Theory of Computer Games： Selected Advanced Topics

Tsan－sheng Hsu

徐讚昇

tshsu＠iis．sinica．edu．tw
http：／／www．iis．sinica．edu．tw／～tshsu

Abstract

- Some advanced research issues.
- The graph history interaction (GHI) problem.
- Opponent models.
- Searching chance nodes.
- Proof-number search.
- More research topics.

Graph history interaction problem

- The graph history interaction (GHI) problem [Campbell 1985]:
- In a game graph, a position can be visited by more than one paths from a starting position.
- The value of the position depends on the path visiting it.
\triangleright It can be win, loss or draw for Chinese chess.
\triangleright It can only be draw for Western chess and Chinese dark chess.
\triangleright It can only be loss for Go.
- In the transposition table, you record the value of a position, but not the path leading to it.
- Values computed from rules on repetition cannot be used later on.
- It takes a huge amount of storage to store all the paths visiting it.
- This is a very difficult problem to be solved in real time [Wu et al '05] [Kishimoto and Müller '04].

GHI: when loop draws

- Assume if the game falls into a loop, then it is a draw.

GHI: when loop draws

- Assume if the game falls into a loop, then it is a draw.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is draw by rules of repetition. \triangleright Memorized J as a draw position.

GHI: when loop draws

- Assume if the game falls into a loop, then it is a draw.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is draw by rules of repetition. \triangleright Memorized J as a draw position.
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.

GHI: when loop draws

- Assume if the game falls into a loop, then it is a draw.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is draw by rules of repetition. \triangleright Memorized J as a draw position.
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.
- $A \rightarrow B \rightarrow E$ is a loss. Hence B is loss.

GHI: when loop draws

- Assume if the game falls into a loop, then it is a draw.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is draw by rules of repetition. \triangleright Memorized J as a draw position.
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.
- $A \rightarrow B \rightarrow E$ is a loss. Hence B is loss.
- $A \rightarrow C \rightarrow F \rightarrow J$ is draw because J is recorded as draw.
- A is draw because one child is loss and the other chile is draw.

GHI: when loop draws

- Assume if the game falls into a loop, then it is a draw.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is draw by rules of repetition. \triangleright Memorized J as a draw position.
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.
- $A \rightarrow B \rightarrow E$ is a loss. Hence B is loss.
- $A \rightarrow C \rightarrow F \rightarrow J$ is draw because J is recorded as draw.
- A is draw because one child is loss and the other chile is draw.
- However, $A \rightarrow C \rightarrow F \rightarrow J \rightarrow D \rightarrow H$ is a win (for the root).

GHI: when loop wins

- Assume the one causes loops wins the game.

GHI: when loop wins

- Assume the one causes loops wins the game.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is loss because of rules of repetition. \triangleright Memorized J as a loss position (for the root).

GHI: when loop wins

- Assume the one causes loops wins the game.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is loss because of rules of repetition. \triangleright Memorized J as a loss position (for the root).
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.

GHI: when loop wins

- Assume the one causes loops wins the game.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is loss because of rules of repetition. \triangleright Memorized J as a loss position (for the root).
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.
- $A \rightarrow B \rightarrow E$ is a loss. Hence B is loss.

GHI: when loop wins

- Assume the one causes loops wins the game.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is loss because of rules of repetition. \triangleright Memorized J as a loss position (for the root).
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.
- $A \rightarrow B \rightarrow E$ is a loss. Hence B is loss.
- $A \rightarrow C \rightarrow F \rightarrow J$ is loss because J is recorded as loss.
- A is loss because both branches lead to loss.

GHI: when loop wins

- Assume the one causes loops wins the game.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is loss because of rules of repetition.
\triangleright Memorized J as a loss position (for the root).
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.
- $A \rightarrow B \rightarrow E$ is a loss. Hence B is loss.
- $A \rightarrow C \rightarrow F \rightarrow J$ is loss because J is recorded as loss.
- A is loss because both branches lead to loss.
- However, $A \rightarrow C \rightarrow F \rightarrow J \rightarrow D \rightarrow H$ is a win (for the root).

Comments

- Using DFS to search the above game graph from left first or from right first produces two different results.
- Position A is actually a win position.
- Problem: memorize J being draw is only valid when the path leading to it causes a loop.
- Storing the path leading to a position in a transposition table requires too much memory.
- Maybe we can store some forms of hash code to verify it.
- It is still a research problem to use a more efficient data structure.

Opponent models

- In a normal alpha-beta search, it is assumed that you and the opponent use the same strategy.
- What is good to you is bad to the opponent and vice versa!
- Hence we can reduce a minimax search to a NegaMax search.
- This is normally true when the game ends, but may not be true in the middle of the game.
- What will happen when there are two strategies or evaluating functions f_{1} and f_{2} so that
- for some positions $p, f_{1}(p)$ is better than $f_{2}(p)$
\triangleright "better" means closer to the real value $f(p)$
- for some positions $q, f_{2}(q)$ is better than $f_{1}(q)$
- If you are using f_{1} and you know your opponent is using f_{2}, what can be done to take advantage of this information.
- This is called OM (opponent model) search [Carmel and Markovitch 1996].
\triangleright In a MAX node, use f_{1}.
\triangleright In a MIN node, use f_{2}.

Other usage of the opponent model

- Depend on strength of your opponent, decide whether to force an easy draw or not.
- This is called the contempt factor.
- Example in CDC:
- It is easy to chase the king of your opponent using your pawn.
- Drawing a weaker opponent is a waste.
- Drawing a stronger opponent is a gain.
- It is feasible to use a learning model to "guess" the level of your opponent as the game goes and then adapt to its model in CDC [Chang et al 2021].

Opponent models - comments

- Comments:
- Need to know your opponent's model precisely or to have some knowledge about your opponent.
- How to learn the opponent model on-line or off-line?
- When there are more than 2 possible opponent strategies, use a probability model (PrOM search) to form a strategy.
- Remark: A common misconception is if your opponent uses a worse strategy f_{3} than the one, namely f_{2}, used in your model, then he may get advantage.
- This is impossible if f_{2} is truly better than f_{3}.
- If f_{1} can beat f_{2}, then f_{1} can sure beat f_{3}.

Search with chance nodes

- Many stochastic games have nodes whose outcome cannot be decided ahead of time in the game tree.
- A priori chance node: you make a decision first and then followed by a random toss.
\triangleright EinStein Wrfelt Nicht (EWN): you make a random toss to decide what pieces that you can move, and then you make a move.
- A posteriori chance node: a random toss is made first and then you make a decision.
\triangleright Chinese dark chess: you pick a dark piece to flip, and then the piece is revealed decided by a random toss
- Example: Chinese dark chess (CDC)
- Two-player, zero sum
- Complete information
- Perfect information
- Stochastic
- There is a chance node during searching [Ballard 1983].

Previous work

- Alpha-beta based [Ballard 1983]
- Monte-Carlo based [Lancoto et al 2013]

Example (1/4)

- It's BLACK turn and BLACK has 6 different possible legal moves which includes the four different moving made by its elephant and the two flipping moves at a1 or a8.
- It is difficult for BLACK to secure a win by moving its elephant along any of the 3 possible directions, namely up, right or left, or by capturing the RED pawn at the left hand side.

Example (2/4)

- If BLACK flips a1, then there are 2 possible cases.
- If a1 is BLACK cannon, then it is difficult for RED to win.
\triangleright RED guard is in danger.
- If a1 is BLACK king, then it is difficult for BLACK to lose.
$\triangleright B L A C K$ king can go up through the right.

Example (3/4)

- If BLACK flips a8, then there are 2 possible cases. - If a8 is BLACK cannon, then it is easy for RED to win.
\triangleright RED cannon captures it immediately.
- If a8 is BLACK king, then it is also easy for RED to win.
\triangleright RED cannon captures it immediately.

Example (4/4)

Conclusion:

- It is vary bad for BLACK to flip a8.
- It is bad for BLACK to move its elephant.
- It is better for BLACK to flip a1.

Basic ideas for searching chance nodes

- Assume a chance node x has a score probability distribution function $\operatorname{Pr}(*)$ with the range of possible outcomes from 1 to N where N is a positive integer.
- For each possible outcome i, we need to compute $\operatorname{score}(i)$.
- The expected value $E=\sum_{i=1}^{N} \operatorname{score}(i) * \operatorname{Pr}(x=i)$.
- The minimum value is $m=\min _{i=1}^{N}\{\operatorname{score}(i) \mid \operatorname{Pr}(x=i)>0\}$.
- The maximum value is $M=\max _{i=1}^{N}\{\operatorname{score}(i) \mid \operatorname{Pr}(x=i)>0\}$.
- Example: open game in Chinese dark chess.
- For the first ply, $N=14 * 32$.
\triangleright Using symmetry, we can reduce it to $7^{*} 8$.
- We now consider the chance node of flipping the piece at the cell a1.
$\triangleright N=14$.
\triangleright Assume $x=1$ means a BLACK King is revealed and $x=8$ means a RED King is revealed.
\triangleright Then score $(1)=\operatorname{score}(8)$ since the first player owns the revealed king no matter its color is.
$\triangleright \operatorname{Pr}(x=1)=\operatorname{Pr}(x=8)=1 / 14$.

Illustration

Algorithm: Chance_Search (MAX node)

- Algorithm $F 3.0^{\prime}$ (position p, value alpha, value beta, integer depth)
- // max node
- determine the successor positions p_{1}, \ldots, p_{b}
- if $b=0 / /$ a terminal node
or depth $=0 / /$ remaining depth to search
or time is running up // from timing control or some other constraints are met // add knowledge here
- then return $f(p)$ else begin

```
\triangleright m:=-\infty
\triangleright ~ f o r ~ i : = 1 ~ t o ~ b ~ d o
\triangleright begin
\triangleright if p}\mp@subsup{p}{i}{}\mathrm{ is to play a chance node }
    then t := Star0_F3.0'(pi,x,max{alpha,m}, beta,depth - 1)
\triangleright ~ e l s e ~ t ~ : = G 3 . 0 ' ( ~ p o , ~ m a x \{ a l p h a , m \} , b e t a , d e p t h ~ - ~ 1 )
\triangleright \quad \text { if } t > m \text { then } m : = t
\triangleright \quad \text { if } m \geq \text { beta then return( } m \text { ) // beta cut off}
| end
```

- end;
- return m

Algorithm: Chance_Search (MIN node)

- Algorithm $G 3.0^{\prime}$ (position p, value alpha, value beta, integer depth)
- // min node
- determine the successor positions p_{1}, \ldots, p_{b}
- if $b=0 / /$ a terminal node
or depth $=0 / /$ remaining depth to search
or time is running up // from timing control or some other constraints are met // add knowledge here
- then return $f(p)$ else begin

```
\triangleright m:= \infty
for i}:=1\mathrm{ to }b\mathrm{ do
\triangleright begin
\triangleright \quad \text { if } p _ { i } \text { is to play a chance node } x
    then t := Star0_G3.0' ( }\mp@subsup{p}{i}{},x,\mathrm{ alpha,min{beta,m}, depth - 1)
\triangleright ~ e l s e ~ t ~ : = F 3 . 0 ' ( ~ p i , ~ a l p h a , m i n \{ b e t a , m \} , d e p t h ~ - ~ 1 ) ~
\triangleright \quad \text { if } t < m \text { then } m : = t
\triangleright \quad \text { if } m \leq a l p h a ~ t h e n ~ r e t u r n ( m ) ~ / / ~ a l p h a ~ c u t ~ o f f ~
| end
```

- end;
- return m

Algorithm: Star0, uniform case (MAX)

- version when all choices have equal probabilities
- max node
- Algorithm Star0_EQU_F3.0'(position p, node x, value alpha, value beta, integer depth)
- // a chance node x with c equal probability choices k_{1}, \ldots, k_{c}
- // exhaustive search all possibilities and return the expected value
- determine the possible values of the chance node x to be k_{1}, \ldots, k_{c}
- vsum $=0$; // current sum of expected value
- for $i=1$ to c do
- begin
\triangleright let p_{i} be the position of assigning k_{i} to x in p;
\triangleright vsum $+=G 3.0^{\prime}\left(p_{i},-\infty,+\infty\right.$,depth $)$;
- end
- return $v s u m / c$; // return the expected score

Algorithm: Star0, uniform case (MIN)

version when all choices have equal probabilities
min node

- Algorithm Star0_EQU_G3.0'(position p, node x, value alpha, value beta, integer depth)
- // a chance node x with c equal probability choices k_{1}, \ldots, k_{c}
- // exhaustive search all possibilities and return the expected value
- determine the possible values of the chance node x to be k_{1}, \ldots, k_{c}
- vsum $=0$; // current sum of expected value
- for $i=1$ to c do
- begin

$$
\begin{aligned}
& \triangleright \text { let } p_{i} \text { be the position of assigning } k_{i} \text { to } x \text { in } p \text {; } \\
& \triangleright \text { vsum }+=F 3.0^{\prime}\left(p_{i},-\infty,+\infty \text {,depth }\right) \text {; }
\end{aligned}
$$

- end
- return $v s u m / c$; // return the expected score

Star0: note

- depth stays the same since we are unwrapping a chance node.
- The search window from normal alpha-beta pruning cannot be applied in a chance node search since we are looking at the average of the outcome.
- It is okay for one choice to have a very large or small value because it may be evened out by values from other choices.

With a probability distribution: MAX node

- MAX node
- Algorithm Star $0 _F 3.0^{\prime}$ (position p, node x, value alpha, value beta,integer depth)
- // a chance node x with c choices k_{1}, \ldots, k_{c}
- // the i th choice happens with the probability Pr_{i}
- // exhaustive search all possibilities and return the expected value
- determine the possible values of the chance node x to be k_{1}, \ldots, k_{c}
- vexp $=0$; // current sum of expected value
- for $i=1$ to c do
- begin
\triangleright let p_{i} be the position of assigning k_{i} to x in p;
$\triangleright \operatorname{vexp}+=\operatorname{Pr}_{i} * G 3.0^{\prime}\left(p_{i},-\infty,+\infty\right.$, depth $)$;
- end
- return vexp; // return the expected score

With a probability distribution: MIN node

- MIN node
- Algorithm Star0_G3.0'(position p, node x, value alpha, value beta,integer depth)
- // a chance node x with c choices k_{1}, \ldots, k_{c}
- // the i th choice happens with the probability Pr_{i}
- // exhaustive search all possibilities and return the expected value
- determine the possible values of the chance node x to be k_{1}, \ldots, k_{c}
- vexp $=0$; // current sum of expected value
- for $i=1$ to c do
- begin

$$
\begin{aligned}
& \triangleright \text { let } p_{i} \text { be the position of assigning } k_{i} \text { to } x \text { in } p \text {; } \\
& \triangleright \text { vexp }+=\operatorname{Pr}_{i} * F 3.0^{\prime}\left(p_{i},-\infty,+\infty \text {,depth }\right) ;
\end{aligned}
$$

- end
- return vexp; // return the expected score

Ideas for improvements

- During a chance search, an exhaustive search method is used without any pruning.
- Ideas for further improvements
- When some of the best possible cases turn out very bad results, we know lower/upper bounds of the final value.
- When you are in advantage, search for a bad choice first.
\triangleright If the worst choice cannot is not too bad, then you can take this chance.
- When you are in disadvantage, search for a good choice first.
\triangleright If the best choice cannot is not good enough, then there is not need to take this chance.
- Examples: the average of 2 drawings of a dice is similar to a position with 2 possible moves with scores in [1..6].
- The first drawing is 5 . Then bounds of the average:
\triangleright lower bound is 3
\triangleright upper bound is 5.5.
- The first drawing is 1 . Then bounds of the average:
\triangleright lower bound is 1
\triangleright upper bound is 3.5.

Bounds in a chance node

- Assume the various possibilities of a chance node is evaluated one by one in the order that at the end of phase i, the i th choice is evaluated.
- Assume $v_{\min } \leq \operatorname{score}(i) \leq v_{\max }$.
- What are the lower and upper bounds, namely m_{i} and M_{i}, of the expected value of the chance node immediately after the end of phase i ?
- $i=0$.

$$
\begin{aligned}
& \triangleright m_{0}=v_{\min } \\
& \triangleright M_{0}=v_{\max }
\end{aligned}
$$

- $i=1$, we first compute $\operatorname{score}(1)$, and then know

$$
\begin{aligned}
& \triangleright m_{1} \geq \operatorname{score}(1) * \operatorname{Pr}(x=1)+v_{\min } *(1-\operatorname{Pr}(x=1)), \text { and } \\
& \triangleright M_{1} \leq \operatorname{score}(1) * \operatorname{Pr}(x=1)+v_{\max } *(1-\operatorname{Pr}(x=1)) .
\end{aligned}
$$

- $i=i^{*}$, we have computed $\operatorname{score}(1), \ldots, \operatorname{score}\left(i^{*}\right)$, and then know

$$
\begin{aligned}
& \triangleright m_{i^{*}} \geq \sum_{i=1}^{i^{*}} \operatorname{score}(i) * \operatorname{Pr}(x=i)+v_{\min } *\left(1-\sum_{i=1}^{i^{*}} \operatorname{Pr}(x=i)\right), \text { and } \\
& \triangleright M_{i^{*}} \leq \sum_{i=1}^{i^{*}} \operatorname{score}(i) * \operatorname{Pr}(x=i)+v_{\max } *\left(1-\sum_{i=1}^{i^{*}} \operatorname{Pr}(x=i)\right) .
\end{aligned}
$$

Changes of bounds: uniform case (1/2)

- For simplicity, let's assume $\operatorname{Pr}(x=i)=\frac{1}{c}$.
- For all i, and the evaluated value of the i th choice is v_{i}.
- Assume the search window entering a chance node with $N=c$ choices is (alpha, beta).
- The value of a chance node after the first i choices are explored can be expressed as
- an expected value $E_{i}=v s u m_{i} / i$;
\triangleright vsum $_{i}=\sum_{j=1}^{i} v_{j}$
\triangleright This value is returned only when all choices are explored.
\Rightarrow The expected value of an un-explored child shouldn't be $\frac{v_{\min }+v_{\max }}{2}$.
- a range of possible values $\left[m_{i}, M_{i}\right]$.

$$
\begin{aligned}
& \triangleright m_{i}=\left(\sum_{j=1}^{i} v_{j}+v_{\min } \cdot(c-i)\right) / c \\
& \triangleright M_{i}=\left(\sum_{j=1}^{i} v_{j}+v_{\max } \cdot(c-i)\right) / c
\end{aligned}
$$

- Invariants:

$$
\begin{aligned}
& \triangleright E_{i} \in\left[m_{i}, M_{i}\right] \\
& \triangleright E_{c}=m_{c}=M_{c}
\end{aligned}
$$

Changes of bounds: uniform case (2/2)

- Let m_{i} and M_{i} be the current lower and upper bounds, respectively, of the expected value of this chance node immediately after the evaluation of the i th node.
- $m_{i}=\left(\sum_{j=1}^{i-1} v_{j}+v_{i}+v_{\min } \cdot(c-i)\right) / c$
- $M_{i}=\left(\sum_{j=1}^{i-1} v_{j}+v_{i}+v_{\max } \cdot(c-i)\right) / c$
- How to incrementally update m_{i} and M_{i} :
- $m_{0}=v_{\text {min }}$
- $M_{0}=v_{\text {max }}$
- $m_{i}=m_{i-1}+\left(v_{i}-v_{\text {min }}\right) / c$
- $M_{i}=M_{i-1}+\left(v_{i}-v_{\text {max }}\right) / c$
- The current search window is (alpha, beta).
- No more searching is needed when
$\triangleright m_{i} \geq$ beta, chance node cut off I;
\Rightarrow The lower bound found so far is good enough.
\Rightarrow Similar to a beta cut off.
\Rightarrow The returned value is m_{i}.
$\triangleright M_{i} \leq$ alpha, chance node cut off II.
\Rightarrow The upper bound found so far is bad enough.
\Rightarrow Similar to an alpha cut off.
\Rightarrow The returned value is M_{i}.

Chance node cut off: uniform case $(1 / 3)$

- The above two cut offs comes from each time a choice is completely searched.
- When $m_{i} \geq$ beta, chance node cut off I,
\triangleright which means $\left(\sum_{j=1}^{i-1} v_{j}+v_{i}+v_{\text {min }} \cdot(c-i)\right) / c \geq$ beta.
- When $M_{i} \leq$ alpha, chance node cut off II,
\triangleright which means $\left(\sum_{j=1}^{i-1} v_{j}+v_{i}+v_{\text {max }} \cdot(c-i)\right) / c \leq$ alpha.
- Further cut off can be obtained before when that choice is in searching.
- Assume after searching the first $i-1$ choices, no chance node cut off happens.
- Before searching the i th choice, we know that if v_{i} is large enough, then it will raise the lower bound of the chance node and it will have a chance of getting a chance node cut off I.
- How large should v_{i} be for this to happen?
\triangleright chance node cut off I:
$\left(\sum_{j=1}^{i-1} v_{j}+v_{i}+v_{\text {min }} \cdot(c-i)\right) / c \geq$ beta
$\triangleright \Rightarrow v_{i} \geq B_{i-1}=c \cdot \operatorname{beta}-\left(\sum_{j=1}^{i-1} v_{j}-v_{\text {min }} *(c-i)\right)$
$\triangleright B_{i-1}$ is the threshold for cut off I to happen.

Chance node cut off: uniform case (2/3)

- Similarly,

- Assume after searching the first $i-1$ choices, no chance node cut off happens.
- Before searching the i th choice, we know that if v_{i} is small enough, then it will lower the upper bound of the chance node and it will have a chance of getting a chance node cut off II.
- How small should v_{i} be for this to happen?
\triangleright chance node cut off II:
$\left(\sum_{j=1}^{v-1} v_{j}+v_{i}+v_{\text {max }} \cdot(c-i)\right) / c \leq$ alpha
$\triangleright \Rightarrow v_{i} \leq A_{i-1}=c \cdot a l p h a-\left(\sum_{j=1}^{i-1} v_{j}-v_{\max } *(c-i)\right)$
$\triangleright A_{i-1}$ is the threshold for cut off II to happen.

Chance node cut off: uniform case (3/3)

- Hence set the window for searching the i th choice to be $\left(A_{i-1}, B_{i-1}\right)$ which means no further search is needed if the result is not within this window.
- $\left(A_{i-1}, B_{i-1}\right)$ is the window for searching the i th choice instead of using (alpha, beta).
- How to incrementally update A_{i} and B_{i} ?
- $A_{0}=c \cdot\left(a l p h a-v_{\max }\right)+v_{\max }$
- $B_{0}=c \cdot\left(\right.$ beta $\left.-v_{\text {min }}\right)+v_{\text {min }}$
- $A_{i}=A_{i-1}+v_{\max }-v_{i}$
- $B_{i}=B_{i-1}+v_{\min }-v_{i}$
- Comment:
- May want to use zero-window search to test first.

Changes of bounds: non-uniform case (1/3)

- Assume the search window entering a chance node with $N=c$ choices is (alpha, beta).
- The i th choice happens with the probability $\operatorname{Pr}(x=i)=P r_{i}$.
- For all i, the evaluated value of the i th choice is v_{i}.
- The value of a chance node after the first i choices are explored can be expressed as
- an expected value $E_{i}=$ vexp ${ }_{i}$;
$\triangleright \operatorname{vexp}_{i}=\sum_{j=1}^{i} P r_{j} * v_{j}$
\triangleright This value is returned only when all choices are explored.
\Rightarrow The expected value of an un-explored child shouldn't be $\frac{v_{\min }+v_{\max }}{2}$.
- a range of possible values $\left[m_{i}, M_{i}\right]$.

$$
\begin{aligned}
& \triangleright m_{i}=\operatorname{vexp}_{i}+\sum_{j=i+1}^{c} P r_{j} * v_{\min } \\
& \triangleright M_{i}=\operatorname{vexp}_{i}+\sum_{j=i+1}^{c} P r_{j} * v_{\max }
\end{aligned}
$$

- Invariants:

$$
\begin{aligned}
& \triangleright E_{i} \in\left[m_{i}, M_{i}\right] \\
& \triangleright E_{c}=m_{c}=M_{c}
\end{aligned}
$$

Changes of bounds: non-uniform case $(2 / 3)$

- Let m_{i} and M_{i} be the current lower and upper bounds, respectively, of the expected value of this chance node immediately after the evaluation of the i th node.
- $m_{i}=\operatorname{vexp}_{i-1}+P r_{i} * v_{i}+\sum_{j=i+1}^{c} P r_{j} * v_{\text {min }}$
- $M_{i}=\operatorname{vexp}_{i-1}+\operatorname{Pr}_{i} * v_{i}+\sum_{j=i+1}^{c} P r_{j} * v_{\text {max }}$
- How to incrementally update m_{i} and M_{i} :
- $m_{0}=v_{\text {min }}$
- $M_{0}=v_{\max }$

$$
\begin{align*}
& m_{i}=m_{i-1}+P r_{i} *\left(v_{i}-v_{\min }\right) \tag{1}\\
& M_{i}=M_{i-1}+\operatorname{Pr}_{i} *\left(v_{i}-v_{\max }\right) \tag{2}
\end{align*}
$$

Changes of bounds: non-uniform case (3/3)

- The current search window is (alpha, beta).
- No more searching is needed when
- $m_{i} \geq b e t a$, chance node cut off I;
\Rightarrow The lower bound found so far is good enough.
\Rightarrow Similar to a beta cut off.
\Rightarrow The returned value is m_{i}.
- $M_{i} \leq a l p h a$, chance node cut off II.
\Rightarrow The upper bound found so far is bad enough.
\Rightarrow Similar to an alpha cut off.
\Rightarrow The returned value is M_{i}.

Chance node cut off: non-uniform case $(1 / 2)$

- When $m_{i} \geq$ beta, chance node cut off I,
- which means $\operatorname{vexp}_{i-1}+P r_{i} * v_{i}+\sum_{j=i+1}^{c} P r_{j} * v_{\text {min }} \geq$ beta
- $\Rightarrow v_{i} \geq B_{i-1}=\frac{1}{P r_{i}} \cdot\left(\right.$ beta $\left.-\left(\operatorname{vexp}_{i-1}+\sum_{j=i+1}^{c} P r_{j} * v_{\text {min }}\right)\right)$
- When $M_{i} \leq a l p h a$, chance node cut off II,
- which means vexp $_{i-1}+\operatorname{Pr}_{i} * v_{i}+\sum_{j=i+1}^{c} P r_{j} * v_{\max } \leq$ alpha
- $\Rightarrow v_{i} \leq A_{i-1}=\frac{1}{P r_{i}} \cdot\left(\right.$ alpha $\left.-\left(\operatorname{vexp}_{i-1}+\sum_{j=i+1}^{c} P r_{j} * v_{\text {max }}\right)\right)$
- Hence set the window for searching the i th choice to be $\left(A_{i-1}, B_{i-1}\right)$ which means no further search is needed if the result is not within this window.

Chance node cut off: non-uniform case (2/2)

- How to incrementally update A_{i} and B_{i} ?

$$
\begin{gather*}
A_{0}=\frac{1}{P r_{1}} \cdot\left(a l p h a-v_{\max } * \sum_{i=1}^{c} P r_{i}\right)+v_{\max } \tag{3}\\
B_{0}=\frac{1}{P r_{1}} \cdot\left(b e t a-v_{\min } * \sum_{i=1}^{c} P r_{i}\right)+v_{\min } \tag{4}\\
A_{i}=\frac{1}{P r_{i+1}} *\left(P r_{i} * A_{i-1}+P r_{i+1} * v_{\max }-P r_{i} * v_{i}\right) \tag{5}\\
B_{i}=\frac{1}{P r_{i+1}} *\left(P r_{i} * B_{i-1}+P r_{i+1} * v_{\min }-P r_{i} * v_{i}\right) \tag{6}
\end{gather*}
$$

Algorithm: Chance_Search

- Algorithm $F 3.1^{\prime}$ (position p, value alpha, value beta, integer depth)
- // max node
- determine the successor positions p_{1}, \ldots, p_{b};
- if $b=0 / /$ a terminal node
or depth $=0 / /$ remaining depth to search
or time is running up // from timing control or some other constraints are met // add knowledge here
- then return $f(p)$; else begin

```
\(\triangleright m:=-\infty\);
\(\triangleright\) for \(i:=1\) to \(b\) do
\(\triangleright\) begin
\(\triangleright \quad\) if \(p_{i}\) is to play a chance node \(x\)
    then \(t:=S\) tar \(1 \_F 3.1^{\prime}\left(p_{i}, x, \max \{\right.\) alpha, \(m\}\), beta, depth -1\()\);
\(\triangleright \quad\) else \(t:=G 3.1^{\prime}\left(p_{i}, \max \{a l p h a, m\}\right.\), beta,depth -1\()\);
\(\triangleright \quad\) if \(t>m\) then \(m:=t\);
\(\triangleright \quad\) if \(m \geq\) beta then return \((m) ; / /\) beta cut off
\(\triangleright\) end;
```

- end;
- return m;

Star1: uniform case

- Algorithm Star1_EQU_F3.1'(position p, node x, value alpha, value beta, integer depth)
- // a chance node x with c equal probability choices k_{1}, \ldots, k_{c}
- determine the possible values of the chance node x to be k_{1}, \ldots, k_{c}
- $A_{0}=c \cdot\left(a l p h a-v_{\max }\right)+v_{\max }, B_{0}=c \cdot\left(\right.$ beta $\left.-v_{\min }\right)+v_{\min }$;
- $m_{0}=v_{\min }, M_{0}=v_{\max } / /$ current lower and upper bounds
- vsum = 0; // current sum of expected values
- for $i=1$ to c do
- begin
\triangleright let p_{i} be the position of assigning k_{i} to x in p;
$\triangleright t:=G 3.1^{\prime}\left(p_{i}, \max \left\{A_{i-1}, v_{\min }\right\}, \min \left\{B_{i-1}, v_{\max }\right\}\right.$, depth $)$
$\triangleright m_{i}=m_{i-1}+\left(t-v_{\min }\right) / c, M_{i}=M_{i-1}+\left(t-v_{\max }\right) / c$;
\triangleright if $t \geq B_{i-1}$ then return $m_{i} ; / /$ failed high, chance node cut off I
\triangleright if $t \leq A_{i-1}$ then return $M_{i} ; / /$ failed low, chance node cut off II
\triangleright vsum $+=t$;
$\triangleright A_{i}=A_{i-1}+v_{\max }-t, B_{i}=B_{i-1}+v_{\min }-t ;$
- end
- return vsum/c;

Illustration: Star1

Star1: non-uniform case

- Algorithm Star1_F3.1'(position p, node x, value alpha, value beta, integer depth)
- // a chance node x with c choices k_{1}, \ldots, k_{c}
- // the i th choice happens with the probability Pr_{i}
- determine the possible values of the chance node x to be k_{1}, \ldots, k_{c}
- initialize A_{0} and B_{0} using formulas (3) and (4)
- $m_{0}=v_{\text {min }}, M_{0}=v_{\max } / /$ current lower and upper bounds
- vexp $=0$; // current weighted sum of expected values
- for $i=1$ to c do
- begin
\triangleright let $P r_{i}$ be the position of assigning k_{i} to x in p;
$\triangleright t:=G 3.1^{\prime}\left(p_{i}, \max \left\{A_{i-1}, v_{\min }\right\}, \min \left\{B_{i-1}, v_{\max }\right\}\right.$,depth)
\triangleright incrementally update m_{i} and M_{i} using formulas (1) and (2)
\triangleright if $t \geq B_{i-1}$ then return $m_{i} ; / /$ failed high, chance node cut off I
\triangleright if $t \leq A_{i-1}$ then return $M_{i} ; / /$ failed low, chance node cut off II
$\triangleright \operatorname{vexp}+=P r_{i} * t$;
\triangleright incrementally update A_{i} and B_{i} using formulas (5) and (6)
- end
- return vexp;

Example: Chinese dark chess

- Assumption:
- The range of the scores of Chinese dark chess is $[-10,10]$ inclusive, alpha $=-10$ and beta $=10$.
- $N=7$.
- $\operatorname{Pr}(x=i)=1 / N=1 / 7$.

Calculation:

- $i=0$,

$$
\begin{aligned}
& \triangleright m_{0}=-10 . \\
& \triangleright M_{0}=10 .
\end{aligned}
$$

- $i=1$ and if $\operatorname{score}(1)=-2$, then

$$
\begin{aligned}
& \triangleright m_{1}=-2 * 1 / 7+-10 * 6 / 7=-62 / 7 \simeq-8.86 . \\
& \triangleright M_{1}=-2 * 1 / 7+10 * 6 / 7=58 / 7 \simeq 8.26 .
\end{aligned}
$$

- $i=1$ and if $\operatorname{score}(1)=3$, then

$$
\begin{aligned}
& \triangleright m_{1}=3 * 1 / 7+-10 * 6 / 7=-57 / 7 \simeq-8.14 . \\
& \triangleright M_{1}=3 * 1 / 7+10 * 6 / 7=63 / 7=9 .
\end{aligned}
$$

General case

- Assume the i th choice happens with a chance w_{i} / c where $c=\sum_{i=1}^{N} w_{i}$ and N is the total number of choices.
- $m_{0}=v_{\text {min }}$
- $M_{0}=v_{\max }$
- $m_{i}=\left(\sum_{j=1}^{i-1} w_{j} \cdot v_{j}+w_{i} \cdot v_{i}+v_{\text {min }} \cdot\left(c-\sum_{j=1}^{i} w_{j}\right)\right) / c$

$$
\triangleright m_{i}=m_{i-1}+\left(w_{i} / c\right) \cdot\left(v_{i}-v_{m i n}\right)
$$

- $M_{i}=\left(\sum_{j=1}^{i-1} w_{j} \cdot v_{j}+w_{i} \cdot v_{i}+v_{\max } \cdot\left(c-\sum_{j=1}^{i} w_{j}\right)\right) / c$
$\triangleright M_{i}=M_{i-1}+\left(w_{i} / c\right) \cdot\left(v_{i}-v_{\max }\right)$
- $A_{0}=\left(c / w_{1}\right) \cdot\left(a l p h a-v_{\max }\right)+v_{\max }$
- $B_{0}=\left(c / w_{1}\right) \cdot\left(\right.$ beta $\left.-v_{\text {min }}\right)+v_{\text {min }}$
- $A_{i-1}=\left(c \cdot a l p h a-\left(\sum_{j=1}^{i-1} w_{j} \cdot v_{j}-v_{\max } \cdot\left(c-\sum_{j=1}^{i} w_{j}\right)\right)\right) / w_{i}$

$$
\triangleright A_{i}=\left(w_{i} / w_{i+1}\right) \cdot\left(A_{i-1}-v_{i}\right)+v_{\max }
$$

- $B_{i-1}=\left(c \cdot\right.$ beta $\left.-\left(\sum_{j=1}^{i-1} w_{j} \cdot v_{j}-v_{\min } \cdot\left(c-\sum_{j=1}^{i} w_{j}\right)\right)\right) / w_{i}$

$$
\triangleright B_{i}=\left(w_{i} / w_{i+1}\right) \cdot\left(B_{i-1}-v_{i}\right)+v_{\min }
$$

The probability distribution

- Assume a chance node x has c choices k_{1}, \ldots, k_{c}.
- The $i t h$ choice happens with the probability Pr_{i} and $\sum_{i=1}^{c} P r_{i}=$ 1.
- Special case 1, called uniform (EQU): $P r_{i}=1 / c$.
- All choices happen with a equal chance.
- Example: EinStein Wrfelt Nicht (EWN) when all pieces are not captured.
- Special case 2, called GCD: $P r_{i}=w_{i} / D$ where each w_{i} is an integer and $\sum_{i=1}^{c} w_{i}=D$.
- example: Chinese dark chess.
- The above two special cases usually happen in game playing and can use the characteristics to do some optimization in number calculations.

Algorithm: Star0, GCD case, MAX node

- An GCD version for a MAX node.
- Algorithm Star0_GCD_F3.0'(position p, node x, value alpha, value beta, integer depth)
- // a chance node x with c choices k_{1}, \ldots, k_{c}
- // whose occurrence probability are $w_{1} / D, \ldots, w_{c} / D$
- // and each w_{i} is an integer
- // exhaustive search all possibilities and return the expected value
- determine the possible values of the chance node x to be k_{1}, \ldots, k_{c}
- vsum $=0$; // current sum of weight values
- for $i=1$ to c do
- begin

$$
\begin{aligned}
& \triangleright \text { let } p_{i} \text { be the position of assigning } k_{i} \text { to } x \text { in } p \text {; } \\
& \triangleright \text { vsum }+=w_{i}{ }^{*} G 3.0^{\prime}\left(p_{i},-\infty,+\infty \text {, depth }\right)
\end{aligned}
$$

- end
- return vsum $/ D$; // return the expected score

Algorithm: Star0, GCD case, MIN node

- An GCD version for a MIN node.
- Algorithm Star0_GCD_G3.0'(position p, node x, value alpha, value beta, integer depth)
- // a chance node x with c choices k_{1}, \ldots, k_{c}
- // whose occurrence probability are $w_{1} / D, \ldots, w_{c} / D$
- // and each w_{i} is an integer
- // exhaustive search all possibilities and return the expected value
- determine the possible values of the chance node x to be k_{1}, \ldots, k_{c}
- vsum $=0$; // current sum of weight values
- for $i=1$ to c do
- begin

$$
\begin{aligned}
& \triangleright \text { let } p_{i} \text { be the position of assigning } k_{i} \text { to } x \text { in } p ; \\
& \triangleright \text { vsum }+=w_{i}{ }^{*} F 3.0^{\prime}\left(p_{i},-\infty,+\infty \text {, depth }\right)
\end{aligned}
$$

- end
- return $v s u m / D$; // return the expected score

Comments (1/2)

- We illustrate the ideas using a fail soft version of the alpha-beta algorithm.
- Original and fail hard version have a simpler logic in maintaining the search interval.
- The semantic of comparing an exact return value with an expected returning value is something that needs careful thinking.
- May want to pick a chance node with a lower expected value but having a hope of winning, not one with a slightly higher expected value but having no hope of winning when you are in disadvantageous.
- May want to pick a chance node with a lower expected value but having no chance of losing, not one with a slightly higher expected value but having a chance of losing when you are in advantage.
- Do not always pick one with a slightly larger expected value. Give the second one some chance to be selected.

Comments (2/2)

- Need to revise algorithms carefully when dealing with the original, fail hard or NegaScout version.
- What does it mean to combine bounds from a fail hard version?
- The lower and upper bounds of the expected score can be used to do alpha-beta pruning.
- Nicely fit into the alpha-beta search algorithm.
- Not only we can terminate the searching of choices earlier, but also we can terminate the searching of a particular choice earlier.
- Exist other improvements by searching choices of a chance node "in parallel".

Implementation hints (1/2)

- Fully unwrap a chance node takes more time than that of a non-chance node.
- If you set your depth limit to d for a game without chance nodes, then the depth limit should be lower for that game when chance node is introduced.
- Technically speaking, a chance node adds at least one level.
\triangleright Depending on the number of choices you have compared to the number of non-chance children, you may need to reduce the search depth limit by at least 3 or 5, and maybe 7.
\triangleright Estimate the complexity of a chance node by comparing the number of choices of a chance node and the number of non-chance-node moves.
- Without searching a chance node, it is easy to obtain not enough progress by just searching a long sequence of non-chance nodes.
- In CDC, when there are only a limited number of revealed pieces, there is not much you can do by just moving around.

Implementation hints (2/2)

- Practical considerations, for example in Chinese Dark Chess (CDC), are as follows.
- You normally do not need to consider the consequence of flipping more than 2 dark pieces.
\triangleright Set a maximum number of chance node searching in any DFS search path.
- It makes little sense to consider ending a search with exploring a chance node.
\triangleright When depth limit left is less than 3 or 4, stop exploring chance nodes.
- It also makes little sense to consider the consequence of exploring 2 chance nodes back to back.
\triangleright Make sure two chance nodes in a DFS search path is separated by at least 3 or 4 non-chance nodes.
- It is rarely the case that a chance node exploration is the first ply to consider in move ordering unless it is recommended by a prior knowledge or no other non-chance-node moves exists.

Ideas for furthermore improvements (1/2)

- Can do better by not searching the DFS order.
- It is not necessary to search completely the subtree of $x=1$ first, and then start to look at the subtree of $x=2, \ldots$ etc.
- partially search a subtree gives you some information about the possible range of this chance node.
- Assume p is a MAX chance node, e.g., root makes a flip.
- T_{i} is the tree of p when for the i th choice, namely, with the root p_{i} which is a MIN node.
- $T_{i, j}$ is the j th branch of T_{i}, namely, with the root $p_{i, j}$.
- v_{i} is the evaluated value of T_{i}.
- $v_{i, j}$ is the evaluated value of $T_{i, j}$.
- We have completely searched $T_{1, s}$ and obtained a value $v_{1, s}$.
- Since p_{i} is a MIN node, $v_{1, s}$ is an upper bound of v_{1} which is usually lower than the maximum possible value.
- The upper bound of v_{1} is thus lowered.
- It is possible because of this probe, an alpha cut can be performed.
- The above process is called an exact probe.
- We can first probe each T_{i}.
- It is better to probe the worse possible branch of T_{i} first.

Ideas for furthermore improvements (2/2)

- Assume p is a MIN chance node, e.g., the opponent makes a flip.
- T_{i} is the tree of p when for the i th choice, namely, with the root p_{i} which is a MAX node.
- $T_{i, j}$ is the j th branch of T_{i}, namely, with the root $p_{i, j}$.
- v_{i} is the evaluated value of T_{i}.
- $v_{i, j}$ is the evaluated value of $T_{i, j}$.
- We have completely searched $T_{1, s}$ and obtained a value $v_{1, s}$.
- Since p_{i} is a MAX node, $v_{1, s}$ is a lower bound of v_{1} which is usually larger than the minimum possible value.
- The lower bound of v_{1} is thus raised.
- It is possible because of this probe, a beta cut can be performed.
- The above process is called an exact probe.
- We can first probe each T_{i}.
- It is better to probe the best possible branch of T_{i} first.

Illustration: Probe

Star2

Algorithm Star2_F3.2'(position p, node x, value alpha, value beta) // MAX node

- // a chance node x with c choices k_{1}, \ldots, k_{c}
- // the i th choice happens with the probability Pr_{i}
- determine the possible values of the chance node x to be k_{1}, \ldots, k_{c}
- // Do some probings to decide whether some cut off can be performed.
- for each choice i from 1 to c do
\triangleright Let p_{i} be the position obtained from p by making x the choice k_{i}.
\triangleright do an exact probe on the first child of p_{i}
\triangleright If p is a MAX chance node, then p_{i} is a MIN node and you may get an alpha cut off for p_{i} since the probe returns an upper bound for p_{i}.
\triangleright If p is a MIN chance node, then p_{i} is a MAX node and you may get an beta cut off for p_{i} since the probe returns a lower bound for p_{i}.
- // normal exhaustive search phase
- If no cut off is found in the above, do the normal Star1 search.
\triangleright Additional alpha/beta cut off from searching a particular choice.
\triangleright Chance node cut off I that is similar to beta cut off.
\triangleright Chance node cut off II that is similar to alpha cut off.
- return vexp;

More ideas for probes

- Move ordering in exploring the choices is critical in performance.
- Picking which child to do the probe is also critical.

Can do exact probes on h children, called probing factor $h>1$, of a choice instead of fixing the number of probings to be exactly one.

- When $h=0$, star2 $==$ star1.
- Sequential probing

```
\(\triangleright\) Probe \(h\) children of a choice at one time.
\(\triangleright\) for \(i=1\) to \(c\) do
probe \(h\) children of the \(i\) th choice
```

- Cyclic probing
\triangleright Probe 1 child of a choice at one time for all choices, and do this for h rounds.
\triangleright for $j=1$ to h do for $i=1$ to c do probe the j th child of the i th choice
- When $h=1$, cyclic probing $==$ sequential probing.
- May decide to probe different number of children for each choice.

Star2.5: cyclic probing

- Using a cyclic probing order in Star2 with a probing factor h.
- Algorithm Star2.5_F3.2'(position p, node x, value alpha, value beta, integer h) // MAX node, h is the probing factor
- // a chance node x with c choices k_{1}, \ldots, k_{c}
- // the i th choice happens with the probability Pr_{i}
- determine the possible values of the chance node x to be k_{1}, \ldots, k_{c}
- // Do a cyclic probing to decide whether some cut off can be performed.
- for j from 1 to h do
for each choice i from 1 to c do
\triangleright Let p_{i} be the position obtained from p by making x the choice k_{i}.
\triangleright do an exact probe on the j th child of p_{i}
\triangleright If p is a MAX chance node, then p_{i} is a MIN node and you may get an alpha cut off for p_{i} since the probe returns an upper bound for p_{i}.
\triangleright If p is a MIN chance node, then p_{i} is a MAX node and you may get an beta cut off for p_{i} since the probe returns a lower bound for p_{i}.
- If no cut off is found in the above, do the normal Star1 search.
\triangleright Additional alpha/beta cut off from searching a particular choice.
\triangleright Chance node cut off I that is similar to beta cut off.
\triangleright Chance node cut off II that is similar to alpha cut off.

Comments

- Experimental results provided in [Ballard '83] on artificial game trees.
- Star1 may not be able to cut more than 20% of the leaves.
- Star2.5 with $h=1$ cuts more than 59% of the nodes and is about twice better than Star1.
- Sequential probing is best when $h=3$ which cuts more than 65% of the nodes and roughly cut about the same nodes as Star2.5 using the same probing factor.
- Sequential probing gets worse when $h>4$. For example, it only cut 20% of the leaves when $h=20$.
- Star2.5 continues to cut more nodes when h gets larger, though the gain is not that great. At $h=3$, about 70% of the nodes are cut. At $h=20$, about 72% of the nodes are cut.

Approximated Probes

- We can also have heuristics for issuing approximated probes which returns approximated values.
- Strategy I: random probing of some promising choices
- Do a move ordering heuristic to pick one or some promising choices to expand first.
- These promising choices can improve the lower or upper bounds and can cause beta or alpha cut off.
- Strategy II: fast probing of all choices
- Possible implementations
\triangleright do a static evaluation on all choices
\triangleright do a shallow alpha-beta searching on each choice
\triangleright do a MCTS-like simulation on the choices
- Use these information to decide whether you have enough confidence to do a cut off.

Using MCTS with chance nodes $(1 / 2)$

- Assume a chance node x has c choices k_{1}, \ldots, k_{c} and the i th choice happens with the probability $P r_{i}$
- Selection
- If x is picked in the PV during selection, then a random coin tossing according to the probability distribution of the choices is needed to pick which choice to descent.
\triangleright It is better to even the number of simulations done on each choice.
\triangleright Use random sampling without replacement. When every one is picked once, then start another round of picking.
- Expansion
- If the last node in the PV is x, then expand all choices and simulate each choice some number of times.
\triangleright Watch out the discuss on maxing chance nodes in a searching path such as whether it is desirable to have 2 chance nodes in sequence ... etc.

Using MCTS with chance nodes (2/2)

- Simulation

- When a chance node is to be simulated, then be sure to randomly, according to the probability distribution, pick a choice.
\triangleright Use some techniques to make sure you are doing an effective sampling when the number of choices is huge
\triangleright Watch out what are "reasonable" in a simulated plyout on the mixing of chance nodes.
- Back propagation
- The UCB score of x is $\left.w_{i}+c \sqrt{(} \ln N / N_{i}\right)$ where w_{i} is the weighted winning rate, or score, of the children, N_{i} is the total number of simulations done on all choices. and N is the total number of simulations done on the parent of x.

Sparse sampling (1/2)

- Assume in searching the number of possible outcomes in a, maybe chance, node is too large. A technique called sparse sampling can be used [Kearn et al 2002].
- Can also be used in the expansion phase of MCTS.
- Ideas:
- The number of choices, $a=|\mathcal{A}|$, considered is enlarged as the number of visits to the node increases.
- Use the current choice set as an estimation of its goodness.
- Only consider k_{t} randomly selected choices, called \mathcal{S}_{t}, in the first t visits where $k_{t}=\left\lceil c * t^{\alpha}\right\rceil$, and c and α are constants.
- Algorithm $S S$ for sparse sampling
- $t:=1$
- Initial k_{t} to be a small constant, say 1 .
- Initial the candidate set \mathcal{S} to be an empty set.
- Randomly pick k_{t} children from \mathcal{A} into \mathcal{S}
- loop: Performs some t^{\prime} samplings from \mathcal{S}.
\triangleright Add randomly $k_{t+t^{\prime}}-k_{t}$ new children from \mathcal{A} into \mathcal{S}
$\triangleright t+=t^{\prime}$
- goto loop

Sparse sampling (2/2)

- The estimated value is accurate with a high probability [Kearns et al 2002] [Lanctot et al 2013]
- Theorem:

$$
\operatorname{Pr}(|\tilde{V}-V| \leq \lambda \cdot d) \geq 1-\left(2 \cdot k_{t} \cdot c\right)^{d} \exp \left\{\frac{-\lambda^{2} \cdot k_{t}}{2 \cdot v_{\max }^{2}}\right\}
$$

where
$\triangleright k_{t}$ is the number of choices considered with t samplings,
$\triangleright \tilde{V}$ is the estimation considering only k_{t} choices,
$\triangleright V$ is the value considering all choices,
$\triangleright c$ is the actual number of choices,
$\triangleright d$ is the depth simulated,
$\triangleright \lambda \in\left(0,2 \cdot v_{\max }\right]$ is a parameter chosen, and
$\triangleright v_{\max }$ is the maximum possible value.

- Note: the proof is done by making sampling with replacement, while the algorithm asks for sampling without replacement.

Proof number search

- Consider the case of a 2 -player game tree with either 0 or 1 on the leaves.
- win, or not win which is lose or draw;
- lose, or not lose which is win or draw;
- Call this a binary valued game tree.
- If the game tree is known as well as the values of some leaves are known, can you make use of this information to search this game tree faster?
- The value of the root is either 0 or 1 .
- If a branch of the root returns 1 , then we know for sure the value of the root is 1 .
- The value of the root is $\mathbf{0}$ only when all branches of the root returns 0 .
- An AND-OR game tree search.

Which node to search next?

- A most proving node for a node u : a descendent node if its value is 1 , then the value of u is 1 .
- A most disproving node for a node u : a descendent node if its value is 0 , then the value of u is 0 .

Most proving node

- Node h is a most proving node for a.

Most disproving node

- Node e or f is a most disproving node for a.

Proof or Disproof Number

- Assign a proof number and a disproof number to each node u in a binary valued game tree.
- $\operatorname{proof}(u)$: the minimum number of leaves needed to visited in order for the value of u to be 1 .
- disproof (u) : the minimum number of leaves needed to visited in order for the value of u to be 0 .
- The definition implies a bottom-up ordering.

Proof number

- Proof number for the root a is $\mathbf{2}$.
\triangleright Need to at least prove e and f.

Disproof number

- Disproof number for the root a is 2 .
\triangleright Need to at least disprove i, and either e or f.

Proof Number: Definition

- u is a leaf:
- If value (u) is unknown, then $\operatorname{proof}(u)$ is the cost of evaluating u.
- If $\operatorname{value}(u)$ is $\mathbf{1}$, then $\operatorname{proof}(u)=0$.
- If $\operatorname{value}(u)$ is $\mathbf{0}$, then $\operatorname{proof}(u)=\infty$.
- u is an internal node with all of the children u_{1}, \ldots, u_{b} :
- if u is a MAX node,

$$
\operatorname{proof}(u)=\min _{i=1}^{i=b} \operatorname{proof}\left(u_{i}\right) ;
$$

- if u is a MIN node,

$$
\operatorname{proof}(u)=\sum_{i=1}^{i=b} \operatorname{proof}\left(u_{i}\right)
$$

Disproof Number: Definition

- u is a leaf:
- If value (u) is unknown, then $\operatorname{disproof}(u)$ is cost of evaluating u.
- If $\operatorname{value}(u)$ is $\mathbf{1}$, then $\operatorname{disproof}(u)=\infty$.
- If value (u) is $\mathbf{0}$, then $\operatorname{disproof}(u)=0$.
- u is an internal node with all of the children u_{1}, \ldots, u_{b} :
- if u is a MAX node,

$$
\operatorname{disproof}(u)=\sum_{i=1}^{i=b} \operatorname{disproof}\left(u_{i}\right)
$$

- if u is a MIN node,

$$
\operatorname{disproof}(u)=\min _{i=1}^{i=b} \operatorname{disproof}\left(u_{i}\right) .
$$

Illustrations

proof number, disproof number

proof number, disproof number

How these numbers are used $(1 / 2)$

- Scenario:
- For example, the tree T represents an open game tree or an endgame tree.
\triangleright If T is an open game tree, then maybe it is asked to prove or disprove a certain open game is win.
\triangleright If T is an endgame tree, then maybe it is asked to prove or disprove a certain endgame is win o loss.
\triangleright Each leaf takes a lot of time to evaluate.
\triangleright We need to prove or disprove the tree using as few time as possible.
- Depend on the results we have so far, pick a leaf to prove or disprove.
- Goal: solve as few leaves as possible so that in the resulting tree, either proof (root) or disproof(root) becomes 0 .
- If $\operatorname{proof}(r o o t)=0$, then the tree is proved.
- If disproof (root) $=0$, then the tree is disproved.
- Need to be able to update these numbers on the fly.

How these numbers are used (2/2)

- Let $G V=\min \{p r o o f(r o o t), \operatorname{disproof}($ root $)\}$.
- $G T$ is "prove" if $G V=\operatorname{proof}($ root $)$, which means we try to prove it.
- $G T$ is "disprove" if $G V=\operatorname{disproof}$ (root), which means we try to disprove it.
- In the case of $\operatorname{proof}($ root $)=\operatorname{disproof}($ root $)$, we set $G T$ to "prove" for convenience.
- From the root, we search for a leaf whose value is unknown.
- The leaf found is a most proving node if $G T$ is "prove", or a most disproving node if $G T$ is "disprove".
- To find such a leaf, we start from the root downwards recursively as follows.
\triangleright If we have reached a leaf, then stop.
\triangleright If GT is "prove", then pick a child with the least proof number for a MAX node, and any node that has a chance to be proved for a MIN node.
\triangleright If GT is "disprove", then pick a child with the least disproof number for a MIN node, and any node that has a chance to be disproved for a MAX node.

PN-search: algorithm (1/2)

- $\{*$ Compute and update proof and disproof numbers of the root in a bottom up fashion until it is proved or disproved. *\}
- loop:
- If $\operatorname{proof}($ root $)=0$ or disproof $($ root $)=0$, then we are done, otherwise
$\triangleright \operatorname{proof}($ root $) \leq d i s p r o o f(r o o t)$: we try to prove it.
$\triangleright \operatorname{proof}($ root $)>\operatorname{disproof}($ root $)$: we try to disprove it.
- $u \leftarrow \operatorname{root} ;\{*$ find a leaf to prove or disprove $*\}$
- if we try to prove, then
\triangleright while u is not a leaf do
$\triangleright \quad$ if u is a MAX node, then
$u \leftarrow$ leftmost child of u with the smallest non-zero proof number;
$\triangleright \quad$ else if u is a MIN node, then $u \leftarrow$ leftmost child of u with a non-zero proof number;
- else if we try to disprove, then
\triangleright while u is not a leaf do
\triangleright if u is a MAX node, then
$u \leftarrow$ leftmost child of u with a non-zero disproof number;
$\triangleright \quad$ else if u is a MIN node, then
$u \leftarrow$ leftmost child of u with the smallest non-zero disproof number;

PN-search: algorithm (2/2)

- $\{*$ Continued from the last page $*\}$
- solve u;
- repeat $\{*$ bottom up updating the values $*\}$
\triangleright update $\operatorname{proof}(u)$ and disproof (u)
$\triangleright u \leftarrow u^{\prime}$ s parent
until u is the root
- go to loop;

Multi-Valued game Tree

- The values of the leaves may not be binary.
- Assume the values are non-negative integers.
- Note: it can be in any finite countable domain.
- Revision of the proof and disproof numbers.
- $\operatorname{proof}_{v}(u)$: the minimum number of leaves needed to visited in order for the value of u to $\geq v$.
$\triangleright \operatorname{proof}(u) \equiv \operatorname{proof}_{1}(u)$.
- disproof $f_{v}(u)$: the minimum number of leaves needed to visited in order for the value of u to $<v$.
$\triangleright \operatorname{disproof}(u) \equiv \operatorname{disproof}_{1}(u)$.

Illustration

Illustration

Multi-Valued proof number

- u is a leaf:
- If value (u) is unknown, then $\operatorname{proo}_{v}(u)$ is cost of evaluating u.
- If value $(u) \geq v$, then $\operatorname{proof}_{v}(u)=0$.
- If $\operatorname{value}(u)<v$, then $\operatorname{proof}_{v}(u)=\infty$.
- u is an internal node with all of the children u_{1}, \ldots, u_{b} :
- if u is a MAX node,

$$
\operatorname{proof}_{v}(u)=\min _{i=1}^{i=b} \operatorname{proo}_{v}\left(u_{i}\right)
$$

- if u is a MIN node,

$$
\operatorname{proof}_{v}(u)=\sum_{i=1}^{i=b} \operatorname{proo}_{v}\left(u_{i}\right)
$$

Multi-Valued disproof number

- u is a leaf:
- If value (u) is unknown, then $\operatorname{disproof} f_{v}(u)$ is cost of evaluating u.
- If $\operatorname{value}(u) \geq v$, then $\operatorname{disproof}_{v}(u)=\infty$.
- If $\operatorname{value}(u)<v$, then $\operatorname{disproof~}_{v}(u)=0$.
- u is an internal node with all of the children u_{1}, \ldots, u_{b} :
- if u is a MAX node,

$$
\operatorname{disproof}_{v}(u)=\sum_{i=1}^{i=b} \operatorname{disproof}_{v}\left(u_{i}\right)
$$

- if u is a MIN node,

$$
\operatorname{disproo}_{v}(u)=\min _{i=1}^{i=b} \operatorname{disproo}_{v}\left(u_{i}\right)
$$

Revised PN-search(v): algorithm (1/2)

- $\left\{*\right.$ Compute and update proof_{v} and disproof ${ }_{v}$ numbers of the root in a bottom up fashion until it is proved or disproved. $*\}$
- loop:
- If $\operatorname{proo} f_{v}($ root $)=0$ or $\operatorname{disproof~}_{v}($ root $)=0$, then we are done, otherwise
$\triangleright \operatorname{proof}_{v}($ root $) \leq d i s p r o o f_{v}($ root $)$: we try to prove it.
$\triangleright \operatorname{proof}_{v}($ root $)>\operatorname{disproof} v($ root $)$: we try to disprove it.
- $u \leftarrow \operatorname{root} ;\{*$ find a leaf to prove or disprove $*\}$
- if we try to prove, then
\triangleright while u is not a leaf do
$\triangleright \quad$ if u is a MAX node, then
$u \leftarrow$ leftmost child of u with the smallest non-zero proof f_{v} number;
$\triangleright \quad$ else if u is a MIN node, then $u \leftarrow$ leftmost child of u with a non-zero proof f_{v} number;
- else if we try to disprove, then
\triangleright while u is not a leaf do
$\triangleright \quad$ if u is a MAX node, then
$u \leftarrow$ leftmost child of u with a non-zero disproof ${ }_{v}$ number;
$\triangleright \quad$ else if u is a MIN node, then
$u \leftarrow$ leftmost child of u with the smallest non-zero disproof ${ }_{v}$ number;

PN-search: algorithm (2/2)

- $\{*$ Continued from the last page $*\}$
- solve u;
- repeat $\{*$ bottom up updating the values $*$ \}
\triangleright update $\operatorname{proo}_{v}(u)$ and $\operatorname{disproof}_{v}(u)$
$\triangleright u \leftarrow u^{\prime}$ s parent
until u is the root
- go to loop;

Multi-valued PN-search: algorithm

- When the values of the leaves are not binary, use an open value binary search to find an upper bound of the value.
- Set the initial value of v to be 1 .
- loop: PN-search(v)
\triangleright Prove the value of the search tree is $\geq v$ or disprove it by showing it is $<v$.
- If it is proved, then double the value of v and go to loop again.
- If it is disproved, then the true value of the tree is between $\lfloor v / 2\rfloor$ and $v-1$.
- $\{*$ Use a binary search to find the exact returned value of the tree. $*\}$
- low $\leftarrow\lfloor v / 2\rfloor$; high $\leftarrow v-1$;
- while low \leq high do
\triangleright if low $=$ high, then return low as the tree value
\triangleright mid $\leftarrow\lfloor($ low $+h i g h) / 2\rfloor$
$\triangleright P N$-search (mid)
\triangleright if it is disproved, then high \leftarrow mid -1
\triangleright else if it is proved, then low \leftarrow mid

Comments

- Can be used to construct opening books.
- Appear to be good for searching certain types of game trees.
- Find the easiest way to prove or disprove a conjecture.
- A dynamic strategy depends on work has been done so far.
- Performance has nothing to do with move ordering.
- Performances of most previous algorithms depend heavily on whether good move orderings can be found.
- Searching the "easiest" branch may not give you the best performance.
- Performance depends on the value of each internal node.
- Commonly used in verifying conjectures, e.g., first-player win.
- Partition the opening moves in a tree-like fashion.
- Try to the "easiest" way to prove or disprove the given conjecture.
- Take into consideration the fact that some nodes may need more time to process than the other nodes.

More research topics

- Do variations of a game make it different?
- Whether Stalemate is draw or win in chess.
- Japanese and Chinese rules in Go.
- Chinese and Asia rules in Chinese chess.
- ...
- Why a position is easy or difficult to human players?
- Can be used in tutoring or better understanding of the game.

Unique features in games

- Games are used to model real-life problems.
- Do unique properties shown in games help modeling real applications?
- Chinese chess
\triangleright Very complicated rules for loops: can be draw, win or loss.
\triangleright The usage of cannons for attacking pieces that are blocked.
- Go: the rule of Ko to avoid short cycles, and the right to pass.
- Chinese dark chess: a chance node that makes a deterministic ply first, and then followed by a random toss.
- EWN: a chance node that makes a random toss first, and then followed with a deterministic ply later.
- Shogi: the ability to capture an opponent's piece and turn it into your own.
- Chess: stalemate is draw.
- Promotion: a piece may turn into a more/less powerful one once it satisfies some pre-conditions.
\triangleright Chess
\triangleright Shogi
\triangleright Chinese chess: the mobility of a pawn is increased once it advances twice, but is decreased once it reaches the end of a column.

References and further readings (1/3)

- L. V. Allis, M. van der Meulen, and H. J. van den Herik. Proof-number search. Artificial Intelligence, 66(1):91-124, 1994.
- David Carmel and Shaul Markovitch. Learning and using opponent models in adversary search. Technical Report CIS9609, Technion, 1996.
- M. Campbell. The graph-history interaction: on ignoring position history. In Proceedings of the 1985 ACM annual conference on the range of computing : mid-80's perspective, pages 278-280. ACM Press, 1985.
- Akihiro Kishimoto and Martin Müller (2004). A General Solution to the Graph History Interaction Problem. AAAI, 644-648, 2004.
- Kuang-che Wu, Shun-Chin Hsu and Tsan-sheng Hsu " The Graph History Interaction Problem in Chinese Chess," Proceedings of the 11th Advances in Computer Games Conference, (ACG), Springer-Verlag LNCS\# 4250, pages 165-179, 2005.

References and further readings (2/3)

* Bruce W. Ballard The *-minimax search procedure for trees containing chance nodes Artificial Intelligence, Volume 21, Issue 3, September 1983, Pages 327-350
- Marc Lanctot, Abdallah Saffidine, Joel Veness, Chris Archibald, Mark H. M. Winands Monte-Carlo *-MiniMax Search Proceedings IJCAI, pages 580-586, 2013.
- Kearns, Michael; Mansour, Yishay; Ng, Andrew Y. A sparse sampling algorithm for near-optimal planning in large Markov decision processes. Machine Learning, 2002, 49.2-3: 193-208.
- Chaslot, Guillaume, Winands, Mark, Herik, H., Uiterwijk, Jos, Bouzy, Bruno. (2008). Progressive Strategies for Monte-Carlo Tree Search. New Mathematics and Natural Computation. 04. 343-357. 10.1142/S1793005708001094.

References and further readings (3/3)

- Coutoux A., Hoock JB., Sokolovska N., Teytaud O., Bonnard N. (2011) Continuous Upper Confidence Trees. In: Coello C.A.C. (eds) Learning and Intelligent Optimization. LION 2011. Lecture Notes in Computer Science, vol 6683. Springer, Berlin, Heidelberg.
- Hung-Jui Chang and Cheng Yueh and Gang-Yu Fan and Ting-Yu Lin and Tsan-sheng Hsu (2021). Opponent Model Selection Using Deep Learning. Proceedings of the 2021 Advances in Computer Games (ACG).

