

> else
gen(temp,“:=", int-to-float,F>.place);
gen(E,“:=", tempi,“+”,F.place);

> freetemp(temp);

Compiler notes #6, 20070608, Tsan-sheng Hsu

16

Addressing 1-D array elements

1-D array: Ali].
o Assumptions:
> lower bound in address = low
> element data width = w
> starting address = start_addr

o Address for Ai]

> = start_addr + (i — low) * w

> = 4% w + (start_addr — low * w)

> The value, called base, (start_addr — low * w) can be computed at
compile time, and then stored at the symbol table.

PASCAL uses

array [-8 .. 100] of integer

to declare an integer array in the range of [-8], [-7], [-6] , ...,
[-1], [0], [1], ..., [100].

Compiler notes #6, 20070608, Tsan-sheng Hsu 17

Addressing 2-D array elements

2-D array A[il, ZQ]
e Row major: the preferred mapping method.
> A[1,1], A[1, 2], A[1, 3], A[2, 1], A[2, 2], . . .
> A[i] means the ith row.
> Advantage: Ali,j] = Ali][j].
o Column major:
> A1, 1], A[2,1], A[1, 2], A[2,2], A[1,3],. ..

Address for Afiq, io]

o = start_addr + ((iy — lowy) * ng + (i — lows)) * w

o = (i1 *ng + 19) x w + (start_addr — low; * ny * w — lows * W)
> mo IS the number of elements in a row.
> low; is the lower bound of the first coordinate.
> lows, iIs the lower bound of the second coordinate.

o The value, called base, (start_addr — low; * ng * w — lows * w) can be
computed at compiler time, and then stored at the symbol table.

Compiler notes #6, 20070608, Tsan-sheng Hsu 18

Addressing multi-D array elements

Similar method for multi-dimensional arrays.
Address for Aliy, o, ..., 0k
o = (i1 % H,i?:Qni + 19 * Hf:?)nz- + - +ig) kw+ (start_addr — lowy * w * H’fzzni —
lowy * w II¥_on; — -+ — lowy, * w)

> n; Is the number of elements in the 1th coordinate.
> low; is the lower of the ith coordinate.

o The value (i 115 yn;+isxI1¥ sn;+- - -+i;) can be computed incrementally
in grammar rules.
> f(1) = 13
> f(5) = U = 1) *ny + 455
> f(k) is the value we want;
o The value, called base, (start_addr —low*w xI1¥_,n; — lows*w*I1F_yn; —
.-+ — lowg * w) can be computed at compile time.

Compiler notes #6, 20070608, Tsan-sheng Hsu 19

YACC code for addressing array elements

Attributes needed during computation:
o elesize: size of each element in the array.

e array: a pointer to the symbol table entry containing information about
the array declaration.

e ndim: the current dimension index
o base: base address of this array
o place: where a variable is stored

> type of variables
> offset

o offset: the address of the array element

limit(array,m) = n,, is the number of elements in the mth
coordinate.

Compiler notes #6, 20070608, Tsan-sheng Hsu 20

Grammar for accessing r-values

E — L
> {if L.offset = null then /* L is a simple id */
> E.place := L.place;
> else begin
> E.place := newtemp();
> gen(E.place,”:=",L.place,” [*,L.offset,”]”);
> end}

e Need a special 3-address code for indirect addressing above.

For simple variables

L —id
> {p := lookup(id.name,top(tblptr));
> if p # null then begin

> L.place := p.place;
> L.offset := null;
> end

> else error(“var undefined”,id.name);}

Compiler notes #6, 20070608, Tsan-sheng Hsu

21

Compute addresses for array elements

L — Elist |

> {L.offset := newtemp();
> gen(L.offset,“:=",Flist.elesize, “x”,FElist.place); freetemp(FElist.place);
> L.place := FElist.base;}

FElist — Flist;, E

> { t := newtemp(); m := Elist;.ndim + 1;

> gen(t, “:=",FElist,.place,*“x” limit(FElist,.array,m));

> gen(t,“:=",t,“+”,E.place); freetemp(E.place);

> FElist.array := FElist,.array; FElist.place := t; Flist.ndim := m; }

FElist - id | E
> {FElist.place := E.place; Elist.ndim := 1;
> p := lookup(id.name,top(tblptr)); check for id errors;

> FElist.elesize := p.size; Flist.base := p.base;
> FElist.array := p.place;}

E —id
> {p := lookup(id.name,top(tblptr)); check for id errors;
> E.place := p.place;}

Compiler notes #6, 20070608, Tsan-sheng Hsu

22

Boolean expressions

Two choices for implementation:

o Numerical representation: encode true and false values numerically,
and then evaluate analogously to an arithmetic expression.

> 1: true; O: false.
> #£ 0: true; 0: false.

o Flow of control: representing the value of a boolean expression by a
position reached in a program.

Short-circuit code.

o Generate the code to evaluate a boolean expression in such a way that
it is not necessary for the code to evaluate the entire expression.
o if a; or ay
> aj is true, then as is not evaluated.

o Similarly for “and”.
e Side effects in the short-circuited code are not carried out.
> Example: (a > 1) and (p—function(---) > 100)

> if the calling of p_function() creates some side effects, then this side
effect is not carried out in the case of (a > 1) being false.

Compiler notes #6, 20070608, Tsan-sheng Hsu 23

Numerical representation

B — id; relop ids
» {B.place := newtemp();

o gen(“if”, id;. place relop.op, ids.place, “goto” ,nextstat+3);

» gen(B.place,“:=",“0");
o gen(“goto”, nextstat+2)
o gen(B.place,“:=",“1");}

Example: translatmg (e <bor c<d and e < f) using no

short-circuit evaluation.

100: if a < b goto 103
101: t1 := 0

102: goto 104

103: t1 := 1 /* true */
104: if ¢ < d goto 107
105: t2 := 0 /* false */
106: goto 108

Compiler notes #6, 20070608, Tsan-sheng Hsu

107 :
108:
109:
110:
111:
112:
113:

t2 =1
if e < £ goto 111

t3 := 0

goto 112

t3 := 1

t4d := t2 and t3
t3 := t1 or t4

24

Flow of control representation

Production

Semantic actions

B — 1dq relop ids

S — if B then S;

B.true := newlabel();
B.false := newlabel();

B.code := gen(“if”,idy,relop,ids, “goto”,

B.true, “else”, “goto”, B.false) ||

w.”

gen(B.true,“:”)

S.code := B.code || Sy.code
| gen(B.false,“:”)

| is the code concatenation operator.
Uses only S-attributed definitions.

Compiler notes #6, 20070608, Tsan-sheng Hsu

25

If-then: YACC implementation

B — idy relop ids
o { B.true := newlabel();
B.false := newlabel();

o
o gen(“if”,id;,relop,ids, “goto”, B.true,“else”,“goto”, B.false);
o

gen(B.true,“:”);}

S — if B then 5;
o {gen(B.false,*“:");}

» (0 B.true

s {0 B.falst

B.code
B.true:

S, .code
B.false:

if—then

Compiler notes #6, 20070608, Tsan-sheng Hsu

If-then-else: L-attributed defs.

Production

Semantic actions

P— S

B — idy relop ids

S — if B then S else So

S.next := newlabel();
P.code := S.code || gen(S.next,”:”)

B.true := newlabel();

B.false := newlabel();

B.code := gen(“if”,idy,relop,ids, “goto”,
B.true,“else” ,“goto”, B.false) ||

@,

gen(B.true,“:”)

Si.next := S.next;
So.next := S.next;

S.code := B.code || Sy.code ||
gen(“goto”,S.next) || gen(B.false,”:”) || Sa.code

Need to use inherited attributes of S to define the attributes of

Sl and SQ.

Solutions: Back-patching or rewriting syntax directed defs.

Compiler notes #6, 20070608, Tsan-sheng Hsu

27

If-then-else: S-attributed defs. (1/2)

B — dy relop ids
o { B.true := newlabel();
o B.false := newlabel();
o gen(“if”,idy,relop,id,, “goto”,
B.true, “else”, “goto”, B.false);
o gen(B.true,“:");}
S — if B then S; M; else M, S5
o {S.next := Mj.next;
o gen(‘“goto”,S.next);
 gen(B.false,“:");
o gen(“goto”,M,.label);
o gen(S.next,“:");}
My — €
o {Mj.next := newlabel();
» gen(‘“goto”,)M3.next);}
My — €
o {Mj.label := newlabel();
o gen(Mg.label,*:);}

Compiler notes #6, 20070608, Tsan-sheng Hsu

Bcode T to B.true
- ' -+ to B.fals¢
true:
S .code
goto S.next
S .begin
S .code
goto S.next
B.false] _
goto S .begin
S.next:
if-then—else

28

If-then-else: S-attributed defs. (2/2)

The code is ugly and slow.
Use a post-processing optimization package to rewrite these

ugly and slow codes.
o If the next instruction after a label is a goto, then de-referencing this

label.
o That is, the followings are equivalent.

> goto labell;

labell:
goto label2;

> goto label2;

labell:
goto label2;

Another form of back-patching.

Compiler notes #6, 20070608, Tsan-sheng Hsu 29

While loop

Production Semantic actions

B — idy relop idy | B.true := newlabel();

B .false := newlabel();

B.code := gen(“if”,idy,relop,ids, “goto”,
B.true, “else”, “goto”, B.false) ||
gen(B.true,“:”)

S — while B do S7 | S.begin := newlabel();

S.code := gen(S.begin,”:”) ||
B.code || Si.code ||
gen(“goto”,S.begin) || gen(B.false,”:”)

Uses only S-attributed definitions.

Compiler notes #6, 20070608, Tsan-sheng Hsu

While loop: YACC implementation

B — id; relop idy
o { B.true := newlabel();
» B.false := newlabel();
o gen(“if”,idy,relop,id,, “goto”,

B.true, “else” , “goto”, B.false);
o gen(B.true,:");}
S — while M5 B do S
o {S.begin := M;.begin;
o gen(“goto”,S.begin);
o gen(B.false,“:");}
M5 — €
o {Mj;.begin := newlabel();
o gen(Ms;.begin,“:”);}

Compiler notes #6, 20070608, Tsan-sheng Hsu

S.begin:
3 cod —to B.true
O 1 toBfase
B.true;
S.code
goto S.begin
B.false:
while loop

31

Case/Switch statement

C-like syntax:
o switch expr{
o case V[1]: S[1]

o .-
o case V|k|: S|k]
o default: S|d]
° }
Translation sequence:
o Evaluate the expression.

e Find which value in the list matches the value of the expression, match

default only if there is no match.
e Execute the statement associated with the matched value.

How to find the matched value:

o Sequential test.
o Look-up table.

o Hash table.

o Back-patching.

Compiler notes #6, 20070608, Tsan-sheng Hsu

32

Implementation of case statements (1/2)

Two different translation schemes for sequential test.

code to evaluate E into t
goto test
L[1]: code for S[1]

goto next

L[k]: code for S[k]
goto next

L[d]: code for S[d]
goto next

test:
if t

V[1] goto LI[1]
if t = V[k] goto L[k]
goto LI[d]

next:

Can easily be converted into a lookup table!

Compiler notes #6, 20070608, Tsan-sheng Hsu

code to evaluate E into t
if t <> V[1] goto L[1]
code for S[1]
goto next

L[1]: if t <> V[2] goto LI[2]
code for S[2]
goto next

L[k-1]: if t <> V[k] goto L[k]
code for S[k]
goto next

L[k]: code for S[d]

next:

33

Implementation of case statements (2/2)

Use a table and a loop to find the address to jump.

V[l] I—[l] ”\>L[1]Z

vizl | Lz -
vial | L3 \
L[2]:

S

2]

Hash table: when there are more than 10 entries, use a hash
table to find the correct table entry.
Back-patching:
o Generate a series of branching statements with the targets of the
jumps temporarily left unspecified.
o To-be-determined label table: each entry contains a list of places that

need to be back-patched.
o Can also be used to implement labels and goto’s.

Compiler notes #6, 20070608, Tsan-sheng Hsu 34

Procedure calls

Space must be allocated for the A.R. of the called procedure.

Arguments are evaluated and made available to the called
procedure in a known place.

Save current machine status.

When a procedure returns:

e Place return value in a known place;
e Restore A.R.

Compiler notes #6, 20070608, Tsan-sheng Hsu 35

Example for procedure call

Example:
o S — call id(FElist)
> {for each item p on the queue Elist.queue do
> gen(“PARAM?”, q);
> gen(“call”, id.place);}

o Flist - Elist, E
> {append E.place to the end of Elist.queue}

o Flist — F

> {initialize Flist.queue to contain only E.place}

Idea:

o Use a queue to hold parameters, then generate codes for parameters.

o Sample object code:
code for E/, store in tq

code for Ey, store in t;
PARAM t,

PARAM ¢ty
call p

AYZRR VAR VARR VARR VARR VARR V4

Compiler notes #6, 20070608, Tsan-sheng Hsu

36

Parameter passing

Terminology:
e procedure declaration:

> parameters, formal parameters, or formals.

e procedure call:
> arguments, actual parameters, or actuals.

The value of a variable:
e r-value: the current value of the variable.

> right value
> on the right side of assignment

o [-value: the location/address of the variable.

> left value
> on the left side of assignment

o Example: z :=y

Four different modes for parameter passing
o call-by-value
o call-by-reference
o call-by-value-result(copy-restore)
o call-by-name

Compiler notes #6, 20070608, Tsan-sheng Hsu

37

Call-by-value

Usage:
o Used by PASCAL if you use non-var parameters.
o Used by C++ if you use non-& parameters.
e The only thing used in C.

Idea:
o calling procedure copies the r-values of the arguments into the called
procedure’s A.R.

Effect:

o Changing a formal parameter (in the called procedure) has no effect
on the corresponding actual. However, if the formal is a pointer, then
changing the thing pointed to does have an effect that can be seen in
the calling procedure.

. . main ()
¥01ipf£12F *D) {int *q = malloc(sizeof (int));
Example: b = NULL: ;%=O§
} V3

e In main, g will not be affected by the call of f.
o That is, it will not be NULL after the call.
o However, the value pointed to by ¢ will be changed from 0 to 5.

Compiler notes #6, 20070608, Tsan-sheng Hsu 38

Call-by-reference (1/2)

Usage:
o Used by PASCAL for var parameters.

o Used by C++ if you use & parameters.
o FORTRAN.

Idea:
o Calling procedure copies the [-values of the arguments into the called
procedure’s A.R. as follows:
> If an argument has an address then that is what is passed.

> If an argument is an expression that does not have an [-value (e.g.,
a + 6), then evaluate the argument and store the value in a temporary
address and pass that address.

Effect:

o Changing a formal parameter (in the called procedure) does affect the
corresponding actual.
o Side effects.

Compiler notes #6, 20070608, Tsan-sheng Hsu 39

Call-by-reference (2/2)

FORTAN quirk /* using C++ syntax */
void mistake(int & x)
{x = x+1;}
Example: main()
{mistake(1);
cout<<1;

+

e In C++, you get a warning from the compiler because z is a reference
parameter that is modified, and the corresponding actual parameter is
a literal.

e The output of the program is 1.

e However, in FORTRAN, you would get no warning, and the output may
be 2. This happens when FORTRAN compiler stores 1 as a constant
at some address and uses that address for all the literal “1” in the
program.

o In particular, that address is passed when “mistake()” is called, and
is also used to fetch the value to be written by “count”. Since
“mistake()” increases its parameter by 1, that address holds the value
2 when it is executed.

Compiler notes #6, 20070608, Tsan-sheng Hsu 40

Call-by-value-result

Usage: FORTRAN IV and ADA.

Idea:
e Value, not address, is passed into called procedure’s A.R.

e When called procedure ends, the final value is copied back into the

argument’s address.

Equivalent to call-by-reference except when there is aliasing.
o “Equivalent” in the sense the program produces the same results, NOT

the same code will be generated.
o Aliasing : two expressions that have the same [-value are called

aliases. That is, they access the same location from different places.

e Aliasing happens through pointer manipulation.
> call-by-reference with an argument that can also be accessed by the
called procedure directly, e.g., global variables.
> call-by-reference with the same expression as an argument twice; e.g.,

test(x,y, x).

Compiler notes #6, 20070608, Tsan-sheng Hsu 41

Call-by-name (1/2)

Usage: Algol.

Idea: (not the way it is actually implemented.)

o Procedure body is substituted for the call in the calling procedure.

o Each occurrence of a parameter in the called procedure is replaced
with the corresponding argument, i.e., the TEXT of the parameter,
not its value.

o Similar to macro substitution.

o ldea: a parameter is not evaluated unless its value is needed during

the computation.

Compiler notes #6, 20070608, Tsan-sheng Hsu 42

Call-by-name (2/2)

main ()
void init(int x, int y) { int j;
. { for(int k = 0; k <10; k++) int A[10];
Example: { x++: v = 0.} j = -1
} . init(j,A[j1);
Conceptual result of substitution:
main ()
{ int j;
int A[10];
J = ~1;
for(int k = 0; k<10; k++)
{ j++; /* actual j for formal x */

A[j]l = 0; /* actual A[j] for formal y */
by
by

Call-by-name is not really implemented like macro expansion.
Recursion would be impossible, for example, using this approach.

Compiler notes #6, 20070608, Tsan-sheng Hsu 43

How to implement call-by-name?

Instead of passing values or addresses as arguments, a function
(or the address of a function) is passed for each argument.

These functions are called thunks. , i.e., a small piece of code.

Each thunk knows how to determine the address of the

corresponding argument.
e Thunk for j: find address of ;

o Thunk for A[j]: evaluate j and index into the array A; find the address
of the appropriate cell.
Each time a parameter is used, the thunk is called, then the

address returned by the thunk is used.
e y = 0: use return value of thunk for y as the [-value.
e x = x + 1: use return value of thunk for x both as /-value and to get
r-value.
o For the example above, call-by-reference executes A[1] = 0 ten times,
while call-by-name initializes the whole array.

Note: call-by-name is generally considered a bad idea, because
it is hard to know what a function is doing — it may require
looking at all calls to figure this out.

Compiler notes #6, 20070608, Tsan-sheng Hsu 44

Advantages of call-by-value

Consider not passing pointers.
No aliasing.
Arguments are not changed by procedure call.

Easier for static optimization analysis for both programmers and
the complier.

Example:

x = 0;

Y(x); /* call-by-value */

z = x+1; /* can be replaced by z=1 for optimization */

Compared with call-by-reference, code in the called function is
faster because of no need for redirecting pointers.

Compiler notes #6, 20070608, Tsan-sheng Hsu 45

Advantages of call-by-reference

Efficiency in passing large objects.
Only need to copy addresses.

Compiler notes #6, 20070608, Tsan-sheng Hsu

46

Advantages of call-by-value-result

If there is no aliasing, we can implement call-by-value-result
using call-by-reference for large objects.

No implicit side effects if pointers are not passed.

Compiler notes #6, 20070608, Tsan-sheng Hsu 47

Advantages of call-by-name

More efficient when passing parameters that are never used.
Example:

P(Ackerman(5),0,3)
/* Ackerman’s function takes enormous time to compute */

function P(int a, int b, int c)

{ if(odd(c)){

return(a)
}else{ return(b) }

+

Note: if the condition is false, then, using call-by-name, it is
never necessary to evaluate the first actual at all.

This saves lots of time because evaluating a takes a long time.

Compiler notes #6, 20070608, Tsan-sheng Hsu 48

