Depth-First Iterative-Deepening: An Optimal Admissible Tree Search by R. E. Korf

Tsan-sheng Hsu

徐讚昇

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

Abstract

- The complexities of various search algorithms are considered in terms of time, space, and cost of the solution paths.
 - Brute-force search
 - ▶ Breadth-first search (BFS)
 - ▶ Depth-first search (DFS)
 - ▶ Depth-first Iterative-deepening (DFID)
 - ▶ Bi-directional search
 - Heuristic search: best-first search
 - $\triangleright A^*$
 - $\triangleright IDA^*$
- The issue of storing information in DISK instead of main memory.
- Solving 15-puzzle.

Definitions

- ullet Node branching factor b: the number of different new states generated from a state.
 - Average node branching factor.
 - Assumed to be a constant here.
- Edge branching factor e: the number of possible new, maybe duplicated, states generated from a state.
 - Average node branching factor.
 - Assumed to be a constant here.
- Depth of a solution d: the shortest length from the initial state to one of the goal states
 - The depth of the root is 0.
- A search program finds a goal state starting from the initial state by exploring states in the state space.
 - Brute-force search
 - Heuristic search

Brute-force search

- A brute-force search is a search algorithm that uses information about
 - the initial state,
 - operators on finding the states adjacent to a state,
 - and a test function whether a goal is reached.
- **A** "pure" brute-force search program.
 - A state maybe re-visited many times.
- An "intelligent" brute-force search algorithm.
 - Make sure a state will be visited a limited number of times.
 - ▶ Make sure a state will be eventually visited.

A "pure" brute-force search

- A "pure" brute-force search is a brute-force search algorithm that does not care whether a state has been visited before or not.
- Algorithm Brute-force (N_0)
 - $\{*$ do brute-force search from the starting state $N_0 *\}$
 - current $\leftarrow N_0$
 - While true do
 - ▶ If current is a goal, then return success
 - \triangleright current \leftarrow a state that can reach current in one step

Comments

- Very easy to code and use very little memory.
- May take infinite time because there is no guarantee that a state will be eventually visited.

Intelligent brute-force search

- An "intelligent" brute-force search algorithm.
 - ullet Assume S is the set of all possible states
 - ullet Use a systematic way to examine each state in S one by one so that
 - ▶ A state is not examined too many times does not have too many duplications.
 - \triangleright It is efficient to find an unvisited state in S.
- Need to know whether a state has been visited before efficiently.
- Some notable algorithms.
 - Breadth-first search (BFS).
 - Depth-first search (DFS) and its variations.
 - Depth-first Iterative deepening (DFID).
 - Bi-directional search.

Breadth-first search (BFS)

- deeper(N): gives the set of all possible states that can be reached from the state N.
 - It takes at least O(e) time to compute deeper(N).
 - The number of distinct elements in deeper(N) is b.
- Algorithm BFS(N_0) {* do BFS from the starting state N_0 *}
 - If the starting state N_0 is a goal, then return success
 - Initialize a Queue Q
 - Add N_0 to Q
 - While Q is not empty do
 - \triangleright Remove a state N from Q
 - ▶ If one of the states in deeper(N) is goal, then return success
 - ightharpoonup Add states in deeper(N) that have not been visited before to Q;
 - ▶ Mark these newly added states as visited; if there are duplications in deeper(N), add only once;
 - Return fail

BFS: analysis

Space complexity:

- \bullet $O(b^d)$
 - \triangleright The average number of distinct elements at depth d is b^d .
 - ▶ We need to store all distinct elements at depth d in the Queue.
 - ▶ We need to keep a record on visited nodes in order not to re-visit them.

Time complexity:

- $1*e+b*e+b^2*e+b^3*e+\cdots+b^{d-1}*e=(b^d-1)*e/(b-1)=O(b^{d-1}*e)$, if b is a constant.
 - \triangleright For each element N in the Queue, it takes at least O(e) time to find deeper(N).
 - ightharpoonup It is always true that $e \geq b$.

BFS: comments

- Always finds an optimal solution, i.e., one with the smallest possible depth d.
 - Do not need to worry about falling into loops.
- Most critical drawback: huge space requirement.
 - It is tolerable for an algorithm to be 100 times slower, but not so for one that is 100 times larger.

BFS: ideas when there is little memory

- What can be done when you do not have enough main memory?
 - DISK
 - ▶ Store states that has been visited before into DISK and maintain them as sorted.
 - ▶ Store the QUEUE into DISK.
 - Memory: buffers
 - ▶ Most recently visited nodes.
 - ▶ Candidates of possible newly explored nodes.
 - Merge the buffer of visited nodes with the one in DISK when memory is full.
 - ▶ We only need to know when a newly explored node has been visited or not when it is about to be removed from the QUEUE.
 - ▶ The decision of whether it has been visited or not can be delayed.
 - Append the buffer of newly explored nodes to the QUEUE the DISK when memory is full or it is empty.

BFS: disk based

- Algorithm BFS_{disk}(N_0) $\{*$ do disk based BFS from the starting state $N_0 *\}$ • If the starting state N_0 is a goal, then return success • Initialize a Queue Q_d using DISK • Initialize a buffer Q_m of potential states to visit using main memory • Initialize a sorted list V_d of visited nodes using DISK • Initialize a buffer V_m of visited nodes using main memory • Add N_0 to Q_d • While Q_d and Q_m are not both empty do ightharpoonup If Q_d is empty, then { Sort Q_m ; Write Q_m to Q_d ; Empty Q_m } \triangleright Remove a state N from Q_d \triangleright Add N to V_m \triangleright If V_m is full, then { Sort V_m ; Merge V_m into V_d ; Empty V_m } ightharpoonup If one of the states in deeper(N) is goal, then return success ightharpoonup Add unvisited states in deeper(N) to Q_m ; Mark them as visited; \triangleright If Q_m is full, then { Sort Q_m ; Add states in Q_m that are not in V_d and V_m to Q_d ;
 - Return fail

Empty Q_m }

Disk based algorithms (1/3)

- When data cannot be loaded into the memory, you need to re-invent algorithms even for tasks that may look simple.
 - Batched processing.
 - ▶ Accumulate tasks and then try to perform these tasks when they need to.
 - ▶ Combine tasks into one to save disk I/O time.
 - ▶ Order disk accessing patterns.

Main ideas:

- When two files are sorted, it is cost effective to compare the difference of them.
- It is not too slow to read all records of a large file in sequence.
- It is very slow and cost a lot to read every record in a large file in a random order.

Disk based algorithms (2/3)

- Implementation of the QUEUE.
 - QUEUE can be stored in one disk file.
 - Newly explored ones are appended at the end of the file.
 - Retrieve the one at the head of the file.
- A newly explored node will be explored after the current QUEUE is empty.

Disk based algorithms (3/3)

- How to find out a list of newly explored nodes have been visited or not?
 - Maintain the list of visited nodes on DISK sorted.
 - ▶ When the member buffer is full, sort it.
 - ▶ Merge the sorted list of newly visited nodes in buffer into the one stored on DISK.
 - We can easily compare two sorted lists and find out the intersection or difference of the two.
 - \triangleright We can easily remove the ones that are already visited before once Q_m is sorted.
 - \triangleright To revert items in Q_m back to its the original BFS order, which is needed for persevering the BFS search order, we need to sort again using the original BFS ordering.
- Why we can delay the decision of whether a newly explored node has been visited or not?
 - We only need to know when a newly explored node has been visited or not when it is about to be removed from the QUEUE.
 - The decision of whether it has been visited or not can be delayed.

Depth-first search (DFS)

- next(current, N): returns the state next to the state "current" in deeper(N).
 - Assume states in deeper(N) are given a linear order with dummy first and last elements both being null, and assume $current \in deeper(N)$.
 - Assume we can efficiently generate next(current,N) based on "current" and N.
- Algorithm DFS(N_0) {* do DFS from the starting state N_0 *}
 - Initialize a Stack S
 - Push $(null, N_0)$ to S
 - ullet While S is not empty do
 - \triangleright **Pop** (current, N) from S
 - $ightharpoonup R \leftarrow next(current, N)$
 - ▶ If R is a goal, then return success
 - \triangleright If R is null, then continue $\{*$ searched all children of N $*\}$
 - \triangleright **Push** (R, N) **to** S
 - \triangleright If R is already in S, then continue $\{* to avoid loops *\}$
 - \triangleright Push (null, R) to $S \{* search deeper *\}$
 - ▷ Can introduce some cut-off depth here in order not to go too deep
 - Return fail

DFS: analysis

Time complexity:

- \bullet $O(e^d)$
 - ightharpoonup The number of possible branches at depth d is e^d .

Space complexity:

- *O*(*d*)
 - ▶ Only need to store the current path in the Stack.

Comments:

- Without a good cut-off depth, it may not be able to find a solution in time.
- May not find an optimal solution at all.
- Heavily depends on the move ordering.
 - ▶ Which one to search first when you have multiple choices for your next move?
- A node can be searched many times.
 - ▶ Need to do something, e.g., hashing, to avoid researching too much.
 - ▶ Need to balance the effort to memorize and the effort to research.
- Most critical drawback: huge and unpredictable time complexity.

DFS: when there is little memory

- Need to have a hash table to store the set of visited nodes in order not to visit a node too many times.
 - We need to decide instantly whether a node is visited or not.
 - The decision of whether a node is visited or not cannot be delayed.
 - ▶ Batch processing is not working here.
 - ▶ It takes too much time to handle a disk based hash table.
- Use data compression and/or bit-operation techniques to store as many visited nodes as possible.
 - Some nodes maybe visit again and again.
 - Need a good heuristic to store the most frequently visited nodes.
 - ▶ Avoid swapping too often.

DFS with a depth limit

- Do DFS from the starting state N_0 without exceeding a given depth limit.
 - length(x,y): the number of edges between a shortest path from the node x and the node y.
 - Depth of a node x in a tree = length(root, x).
- lacksquare Algorithm DFS $_{depth}(N_0, limit)$
 - ullet Initialize a Stack S
 - Push $(null, N_0)$ to S where N_0 is the initial state
 - While S is not empty do
 - \triangleright **Pop** (current, N) from S
 - $ightharpoonup R \leftarrow next(current, N)$
 - ▶ If R is a goal, then return success
 - \triangleright If R is null, then continue $\{*$ searched all children of N $*\}$
 - \triangleright If length $(N_0, R) > limit$, then continue $\{* cut off *\}$
 - \triangleright **Push** (R, N) to S
 - \triangleright If R is already in S, then continue $\{* \text{ to avoid loops } *\}$
 - \triangleright Push (null, R) to $S \{* search deeper *\}$
 - Return fail

Depth-first iterative-deepening (DFID)

- DFS $_{depth}(N, limit)$: DFS from the starting state N and with a depth cut off at the depth limit
- Algorithm DFID(N_0 , cut_off_depth) {* do DFID from the starting state N_0 with a depth limit cut_off_depth *}
 - $limit \leftarrow 0$
 - While $limit < cut_off_depth$ do
 - ▶ If $DFS_{depth}(N_0, limit)$ finds a goal state g, then return g as the found goal state
 - \triangleright $limit \leftarrow limit + 1$
 - Return fail
- Space complexity:
 - *O*(*d*)

Time complexity of DFID (1/2)

- The branches at depth i are generated d i + 1 times.
 - There are e^i branches at depth i.
- lacktriangle Total number of branches visited M(e,d) is

$$(d+1)e^0 + de^1 + (d-1)e^2 + \dots + 2e^{d-1} + e^d$$

$$= e^d (1 + 2e^{-1} + 3e^{-2} + \dots + (d+1)e^{-d})$$

$$\leq e^d (1 - 1/e)^{-2} \text{ if } e > 1$$

Analysis:

$$(1-x)^{-2} = 1/(1-2x+x^2) = 1+2x+3x^2+\cdots+kx^{k-1}+(k+1)x^k-kx^{k+1}.$$

▶ Hence
$$1 + 2x + 3x^2 + \cdots + kx^{k-1} \le (1-x)^{-2}$$
, if $|x| < 1$.

 \triangleright Since |x| < 1,

$$\lim_{k \to \infty} ((k+1)x^k - kx^{k+1}) = 0.$$

▶ If k is large enough and |x| < 1, then $(1-x)^{-2} \approx 1 + 2x + 3x^2 + \cdots + kx^{k-1}$.

Time complexity of DFID (2/2)

- Let M(e,d) be the total number of branches visited by DFID with an edge branching factor of e and depth d.
- Examples:
 - When e = 2, $M(e, d) \le 4e^d$.
 - When e = 3, $M(e, d) \le 9/4e^d$.
 - When e = 4, $M(e, d) \le 16/9e^d$.
 - When e = 5, $M(e, d) \le 25/16e^d$.
 - $M(e,d) = O(e^d)$ with a small constant factor.

DFID: comments

- No need to worry about a good cut-off depth as in DFS.
- Still need a mechanism to decide instantly whether a node has been visited before or not.
- Good for a tournament situation where each move needs to be made in a limited amount of time.
- **Q**:
- ▶ Does DFID always find an optimal solution?
- ▶ How about BFID?

DFS with depth limit and direction (1/2)

- Two refined service routines when direction of the search is considered:
 - DFS $_{dir}(B,G,successor,i)$: DFS with the set of starting states B, goal states G, successor function and depth limit i.
 - $next_{dir}(current, successor, N)$: returns the state next to the state "current" in successor(N).
- In the above two routines:
 - successor is deeper for forward searching
 - successor is prev for backward searching
- Note:
 - Given a state N, prev(N) gives all states that can reach N in one step.
 - Given a state N, deeper(N) gives the set of all possible states that can be reached from the state N in one step.

DFS with depth limit and direction (2/2)

- DFS $_{dir}(B,G,successor,i)$: DFS with the set of starting states B, goal states G, successor function and depth limit i.
- Algorithm DFS $_{dir}(B, G, successor, limit)$
 - Initialize a Stack S
 - ullet For each possible starting state t in B do
 - \triangleright **Push** (null, t) **to** S
 - While S is not empty do
 - \triangleright **Pop** (current, N) **from** S
 - $ightharpoonup R \leftarrow next_{dir}(current, successor, N)$
 - \triangleright If R is a goal in G, then return success
 - \triangleright If R is null, then continue {* searched all children of N *}
 - ightharpoonup If length(B, R) > limit, then continue {* cut off *}
 - \triangleright **Push** (R, N) **to** S
 - \triangleright If R is already in S, then continue $\{* to avoid loops *\}$
 - \triangleright Push (null, R) to $S \{* search deeper *\}$
 - Return fail
- Note length (B,x) is the length of a shortest path between the state x and a state in B.

Bi-directional search

- Combined with iterative-deepening.
- DFS_{dir}(B, G, successor, i): DFS with the set of starting states B, goal states G, successor function and depth limit i.
 - successor is deeper for forward searching
 - successor is prev for backward searching
 - \triangleright Given a state S_i , $prev(S_i)$ gives all states that can reach S_i in one step.
- Algorithm BDS(N_0 , cut_off_depth)
 - $limit \leftarrow 0$
 - while $limit < cut_off_depth$ do
 - ▷ if $DFS_{dir}(\{N_0\}, G, deeper, limit)$ returns success, then return success $\{* \text{ forward searching } *\}$ else store all states at depth = limit in an area H
 - ightharpoonup if $DFS_{dir}(G, H, prev, limit)$ returns success, then return success $\{* backward searching *\}$
 - \triangleright if $DFS_{dir}(G, H, prev, limit + 1)$ returns success, then return success $\{*$ in case the optimal solution is odd-lengthed $*\}$
 - \triangleright $limit \leftarrow limit + 1$
 - return fail
- ullet Backward searching at depth = limit + 1 is needed to find odd-lengthed optimal solutions.

Bi-directional search: analysis

- Time complexity:
 - $O(e^{d/2})$
- Space complexity:
 - $O(e^{d/2})$: needed to store the half-way meeting points H.
- Comments:
 - Run well in practice.
 - Depth of the solution is expected to be the same for a normal unidirectional search, however the number of nodes visited is greatly reduced.
 - Pay the price of storing solutions at half depth.
 - Need to know how to enumerate the set of goals.
 - Trade off between time and space.
 - ▶ What can be stored on DISK?
 - ▶ What operations can be batched?
 - Q:
- ▶ How about using BFS in forward searching?
- ▶ How about using BFS in backward searching?
- ▶ How about using BFS in both directions?

Heuristic search

- Heuristics: criteria, methods, or principles for deciding which among several alternative courses of actions promises to be the most effective in order to achieve some goal [Judea Pearl 1984].
 - Need to be simple and effective in discriminate correctly between good and bad choices.
- A heuristic search is a search algorithm that uses information about
 - the initial state,
 - operators on finding the states adjacent to a state,
 - a test function whether a goal is reached, and
 - heuristics to pick the next state to explore.
- **A** "good" heuristic search algorithm:
 - States that are not likely leading to the goals will not be explored further.
 - ▶ A state is cut or pruned.
 - States are explored in an order that are according to their likelihood of leading to the goals \rightarrow good move ordering.

Heuristic search: A*

- Combining DFID with best-first heuristic search such as A*.
- A* search: branch and bound with a lower-bound estimation.
- Algorithm $A^*(N_0)$
 - Initialize a Priority Queue PQ to store partial paths with the key the cost of this path.
 - \triangleright Initially, store only a path with the starting node N_0 only.
 - \triangleright Paths in PQ are sorted according to their current cost plus a lower bound on the remaining distances.
 - While PQ is not empty do
 - \triangleright Remove a path P with the least cost from PQ
 - ▶ 11: If the goal is found, then return success
 - ▶ 12: Find extended paths from P by extending one step
 - ▶ Insert all generated paths to PQ
 - \triangleright Update PQ
 - ▶ If two paths reach a common node then keep only one with the least cost
 - Return fail

A* algorithm

Cost function:

- Given a path P,
 - \triangleright let g(P) be the current cost of P;
 - \triangleright let h(P) be the estimation of remaining, or heuristic cost of P;
 - ightharpoonup f(P) = g(P) + h(P) is the cost function.
- How to find a good h() is the key of an A^* algorithm?
- It is known that if h() never overestimates the actual cost to the goal (this is called admissible), then A^* always finds an optimal solution.
 - ▶ *Q*: How to prove this?

Checking of the termination condition:

- We need check for a goal only when a path is popped from the PQ, i.e., at Line 11.
- We cannot check for a goal when a path is generated and inserted into the PQ, i.e., at Line 12.
 - ▶ We will not be able find the optimal solution if we do the checking at Line 12.

A* algorithm: Comments

- When a path is inserted, check for whether it has reached some nodes that have been visited before.
 - ▶ It may take a huge space and a clever algorithm to implement an efficient Priority Queue.
 - ▶ It may need a clever data structure to efficiently check for possible duplications.

Cost function:

- Need an lower bound estimation that is as large as possible.
- Can design the cost function so that A* emulates the behavior of other search routines.
- It consumes a lot of memory to record the set of visited nodes.
- It also consume a lot of memory to store PQ.
- **Q**:
- ▶ What disk based techniques can be used?
- \triangleright Why do we need a non-trivial h(P) that is admissible?
- ▶ How to design an admissible cost function?

DFS with a threshold

- DFS $_{cost}(N, f, threshold)$ is a version of DFS with a starting state N and a cost function f that cuts off a path when its cost is more than a given threshold.
 - DFS_{depth} (N, cut_off_depth) is a special version of DFS_{cost}(N, f, threshold).
- Algorithm DFS $_{cost}(N_0, f, threshold)$
 - Initialize a Stack S
 - Push $(null, N_0)$ to S where N_0 is the initial state
 - While S is not empty do
 - \triangleright Pop (current, N) from S
 - ▶ If current is a goal, then return success {* Goal is found! *}
 - $\triangleright R \leftarrow next(current, N)$ {* pick a good move ordering here *}
 - \triangleright If R = null, then continue; {* searched all children of N *}
 - $\verb| If $f(P) > threshold$, then continue where P is the current path $\{*$ cut off $*\}$$
 - \triangleright **Push** (R, N) **to** S
 - \triangleright If R is already in S, then continue $\{* to avoid loops *\}$
 - \triangleright Push (null, R) to S {* search deeper *}
 - Return fail

How to pick a good move ordering (1/2)

- Instead of just using next(current, N) to find the next unvisited neighbors of N with the information of the last visited node being current, we do the followings.
 - ullet Use a routine to order the neighbors of N so that it is always the case the neighbors are visited from low cost to high cost.
 - Let this routine be next1(current, N).
 - Note we still need dummy first and last elements being null.

How to pick a good move ordering (2/2)

- Algorithm DFS1 $_{cost}(N_0, f, threshold)$
 - Initialize a Stack S
 - Push $(null, N_0)$ to S where N_0 is the initial state
 - While S is not empty do

```
    Pop (current, N) from S
    If current is a goal, then return success
    R ← next1(current, N)
    If R = null, then continue; {* searched all children of N *}
    Let P be the path from N_0 to R
    If f(P) > threshold, then continue {* cut off *}
    Push (R, N) to S
    If R is already in S, then continue {* to avoid loops *}
    Push (null, R) to S {* search deeper *}
```

Return fail

How to incooperate ideas from A*

- Instead of using a stack in DFS $_{cost}$, use a priority queue.
- Algorithm DFS2 $_{cost}(N_0, f, threshold)$
 - Initialize a priority queue PQ
 - Insert $(null, N_0)$ to PQ where N_0 is the initial state
 - While PQ is not empty do
 - ▶ Remove (current, N) with the least cost f(P) for the path P from N_0 to N from PQ
 - ▶ If current is a goal, then return success
 - $ightharpoonup R \leftarrow next1(current, N)$
 - \triangleright If R = null, then continue; {* searched all children of N *}
 - ightharpoonup Let P be the path from N_0 to R
 - \triangleright If f(P) > threshold, then continue $\{*$ cut off $*\}$
 - ightharpoonup Insert (R, N) to PQ
 - \triangleright If R is already in PQ, then continue $\{* \text{ to avoid loops } *\}$
 - \triangleright Insert (null, R) to PQ {* search deeper *}
 - Return fail
- It may be costly to maintain a priority queue as in the case of A^* .

$IDA^* = DFID + A^*$

- DFS $_{cost}(N, f, threshold)$ is a version of DFS with a starting state N and a cost function f that cuts off a path when its cost is more than a given threshold.
- IDA*: iterative-deepening A*
- Algorithm IDA* $(N_0, threshold)$
 - $threshold \leftarrow h(null)$
 - While *threshold* is reasonable do
 - $ightharpoonup DFS_{cost}(N_0, g + h(), threshold)$ {* Can use DFS1_{cost} or DFS2_{cost} here *}
 - ▶ If the goal is found, then return success
 - $ightharpoonup threshold \leftarrow$ the least g(P) + h(P) cost among all paths P being cut
 - Return fail

IDA*: comments

- IDA* does not need to use a priority queue as in the case of A*.
 - IDA* is optimal in terms of solution cost, time, and space over the class of admissible best-first searches on a tree.
- Issues in updating *threshold*.
 - Increase too little: re-search too often.
 - Increase too large: cut off too little.
 - Q: How to guarantee optimal solutions are not cut?
 - ▶ It can be proved, as in the case of A^* , that given an admissible cost function, IDA^* will find an optimal solution, i.e., one with the least cost, if one exists.
- Cost function is the knowledge used in searching.
- Combine knowledge and search!
- Need to balance the amount of time spent in realizing knowledge and the time used in searching.

15 puzzle (1/2)

- Introduction of the game:
 - 15 tiles in a 4*4 square with numbers from 1 to 15.
 - One empty cell.
 - A tile can be slided horizontally or vertically into an empty cell.
 - From an initial position, slide the tiles into a goal position.
- Examples:

• Initial position:

10	8		12
3	7	6	2
1	14	4	11
15	13	9	5

Goal position:

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

15 puzzle (2/2)

- Total number of positions: $16! = 20,922,789,888,000 \le 2.1*10^{13}$.
 - It is feasible, in terms of computation time, to enumerate all possible positions, since 2007.
 - ▶ Can use DFS or DFID now.
 - ▶ Need to avoid falling into loops or re-visit a node too many times.
 - It is still too large to store all possible positions in main memory now (2012).
 - ▶ Cannot use BFS efficiently even now.
 - ▶ Maybe difficult to find an optimal solution.
 - ▶ Maybe able to use disk based BFS.

Solving 15 puzzles

- Using DEC 2060 a 1-MIPS machine: solved the 15 puzzle problem within 30 CPU minutes for all testing positions, generating over 1.5 million nodes per minute.
 - The average solution length was 53 moves.
 - The maximum was 66 moves.
 - IDA* generated more nodes than A*, but ran faster due to less overhead per node.
- Heuristics used:
 - g(P): the number of moves made so far.
 - h(P): the Manhattan distance between the current board and the goal position.
 - ▶ Suppose a tile is currently at (i, j) and its goal is at (i', j'), then the Manhattan distance for this tile is |i i'| + |j j'|.
 - ▶ The Manhattan distance between a position and a goal position is the sum of the Manhattan distance of every tile.
 - $\triangleright h(P)$ is admissible.

What else can be done?

- Bi-directional search and IDA*?
 - How to design a good and non-trivial heuristic function?
- How to get a better move ordering in DFS?
- Balancing in resource allocation:
 - The efforts to memorize past results versus the amount of efforts to search again.
 - The efforts to compute a better heuristic, i.e., the cost function.
 - The amount of resources spent in implementing a better heuristic and the amount of resources spent in searching.
- Can these techniques be applied to two-person games?

References and further readings

- Judea Pearl. Heuristics: Intelligent search strategies for computer problem solving. Assison-Wesley, 1984.
- * R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree search. $Artificial\ Intelligence,\ 27:97-109,\ 1985.$
- R. E. Korf and A. Felner. Disjoint pattern database heuristics. *Artificial Intelligence*, 134:9–22, 2002.