Theory of Computer Games: Selected Advanced Topics

Tsan-sheng Hsu

徐讚昇

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

Abstract

Some advanced research issues.

- The graph history interaction (GHI) problem.
- Opponent models.
- Searching chance nodes.
- Proof-number search.

More research topics.

Graph history interaction problem

The graph history interaction (GHI) problem [Campbell 1985]:

- In a game graph, a position can be visited by more than one paths from a starting position.
- The value of the position depends on the path visiting it.
 - ▷ It can be win, loss or draw for Chinese chess.
 - ▷ It can only be draw for Western chess and Chinese dark chess.
 - \triangleright It can only be loss for Go.
- In the transposition table, you record the value of a position, but not the path leading to it.
 - Values computed from rules on repetition cannot be used later on.
 - It takes a huge amount of storage to store all the paths visiting it.
- This is a very difficult problem to be solved in real time [Wu et al '05] [Kishimoto and Müller '04].

• Assume if the game falls into a loop, then it is a draw.

- Assume if the game falls into a loop, then it is a draw.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is draw by rules of repetition.
 - ▶ Memorized J as a draw position.

- Assume if the game falls into a loop, then it is a draw.
- A → B → D → G → I → J → D is draw by rules of repetition.
 ▶ Memorized J as a draw position.
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.

- Assume if the game falls into a loop, then it is a draw.
- A → B → D → G → I → J → D is draw by rules of repetition.
 ▶ Memorized J as a draw position.
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.
- $A \rightarrow B \rightarrow E$ is a loss. Hence B is loss.

- Assume if the game falls into a loop, then it is a draw.
- A → B → D → G → I → J → D is draw by rules of repetition.
 ▶ Memorized J as a draw position.
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.
- $A \rightarrow B \rightarrow E$ is a loss. Hence B is loss.
- $A \to C \to F \to J$ is draw because J is recorded as draw.
- A is draw because one child is loss and the other chile is draw.

- Assume if the game falls into a loop, then it is a draw.
- A → B → D → G → I → J → D is draw by rules of repetition.
 Memorized J as a draw position.
- $A \to B \to D \to H$ is a win. Hence D is win.
- $A \to B \to E$ is a loss. Hence B is loss.
- $A \rightarrow C \rightarrow F \rightarrow J$ is draw because J is recorded as draw.
- A is draw because one child is loss and the other chile is draw.
- However, $A \to C \to F \to J \to D \to H$ is a win (for the root).

• Assume the one causes loops wins the game.

- Assume the one causes loops wins the game.
- $A \to B \to D \to G \to I \to J \to D$ is loss because of rules of repetition.
 - \triangleright Memorized J as a loss position (for the root).

- Assume the one causes loops wins the game.
- A → B → D → G → I → J → D is loss because of rules of repetition.
 Memorized J as a loss position (for the root).
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.

- Assume the one causes loops wins the game.
- A → B → D → G → I → J → D is loss because of rules of repetition.
 Memorized J as a loss position (for the root).
- $A \to B \to D \to H$ is a win. Hence D is win.
- $A \rightarrow B \rightarrow E$ is a loss. Hence B is loss.

- Assume the one causes loops wins the game.
- A → B → D → G → I → J → D is loss because of rules of repetition.
 Memorized J as a loss position (for the root).
- $A \to B \to D \to H$ is a win. Hence D is win.
- $A \to B \to E$ is a loss. Hence B is loss.
- $A \to C \to F \to J$ is loss because J is recorded as loss.
- A is loss because both branches lead to loss.

- Assume the one causes loops wins the game.
- A → B → D → G → I → J → D is loss because of rules of repetition.
 Memorized J as a loss position (for the root).
- $A \to B \to D \to H$ is a win. Hence D is win.
- $A \to B \to E$ is a loss. Hence B is loss.
- $A \to C \to F \to J$ is loss because J is recorded as loss.
- A is loss because both branches lead to loss.
- However, $A \to C \to F \to J \to D \to H$ is a win (for the root).

Comments

- Using DFS to search the above game graph from left first or from right first produces two different results.
- Position A is actually a win position.
 - Problem: memorize *J* being draw is only valid when the path leading to it causes a loop.
- Storing the path leading to a position in a transposition table requires too much memory.
 - Maybe we can store some forms of hash code to verify it.
- It is still a research problem to use a more efficient data structure.

Opponent models

- In a normal alpha-beta search, it is assumed that you and the opponent use the same strategy.
 - What is good to you is bad to the opponent and vice versa!
 - Hence we can reduce a minimax search to a NegaMax search.
 - This is normally true when the game ends, but may not be true in the middle of the game.
- What will happen when there are two strategies or evaluating functions f_1 and f_2 so that
 - for some positions p, $f_1(p)$ is better than $f_2(p)$

 \triangleright "better" means closer to the real value f(p)

- for some positions q, $f_2(q)$ is better than $f_1(q)$
- If you are using f_1 and you know your opponent is using f_2 , what can be done to take advantage of this information.
 - This is called OM (opponent model) search [Carmel and Markovitch 1996].
 - \triangleright In a MAX node, use f_1 .
 - \triangleright In a MIN node, use f_2 .

Other usage of the opponent model

- Depend on strength of your opponent, decide whether to force an easy draw or not.
 - This is called the contempt factor.
- Example in CDC:
 - It is easy to chase the king of your opponent using your pawn.
 - Drawing a weaker opponent is a waste.
 - Drawing a stronger opponent is a gain.
- It is feasible to use a learning model to "guess" the level of your opponent as the game goes and then adapt to its model in CDC [Chang et al 2021].

Opponent models – comments

Comments:

- Need to know your opponent's model precisely or to have some knowledge about your opponent.
- How to learn the opponent model on-line or off-line?
- When there are more than 2 possible opponent strategies, use a probability model (PrOM search) to form a strategy.
- Remark: A common misconception is if your opponent uses a worse strategy f_3 than the one, namely f_2 , used in your model, then he may get advantage.
 - This is impossible if f_2 is truly better than f_3 .
 - If f_1 can beat f_2 , then f_1 can sure beat f_3 .

Search with chance nodes

- Many stochastic games have nodes whose outcome cannot be decided ahead of time in the game tree.
 - A priori chance node: you make a decision first and then followed by a random toss.
 - ▷ EinStein Wrfelt Nicht (EWN): you make a random toss to decide what pieces that you can move, and then you make a move.
 - A posteriori chance node: a random toss is made first and then you make a decision.
 - Chinese dark chess: you pick a dark piece to flip, and then the piece is revealed decided by a random toss

Example: Chinese dark chess (CDC)

- Two-player, zero sum
- Complete information
- Perfect information
- Stochastic
- There is a chance node during searching [Ballard 1983].
- Previous work
 - Alpha-beta based [Ballard 1983]
 - Monte-Carlo based [Lancoto et al 2013]

Example (1/4)

- It's BLACK turn and BLACK has 6 different possible legal moves which includes the four different moving made by its elephant and the two flipping moves at a1 or a8.
 It is difficult for BLACK to secure a win by moving its elephant along
 - It is difficult for BLACK to secure a win by moving its elephant along any of the 3 possible directions, namely up, right or left, or by capturing the RED pawn at the left hand side.

Example (2/4)

• If BLACK flips a1, then there are 2 possible cases.

- If a1 is BLACK cannon, then it is difficult for RED to win.
 - \triangleright RED guard is in danger.
- If a1 is BLACK king, then it is difficult for BLACK to lose.

▷ BLACK king can go up through the right.

Example (3/4)

• If BLACK flips a8, then there are 2 possible cases.

- If a8 is BLACK cannon, then it is easy for RED to win.
 - ▶ RED cannon captures it immediately.
- If a8 is BLACK king, then it is also easy for RED to win.

▶ RED cannon captures it immediately.

Example (4/4)

Conclusion:

- It is vary bad for BLACK to flip a8.
- It is bad for BLACK to move its elephant.
- It is better for BLACK to flip a1.

Basic ideas for searching chance nodes

- Assume a chance node x has a score probability distribution function Pr(*) with the range of possible outcomes from 1 to N where N is a positive integer.
 - For each possible outcome i, we need to compute score(i).
 - The expected value $E = \sum_{i=1}^{N} score(i) * Pr(x = i)$.
 - The minimum value is $m = \min_{i=1}^{N} \{score(i) \mid Pr(x=i) > 0\}$.
 - The maximum value is $M = \max_{i=1}^{N} \{score(i) \mid Pr(x=i) > 0\}$.
- Example: open game in Chinese dark chess.
 - For the first ply, N = 14 * 32.
 - \triangleright Using symmetry, we can reduce it to 7*8.

• We now consider the chance node of flipping the piece at the cell a1.

- \triangleright N = 14.
- ▷ Assume x = 1 means a BLACK King is revealed and x = 8 means a RED King is revealed.
- Then score(1) = score(8) since the first player owns the revealed king no matter its color is.
- ▷ Pr(x = 1) = Pr(x = 8) = 1/14.

Illustration

Algorithm: Chance_Search (MAX node)

- Algorithm F3.0' (position p, value alpha, value beta, integer depth)
 - // max node
 - determine the successor positions p_1, \ldots, p_b
 - if b = 0 // a terminal node
 or depth = 0 // remaining depth to search
 - or time is running up // from timing control
 - or some other constraints are met // add knowledge here
 - then return f(p) else begin
 - $\triangleright m := -\infty$
 - \triangleright for i := 1 to b do
 - ⊳ begin
 - $b \quad if p_i is to play a chance node x \\ then t := Star0_F3.0'(p_i,x,max\{alpha,m\}, beta, depth-1)$
 - $\triangleright \quad else \ t := G3.0'(p_i, max\{alpha, m\}, beta, depth 1)$
 - $\triangleright \qquad \text{if } t > m \ \text{then } m := t$
 - $\triangleright \quad \text{ if } m \geq beta \text{ then } return(m) \text{ // } beta \text{ cut off }$
 - \triangleright end
 - end;
 - return m

Algorithm: Chance_Search (MIN node)

- Algorithm G3.0' (position p, value alpha, value beta, integer depth)
 - // min node
 - determine the successor positions p_1, \ldots, p_b
 - if b = 0 // a terminal node
 or depth = 0 // remaining depth to search
 - or time is running up // from timing control
 - or some other constraints are met // add knowledge here
 - then return f(p) else begin
 - $\triangleright m := \infty$
 - \triangleright for i := 1 to b do
 - ⊳ begin
 - $b \quad if p_i is to play a chance node x \\ then t := Star0_G3.0'(p_i,x,alpha, min\{beta, m\}, depth 1)$
 - $\triangleright \quad else \ t := F3.0'(p_i, alpha, min\{beta, m\}, depth 1)$
 - $\triangleright \quad \text{if } t < m \text{ then } m := t$
 - $\triangleright \quad \text{ if } m \leq alpha \text{ then } return(m) // alpha \text{ cut off }$
 - \triangleright end
 - end;
 - return m

Algorithm: *Star*0, uniform case (MAX)

- version when all choices have equal probabilities
- max node
- Algorithm Star0_EQU_F3.0'(position p, node x, value alpha, value beta, integer depth)
 - // a chance node x with c equal probability choices k_1, \ldots, k_c
 - // exhaustive search all possibilities and return the expected value
 - determine the possible values of the chance node x to be k_1, \ldots, k_c
 - vsum = 0; // current sum of expected value
 - for i = 1 to c do
 - begin
 - \triangleright let p_i be the position of assigning k_i to x in p;
 - \triangleright vsum += G3.0'($p_i, -\infty, +\infty, depth$);
 - end

\blacksquare return vsum/c; // return the expected score

Algorithm: *Star*0, uniform case (MIN)

- version when all choices have equal probabilities
- min node
- Algorithm Star0_EQU_G3.0'(position p, node x, value alpha, value beta, integer depth)
 - // a chance node x with c equal probability choices k_1, \ldots, k_c
 - // exhaustive search all possibilities and return the expected value
 - determine the possible values of the chance node x to be k_1, \ldots, k_c
 - vsum = 0; // current sum of expected value
 - for i = 1 to c do
 - begin
 - \triangleright let p_i be the position of assigning k_i to x in p;
 - \triangleright vsum += F3.0'($p_i, -\infty, +\infty, depth$);
 - end

\blacksquare return vsum/c; // return the expected score

Star0: note

depth stays the same since we are unwrapping a chance node.

- The search window from normal alpha-beta pruning cannot be applied in a chance node search since we are looking at the average of the outcome.
 - It is okay for one choice to have a very large or small value because it may be evened out by values from other choices.

With a probability distribution: MAX node

MAX node

Algorithm Star0_F3.0'(position p, node x, value alpha, value beta, integer depth)

- // a chance node x with c choices k_1, \ldots, k_c
- // the *i*th choice happens with the probability Pr_i
- // exhaustive search all possibilities and return the expected value
- determine the possible values of the chance node x to be k_1, \ldots, k_c
- vexp = 0; // current sum of expected value
- for i = 1 to c do
- begin
 - \triangleright let p_i be the position of assigning k_i to x in p;
 - \triangleright vexp += $\mathbf{Pr}_i * G3.0'(p_i, -\infty, +\infty, depth);$
- end

return vexp; // return the expected score

With a probability distribution: MIN node

MIN node

• Algorithm $Star0_G3.0'$ (position p, node x, value alpha, value beta, integer depth)

- // a chance node x with c choices k_1, \ldots, k_c
- // the *i*th choice happens with the probability Pr_i
- // exhaustive search all possibilities and return the expected value
- determine the possible values of the chance node x to be k_1, \ldots, k_c
- vexp = 0; // current sum of expected value
- for i = 1 to c do
- begin
 - \triangleright let p_i be the position of assigning k_i to x in p;
 - \triangleright vexp += $\mathbf{Pr}_i * F3.0'(p_i, -\infty, +\infty, depth);$
- end

return vexp; // return the expected score

Ideas for improvements

- During a chance search, an exhaustive search method is used without any pruning.
- Ideas for further improvements
 - When some of the best possible cases turn out very bad results, we know lower/upper bounds of the final value.
 - When you are in advantage, search for a bad choice first.
 - ▶ If the worst choice cannot is not too bad, then you can take this chance.
 - When you are in disadvantage, search for a good choice first.
 - ▶ If the best choice cannot is not good enough, then there is not need to take this chance.
- Examples: the average of 2 drawings of a dice is similar to a position with 2 possible moves with scores in [1..6].
 - The first drawing is 5. Then bounds of the average:
 - ▷ lower bound is 3
 - \triangleright upper bound is 5.5.
 - The first drawing is 1. Then bounds of the average:
 - \triangleright lower bound is 1
 - \triangleright upper bound is 3.5.

Bounds in a chance node

- Assume the various possibilities of a chance node is evaluated one by one in the order that at the end of phase *i*, the *i*th choice is evaluated.
 - Assume $v_{min} \leq score(i) \leq v_{max}$.
- What are the lower and upper bounds, namely m_i and M_i , of the expected value of the chance node immediately after the end of phase i?

 $\begin{array}{l} \triangleright \ m_0 = v_{min} \\ \triangleright \ M_0 = v_{max} \end{array}$

• i = 1, we first compute score(1), and then know

▷
$$m_1 \ge score(1) * Pr(x = 1) + v_{min} * (1 - Pr(x = 1))$$
, and
▷ $M_1 \le score(1) * Pr(x = 1) + v_{max} * (1 - Pr(x = 1))$.

• • • •

• $i = i^*$, we have computed $score(1), \ldots, score(i^*)$, and then know

▶
$$m_{i^*} \ge \sum_{i=1}^{i^*} score(i) * Pr(x = i) + v_{min} * (1 - \sum_{i=1}^{i^*} Pr(x = i))$$
, and
▶ $M_{i^*} \le \sum_{i=1}^{i^*} score(i) * Pr(x = i) + v_{max} * (1 - \sum_{i=1}^{i^*} Pr(x = i))$.

Changes of bounds: uniform case (1/2)

- For simplicity, let's assume $Pr(x = i) = \frac{1}{c}$.
- For all *i*, and the evaluated value of the *i*th choice is v_i .
- Assume the search window entering a chance node with N = c choices is (alpha, beta).
- The value of a chance node after the first i choices are explored can be expressed as
 - an expected value $E_i = vsum_i/i$;

$$\triangleright vsum_i = \sum_{j=1}^i v_j$$

▷ This value is returned **only** when all choices are explored.

- \Rightarrow The expected value of an un-explored child shouldn't be $\frac{v_{min}+v_{max}}{2}$.
- a range of possible values $[m_i, M_i]$.

▷
$$m_i = (\sum_{j=1}^{i} v_j + v_{min} \cdot (c - i))/c$$

▷ $M_i = (\sum_{j=1}^{i} v_j + v_{max} \cdot (c - i))/c$

• Invariants:

$$\triangleright E_i \in [m_i, M_i]$$

$$\triangleright \ E_c = m_c = M_c$$

Changes of bounds: uniform case (2/2)

- Let m_i and M_i be the current lower and upper bounds, respectively, of the expected value of this chance node immediately after the evaluation of the *i*th node.

•
$$m_i = (\sum_{j=1}^{i-1} v_j + v_i + v_{min} \cdot (c-i))/c$$

•
$$M_i = (\sum_{j=1}^{i-1} v_j + v_i + v_{max} \cdot (c-i))/c$$

- How to incrementally update m_i and M_i :
 - $m_0 = v_{min}$
 - $M_0 = v_{max}$

•
$$m_i = m_{i-1} + (v_i - v_{min})/c$$

• $M_i = M_{i-1} + (v_i - v_{max})/c$

• The current search window is (*alpha*, *beta*).

- No more searching is needed when
 - $\triangleright m_i \geq beta$, chance node cut off I;
 - \Rightarrow The lower bound found so far is good enough.
 - \Rightarrow Similar to a beta cut off.
 - \Rightarrow The returned value is m_i .
 - $\triangleright M_i \leq alpha$, chance node cut off II.
 - \Rightarrow The upper bound found so far is bad enough.
 - \Rightarrow Similar to an alpha cut off.
 - \Rightarrow The returned value is M_i .

Chance node cut off: uniform case (1/3)

The above two cut offs comes from each time a choice is completely searched.

• When $m_i \ge beta$, chance node cut off I,

▷ which means $\left(\sum_{j=1}^{i-1} v_j + v_i + v_{min} \cdot (c-i)\right)/c \ge beta.$

• When $M_i \leq alpha$, chance node cut off II,

▷ which means $\left(\sum_{j=1}^{i-1} v_j + v_i + v_{max} \cdot (c-i)\right)/c \leq alpha$.

- Further cut off can be obtained before when that choice is in searching.
 - Assume after searching the first i-1 choices, no chance node cut off happens.
 - Before searching the *i*th choice, we know that if v_i is large enough, then it will raise the lower bound of the chance node and it will have a chance of getting a chance node cut off I.
 - How large should v_i be for this to happen?

$$\triangleright \ \ chance \ node \ cut \ off \ I: \\ (\sum_{j=1}^{i-1} v_j + v_i + v_{min} \cdot (c-i))/c \ge beta$$

$$\triangleright \Rightarrow v_i \ge B_{i-1} = c \cdot beta - \left(\sum_{j=1}^{i-1} v_j - v_{min} * (c-i)\right)$$

 \triangleright B_{i-1} is the threshold for cut off I to happen.

Chance node cut off: uniform case (2/3)

Similarly,

- Assume after searching the first i-1 choices, no chance node cut off happens.
- Before searching the *i*th choice, we know that if v_i is small enough, then it will lower the upper bound of the chance node and it will have a chance of getting a chance node cut off II.
- How small should v_i be for this to happen?

▷ chance node cut off II:

$$(\sum_{j=1}^{i-1} v_j + v_i + v_{max} \cdot (c-i))/c \leq alpha$$

$$\triangleright \Rightarrow v_i \le A_{i-1} = c \cdot alpha - \left(\sum_{j=1}^{i-1} v_j - v_{max} * (c-i)\right)$$

 \triangleright A_{i-1} is the threshold for cut off II to happen.

Chance node cut off: uniform case (3/3)

- Hence set the window for searching the *i*th choice to be (A_{i-1}, B_{i-1}) which means no further search is needed if the result is not within this window.
 - (A_{i-1}, B_{i-1}) is the window for searching the *i*th choice instead of using (alpha, beta).
- How to incrementally update A_i and B_i ?

•
$$A_0 = c \cdot (alpha - v_{max}) + v_{max}$$

•
$$B_0 = c \cdot (beta - v_{min}) + v_{min}$$

• $A_i = A_{i-1} + v_{max} - v_i$

•
$$B_i = B_{i-1} + v_{min} - v_i$$

Comment:

• May want to use zero-window search to test first.

Changes of bounds: non-uniform case (1/3)

- Assume the search window entering a chance node with N = c choices is (alpha, beta).
- The *i*th choice happens with the probability $Pr(x = i) = Pr_i$.
- For all *i*, the evaluated value of the *i*th choice is v_i .
- The value of a chance node after the first i choices are explored can be expressed as
 - an expected value $E_i = vexp_i$;

 $\triangleright vexp_i = \sum_{j=1}^i Pr_j * v_j$

▷ This value is returned only when all choices are explored.

- \Rightarrow The expected value of an un-explored child shouldn't be $\frac{v_{min}+v_{max}}{2}$.
- a range of possible values $[m_i, M_i]$.
 - $M_i = vexp_i + \sum_{j=i+1}^{c} Pr_j * v_{min}$ $M_i = vexp_i + \sum_{j=i+1}^{c} Pr_j * v_{max}$
- Invariants:

$$\triangleright E_i \in [m_i, M_i]$$

$$\triangleright \ E_c = m_c = M_c$$

Changes of bounds: non-uniform case (2/3)

• Let m_i and M_i be the current lower and upper bounds, respectively, of the expected value of this chance node immediately after the evaluation of the *i*th node.

•
$$m_i = vexp_{i-1} + Pr_i * v_i + \sum_{j=i+1}^{c} Pr_j * v_{min}$$

•
$$M_i = vexp_{i-1} + Pr_i * v_i + \sum_{j=i+1}^{c} Pr_j * v_{max}$$

• How to incrementally update m_i and M_i :

•
$$m_0 = v_{min}$$

•
$$M_0 = v_{max}$$

$$m_i = m_{i-1} + Pr_i * (v_i - v_{min})$$
(1)

$$M_i = M_{i-1} + Pr_i * (v_i - v_{max})$$
⁽²⁾

Changes of bounds: non-uniform case (3/3)

- The current search window is (alpha, beta).
- No more searching is needed when
 - $m_i \geq beta$, chance node cut off I;
 - \Rightarrow The lower bound found so far is good enough.
 - \Rightarrow Similar to a beta cut off.
 - \Rightarrow The returned value is m_i .
 - $M_i \leq alpha$, chance node cut off II.
 - \Rightarrow The upper bound found so far is bad enough.
 - \Rightarrow Similar to an alpha cut off.
 - \Rightarrow The returned value is M_i .

Chance node cut off: non-uniform case (1/2)

• When $m_i \geq beta$, chance node cut off I,

• which means $vexp_{i-1} + Pr_i * v_i + \sum_{j=i+1}^{c} Pr_j * v_{min} \ge beta$

•
$$\Rightarrow v_i \ge B_{i-1} = \frac{1}{Pr_i} \cdot (beta - (vexp_{i-1} + \sum_{j=i+1}^c Pr_j * v_{min}))$$

• When $M_i \leq alpha$, chance node cut off II,

- which means $vexp_{i-1} + Pr_i * v_i + \sum_{j=i+1}^{c} Pr_j * v_{max} \leq alpha$
- $\Rightarrow v_i \leq A_{i-1} = \frac{1}{Pr_i} \cdot (alpha (vexp_{i-1} + \sum_{j=i+1}^{c} Pr_j * v_{max}))$
- Hence set the window for searching the *i*th choice to be (A_{i-1}, B_{i-1}) which means no further search is needed if the result is not within this window.

Chance node cut off: non-uniform case (2/2)

• How to incrementally update A_i and B_i ?

$$A_{0} = \frac{1}{Pr_{1}} \cdot (alpha - v_{max} * \sum_{i=1}^{c} Pr_{i}) + v_{max}$$
(3)

$$B_0 = \frac{1}{Pr_1} \cdot (beta - v_{min} * \sum_{i=1}^{c} Pr_i) + v_{min}$$
(4)

$$A_{i} = \frac{1}{Pr_{i+1}} * \left(Pr_{i} * A_{i-1} + Pr_{i+1} * v_{max} - Pr_{i} * v_{i} \right)$$
(5)

$$B_{i} = \frac{1}{Pr_{i+1}} * \left(Pr_{i} * B_{i-1} + Pr_{i+1} * v_{min} - Pr_{i} * v_{i} \right)$$
(6)

Algorithm: Chance_Search

- Algorithm F3.1' (position p, value alpha, value beta, integer depth)
 - // max node
 - determine the successor positions p_1, \ldots, p_b ;
 - if b = 0 // a terminal node
 or depth = 0 // remaining depth to search
 - or time is running up // from timing control
 - or some other constraints are met // add knowledge here
 - then return f(p); else begin
 - $\triangleright m := -\infty;$
 - \triangleright for i := 1 to b do
 - ⊳ begin

 - $\triangleright \quad else \ t := G3.1'(p_i, max\{alpha, m\}, beta, depth 1);$
 - $\triangleright \quad \text{ if } t > m \text{ then } m := t;$
 - \triangleright if $m \ge beta$ then return(m); // beta cut off
 - \triangleright end;
 - end;
 - return *m*;

Star1: uniform case

- Algorithm $Star1_EQU_F3.1'$ (position p, node x, value alpha, value beta, integer depth)
 - // a chance node x with c equal probability choices k_1, \ldots, k_c
 - determine the possible values of the chance node x to be k_1, \ldots, k_c
 - $A_0 = c \cdot (alpha v_{max}) + v_{max}$, $B_0 = c \cdot (beta v_{min}) + v_{min}$;
 - $m_0 = v_{min}$, $M_0 = v_{max}$ // current lower and upper bounds
 - vsum = 0; // current sum of expected values
 - for i = 1 to c do
 - begin
 - \triangleright let p_i be the position of assigning k_i to x in p;
 - $\triangleright t := G3.1'(p_i, \max\{A_{i-1}, v_{min}\}, \min\{B_{i-1}, v_{max}\}, depth)$
 - ▷ $m_i = m_{i-1} + (t v_{min})/c$, $M_i = M_{i-1} + (t v_{max})/c$;
 - \triangleright if $t \geq B_{i-1}$ then return m_i ; // failed high, chance node cut off I
 - ▷ if $t \le A_{i-1}$ then return M_i ; // failed low, chance node cut off II ▷ vsum += t;
 - ▷ $A_i = A_{i-1} + v_{max} t$, $B_i = B_{i-1} + v_{min} t$;

end

• return vsum/c;

Illustration: Star1

Star1: non-uniform case

• Algorithm $Star1_F3.1'$ (position p, node x, value alpha, value beta, integer depth)

- // a chance node x with c choices k_1, \ldots, k_c
- // the *i*th choice happens with the probability Pr_i
- determine the possible values of the chance node x to be k_1, \ldots, k_c
- initialize A_0 and B_0 using formulas (3) and (4)
- $m_0 = v_{min}$, $M_0 = v_{max}$ // current lower and upper bounds
- vexp = 0; // current weighted sum of expected values
- for i = 1 to c do
- begin
 - \triangleright let Pr_i be the position of assigning k_i to x in p;
 - $\triangleright t := G3.1'(p_i, \max\{A_{i-1}, v_{min}\}, \min\{B_{i-1}, v_{max}\}, depth)$
 - \triangleright incrementally update m_i and M_i using formulas (1) and (2)
 - \triangleright if $t \ge B_{i-1}$ then return m_i ; // failed high, chance node cut off I
 - \triangleright if $t \leq A_{i-1}$ then return M_i ; // failed low, chance node cut off II
 - \triangleright vexp += $Pr_i * t;$
 - \triangleright incrementally update A_i and B_i using formulas (5) and (6)
- end

return vexp;

Example: Chinese dark chess

• Assumption:

• The range of the scores of Chinese dark chess is [-10, 10] inclusive, alpha = -10 and beta = 10.

•
$$N = 7$$
.

•
$$Pr(x=i) = 1/N = 1/7$$
.

Calculation:

$$i = 0,$$

 $\triangleright m_0 = -10.$
 $\triangleright M_0 = 10.$

General case

Assume the *i*th choice happens with a chance w_i/c where $c = \sum_{i=1}^{N} w_i$ and N is the total number of choices. • $m_0 = v_{min}$ • $M_0 = v_{max}$ • $m_i = (\sum_{i=1}^{i-1} w_j \cdot v_j + w_i \cdot v_i + v_{min} \cdot (c - \sum_{j=1}^{i} w_j))/c$ $\triangleright m_i = m_{i-1} + (w_i/c) \cdot (v_i - v_{min})$ • $M_i = (\sum_{j=1}^{i-1} w_j \cdot v_j + w_i \cdot v_i + v_{max} \cdot (c - \sum_{j=1}^{i} w_j))/c$ $\triangleright M_i = M_{i-1} + (w_i/c) \cdot (v_i - v_{max})$ • $A_0 = (c/w_1) \cdot (alpha - v_{max}) + v_{max}$ • $B_0 = (c/w_1) \cdot (beta - v_{min}) + v_{min}$ • $A_{i-1} = (c \cdot alpha - (\sum_{j=1}^{i-1} w_j \cdot v_j - v_{max} \cdot (c - \sum_{j=1}^{i} w_j)))/w_i$ $\triangleright A_i = (w_i/w_{i+1}) \cdot (A_{i-1} - v_i) + v_{max}$ • $B_{i-1} = (c \cdot beta - (\sum_{j=1}^{i-1} w_j \cdot v_j - v_{min} \cdot (c - \sum_{j=1}^{i} w_j)))/w_i$ $\triangleright B_i = (w_i/w_{i+1}) \cdot (B_{i-1} - v_i) + v_{min}$

The probability distribution

- Assume a chance node x has c choices k_1, \ldots, k_c .
- The *i*th choice happens with the probability Pr_i and $\sum_{i=1}^{c} Pr_i = 1$.
- Special case 1, called uniform (EQU): $Pr_i = 1/c$.
 - All choices happen with a equal chance.
 - Example: EinStein Wrfelt Nicht (EWN) when all pieces are not captured.
- Special case 2, called GCD: $Pr_i = w_i/D$ where each w_i is an integer and $\sum_{i=1}^{c} w_i = D$.
 - example: Chinese dark chess.
- The above two special cases usually happen in game playing and can use the characteristics to do some optimization in number calculations.

Algorithm: Star0, GCD case, MAX node

- An GCD version for a MAX node.
- Algorithm Star0_GCD_F3.0'(position p, node x, value alpha, value beta, integer depth)
 - // a chance node x with c choices k_1, \ldots, k_c
 - // whose occurrence probability are w_1/D , ..., w_c/D
 - // and each w_i is an integer
 - // exhaustive search all possibilities and return the expected value
 - determine the possible values of the chance node x to be k_1, \ldots, k_c
 - vsum = 0; // current sum of weight values
 - for i = 1 to c do
 - begin
 - \triangleright let p_i be the position of assigning k_i to x in p;
 - \triangleright vsum += $w_i * G3.0'(p_i, -\infty, +\infty, depth);$
 - end

\blacksquare return vsum/D; // return the expected score

Algorithm: Star0, GCD case, MIN node

An GCD version for a MIN node.

- Algorithm Star0_GCD_G3.0'(position p, node x, value alpha, value beta, integer depth)
 - // a chance node x with c choices k_1, \ldots, k_c
 - // whose occurrence probability are w_1/D , ..., w_c/D
 - // and each w_i is an integer
 - // exhaustive search all possibilities and return the expected value
 - determine the possible values of the chance node x to be k_1, \ldots, k_c
 - vsum = 0; // current sum of weight values
 - for i = 1 to c do
 - begin
 - \triangleright let p_i be the position of assigning k_i to x in p;
 - \triangleright vsum += $w_i * F3.0'(p_i, -\infty, +\infty, depth);$
 - end

\blacksquare return vsum/D; // return the expected score

Comments (1/2)

- We illustrate the ideas using a fail soft version of the alpha-beta algorithm.
 - Original and fail hard version have a simpler logic in maintaining the search interval.
 - The semantic of comparing an exact return value with an expected returning value is something that needs careful thinking.
 - May want to pick a chance node with a lower expected value but having a hope of winning, not one with a slightly higher expected value but having no hope of winning when you are in disadvantageous.
 - May want to pick a chance node with a lower expected value but having no chance of losing, not one with a slightly higher expected value but having a chance of losing when you are in advantage.
 - Do not always pick one with a slightly larger expected value. Give the second one some chance to be selected.

Comments (2/2)

- Need to revise algorithms carefully when dealing with the original, fail hard or NegaScout version.
 - What does it mean to combine bounds from a fail hard version?
- The lower and upper bounds of the expected score can be used to do alpha-beta pruning.
 - Nicely fit into the alpha-beta search algorithm.
 - Not only we can terminate the searching of choices earlier, but also we can terminate the searching of a particular choice earlier.
- Exist other improvements by searching choices of a chance node "in parallel".

Implementation hints (1/2)

- Fully unwrap a chance node takes more time than that of a non-chance node.
 - If you set your depth limit to *d* for a game without chance nodes, then the depth limit should be lower for that game when chance node is introduced.
 - Technically speaking, a chance node adds at least one level.
 - ▶ Depending on the number of choices you have compared to the number of non-chance children, you may need to reduce the search depth limit by at least 3 or 5, and maybe 7.
 - ▶ Estimate the complexity of a chance node by comparing the number of choices of a chance node and the number of non-chance-node moves.
- Without searching a chance node, it is easy to obtain not enough progress by just searching a long sequence of non-chance nodes.
 - In CDC, when there are only a limited number of revealed pieces, there is not much you can do by just moving around.

Implementation hints (2/2)

- Practical considerations, for example in Chinese Dark Chess (CDC), are as follows.
 - You normally do not need to consider the consequence of flipping more than 2 dark pieces.
 - ▷ Set a maximum number of chance node searching in any DFS search path.
 - It makes little sense to consider ending a search with exploring a chance node.
 - ▶ When depth limit left is less than 3 or 4, stop exploring chance nodes.
 - It also makes little sense to consider the consequence of exploring 2 chance nodes back to back.
 - ▶ Make sure two chance nodes in a DFS search path is separated by at least 3 or 4 non-chance nodes.
 - It is rarely the case that a chance node exploration is the first ply to consider in move ordering unless it is recommended by a prior knowledge or no other non-chance-node moves exists.

Ideas for furthermore improvements (1/2)

- Can do better by not searching the DFS order.
 - It is not necessary to search completely the subtree of x = 1 first, and then start to look at the subtree of x = 2, ... etc.
 - partially search a subtree gives you some information about the possible range of this chance node.
- Assume p is a MAX chance node, e.g., root makes a flip.
 - T_i is the tree of p when for the *i*th choice, namely, with the root p_i which is a MIN node.
 - $T_{i,j}$ is the *j*th branch of T_i , namely, with the root $p_{i,j}$.
 - v_i is the evaluated value of T_i .
 - $v_{i,j}$ is the evaluated value of $T_{i,j}$.
- We have completely searched $T_{1,s}$ and obtained a value $v_{1,s}$.
 - Since p_i is a MIN node, $v_{1,s}$ is an upper bound of v_1 which is usually lower than the maximum possible value.
 - The upper bound of v_1 is thus lowered.
 - It is possible because of this probe, an alpha cut can be performed.
- The above process is called an exact probe.
 - We can first probe each T_i .
 - It is better to probe the worse possible branch of T_i first.

Ideas for furthermore improvements (2/2)

- Assume p is a MIN chance node, e.g., the opponent makes a flip.
 - T_i is the tree of p when for the ith choice, namely, with the root p_i which is a MAX node.
 - $T_{i,j}$ is the *j*th branch of T_i , namely, with the root $p_{i,j}$.
 - v_i is the evaluated value of T_i .
 - $v_{i,j}$ is the evaluated value of $T_{i,j}$.

• We have completely searched $T_{1,s}$ and obtained a value $v_{1,s}$.

- Since p_i is a MAX node, $v_{1,s}$ is a lower bound of v_1 which is usually larger than the minimum possible value.
- The lower bound of v_1 is thus raised.
- It is possible because of this probe, a beta cut can be performed.
- The above process is called an exact probe.
 - We can first probe each T_i .
 - It is better to probe the best possible branch of T_i first.

Illustration: Probe

The first child of Ti is probed.

Star2

Algorithm Star2_F3.2'(position p, node x, value alpha, value beta) // MAX node

- // a chance node x with c choices k_1, \ldots, k_c
- // the *i*th choice happens with the probability Pr_i
- determine the possible values of the chance node x to be k_1, \ldots, k_c
- // Do some probings to decide whether some cut off can be performed.
- for each choice $i \ {\rm from} \ 1 \ {\rm to} \ c \ {\rm do}$
 - \triangleright Let p_i be the position obtained from p by making x the choice k_i .
 - \triangleright do an exact probe on the first child of p_i
 - ▷ If p is a MAX chance node, then p_i is a MIN node and you may get an alpha cut off for p_i since the probe returns an upper bound for p_i .
 - ▷ If p is a MIN chance node, then p_i is a MAX node and you may get an beta cut off for p_i since the probe returns a lower bound for p_i .

• // normal exhaustive search phase

- If no cut off is found in the above, do the normal Star1 search.
 - ▶ Additional alpha/beta cut off from searching a particular choice.
 - ▷ Chance node cut off I that is similar to beta cut off.
 - ▷ Chance node cut off II that is similar to alpha cut off.
- return *vexp*;

More ideas for probes

- Move ordering in exploring the choices is critical in performance.
 Picking which child to do the probe is also critical.
- Can do exact probes on h children, called probing factor h > 1, of a choice instead of fixing the number of probings to be exactly one.
 - When h = 0, star2 == star1.
 - Sequential probing
 - \triangleright **Probe** h children of a choice at one time.
 - ▷ for i = 1 to c do probe h children of the ith choice

• Cyclic probing

- ▶ Probe 1 child of a choice at one time for all choices, and do this for *h* rounds.
- for j = 1 to h do
 for i = 1 to c do
 probe the jth child of the ith choice
- When h = 1, cyclic probing == sequential probing.

May decide to probe different number of children for each choice.

Star2.5: cyclic probing

- Using a cyclic probing order in Star2 with a probing factor h.
 Algorithm Star2.5_F3.2'(position p, node x, value alpha, value beta, integer h) // MAX node, h is the probing factor
 - // a chance node x with c choices k_1, \ldots, k_c
 - // the *i*th choice happens with the probability Pr_i
 - determine the possible values of the chance node x to be k_1, \ldots, k_c
 - // Do a cyclic probing to decide whether some cut off can be performed.
 - for j from 1 to h do
 - for each choice i from 1 to c do
 - \triangleright Let p_i be the position obtained from p by making x the choice k_i .
 - \triangleright do an exact probe on the *j*th child of p_i
 - ▷ If p is a MAX chance node, then p_i is a MIN node and you may get an alpha cut off for p_i since the probe returns an upper bound for p_i .
 - ▷ If p is a MIN chance node, then p_i is a MAX node and you may get an beta cut off for p_i since the probe returns a lower bound for p_i .
 - If no cut off is found in the above, do the normal Star1 search.
 - ▶ Additional alpha/beta cut off from searching a particular choice.
 - ▷ Chance node cut off I that is similar to beta cut off.
 - ▷ Chance node cut off II that is similar to alpha cut off.

Comments

- Experimental results provided in [Ballard '83] on artificial game trees.
- Star1 may not be able to cut more than 20% of the leaves.
- Star2.5 with h = 1 cuts more than 59% of the nodes and is about twice better than Star1.
- Sequential probing is best when h = 3 which cuts more than 65% of the nodes and roughly cut about the same nodes as Star2.5 using the same probing factor.
- Sequential probing gets worse when h > 4. For example, it only cut 20% of the leaves when h = 20.
- Star2.5 continues to cut more nodes when h gets larger, though the gain is not that great. At h = 3, about 70% of the nodes are cut. At h = 20, about 72% of the nodes are cut.

Approximated Probes

- We can also have heuristics for issuing approximated probes which returns approximated values.
- Strategy I: random probing of some promising choices
 - Do a move ordering heuristic to pick one or some promising choices to expand first.
 - These promising choices can improve the lower or upper bounds and can cause beta or alpha cut off.
- Strategy II: fast probing of all choices
 - Possible implementations
 - ▷ do a static evaluation on all choices
 - ▶ do a shallow alpha-beta searching on each choice
 - ▷ do a MCTS-like simulation on the choices
 - Use these information to decide whether you have enough confidence to do a cut off.

Using MCTS with chance nodes (1/2)

- Assume a chance node x has c choices k_1, \ldots, k_c and the ith choice happens with the probability Pr_i
- Selection
 - If x is picked in the PV during selection, then a random coin tossing according to the probability distribution of the choices is needed to pick which choice to descent.
 - ▶ It is better to even the number of simulations done on each choice.
 - ▶ Use random sampling without replacement. When every one is picked once, then start another round of picking.

Expansion

- If the last node in the PV is x, then expand all choices and simulate each choice some number of times.
 - ▶ Watch out the discuss on maxing chance nodes in a searching path such as whether it is desirable to have 2 chance nodes in sequence ... etc.

Using MCTS with chance nodes (2/2)

Simulation

- When a chance node is to be simulated, then be sure to randomly, according to the probability distribution, pick a choice.
 - ▶ Use some techniques to make sure you are doing an effective sampling when the number of choices is huge
 - ▶ Watch out what are "reasonable" in a simulated plyout on the mixing of chance nodes.

Back propagation

• The UCB score of x is $w_i + c\sqrt{(lnN/N_i)}$ where w_i is the weighted winning rate, or score, of the children, N_i is the total number of simulations done on all choices. and N is the total number of simulations done on the parent of x.

Sparse sampling (1/2)

- Assume in searching the number of possible outcomes in a, maybe chance, node is too large. A technique called sparse sampling can be used [Kearn et al 2002].
 - Can also be used in the expansion phase of MCTS.
- Ideas:
 - The number of choices, $a = |\mathcal{A}|$, considered is enlarged as the number of visits to the node increases.
 - Use the current choice set as an estimation of its goodness.
 - Only consider k_t randomly selected choices, called S_t , in the first t visits where $k_t = \lceil c * t^{\alpha} \rceil$, and c and α are constants.

Algorithm SS for sparse sampling

- t := 1
- Initial k_t to be a small constant, say 1.
- Initial the candidate set \mathcal{S} to be an empty set.
- Randomly pick k_t children from \mathcal{A} into \mathcal{S}
- loop: Performs some t' samplings from S.
 - ▷ Add randomly $k_{t+t'} k_t$ new children from A into S
 - \triangleright t += t'
- goto loop

Sparse sampling (2/2)

The estimated value is accurate with a high probability [Kearns et al 2002] [Lanctot et al 2013]
 Theorem:

 $Pr(|\tilde{V} - V| \le \lambda \cdot d) \ge 1 - (2 \cdot k_t \cdot c)^d exp\{\frac{-\lambda^2 \cdot k_t}{2 \cdot v_{max}^2}\},\$

where

- \triangleright k_t is the number of choices considered with t samplings,
- \triangleright \tilde{V} is the estimation considering only k_t choices,
- \triangleright V is the value considering all choices,
- \triangleright c is the actual number of choices,
- \triangleright d is the depth simulated,
- $\triangleright \ \lambda \in (0, 2 \cdot v_{max}]$ is a parameter chosen, and
- \triangleright v_{max} is the maximum possible value.

Note: the proof is done by making sampling with replacement, while the algorithm asks for sampling without replacement.

Proof number search

- Consider the case of a 2-player game tree with either 0 or 1 on the leaves.
 - win, or not win which is lose or draw;
 - lose, or not lose which is win or draw;
 - Call this a binary valued game tree.
- If the game tree is known as well as the values of some leaves are known, can you make use of this information to search this game tree faster?
 - The value of the root is either 0 or 1.
 - If a branch of the root returns 1, then we know for sure the value of the root is 1.
 - The value of the root is 0 only when all branches of the root returns 0.
 - An AND-OR game tree search.

Which node to search next?

- A most proving node for a node u: a descendent node if its value is 1, then the value of u is 1.
- A most disproving node for a node u: a descendent node if its value is 0, then the value of u is 0.

Most proving node

• Node *h* is a most proving node for *a*.

Most disproving node

• Node e or f is a most disproving node for a.

Proof or Disproof Number

- Assign a proof number and a disproof number to each node u in a binary valued game tree.
 - proof(u): the minimum number of leaves needed to visited in order for the value of u to be 1.
 - disproof(u): the minimum number of leaves needed to visited in order for the value of u to be 0.
- The definition implies a bottom-up ordering.

Proof number

• **Proof number for the root** *a* **is 2**.

 \triangleright Need to at least prove e and f.

Disproof number

Disproof number for the root *a* **is 2**.

 \triangleright Need to at least disprove *i*, and either *e* or *f*.

Proof Number: Definition

• *u* is a leaf:

- If value(u) is unknown, then proof(u) is the cost of evaluating u.
- If value(u) is 1, then proof(u) = 0.
- If value(u) is 0, then $proof(u) = \infty$.

• u is an internal node with all of the children u_1, \ldots, u_b :

• if u is a MAX node,

$$proof(u) = \min_{i=1}^{i=b} proof(u_i);$$

• if u is a MIN node,

$$proof(u) = \sum_{i=1}^{i=b} proof(u_i).$$

TCG: Selected advanced topics, 20220125, Tsan-sheng Hsu \bigcirc

Disproof Number: Definition

• *u* is a leaf:

- If value(u) is unknown, then disproof(u) is cost of evaluating u.
- If value(u) is 1, then $disproof(u) = \infty$.
- If value(u) is 0, then disproof(u) = 0.

• u is an internal node with all of the children u_1, \ldots, u_b :

• if u is a MAX node,

$$disproof(u) = \sum_{i=1}^{i=b} disproof(u_i);$$

• if u is a MIN node,

$$disproof(u) = \min_{i=1}^{i=b} disproof(u_i).$$

Illustrations

proof number, disproof number

proof number, disproof number

How these numbers are used (1/2)

Scenario:

 \bullet For example, the tree T represents an open game tree or an endgame tree.

- ▶ If T is an open game tree, then maybe it is asked to prove or disprove a certain open game is win.
- ▶ If T is an endgame tree, then maybe it is asked to prove or disprove a certain endgame is win o loss.
- ▶ Each leaf takes a lot of time to evaluate.
- ▷ We need to prove or disprove the tree using as few time as possible.
- Depend on the results we have so far, pick a leaf to prove or disprove.

Goal: solve as few leaves as possible so that in the resulting tree, either proof(root) or disproof(root) becomes 0.

- If proof(root) = 0, then the tree is proved.
- If disproof(root) = 0, then the tree is disproved.

Need to be able to update these numbers on the fly.

How these numbers are used (2/2)

• Let $GV = \min\{proof(root), disproof(root)\}$.

- GT is "prove" if GV = proof(root), which means we try to prove it.
- GT is "disprove" if GV = disproof(root), which means we try to disprove it.
- In the case of proof(root) = disproof(root), we set GT to "prove" for convenience.
- From the root, we search for a leaf whose value is unknown.
 - The leaf found is a most proving node if GT is "prove", or a most disproving node if GT is "disprove".
 - To find such a leaf, we start from the root downwards recursively as follows.
 - ▶ If we have reached a leaf, then stop.
 - If GT is "prove", then pick a child with the least proof number for a MAX node, and any node that has a chance to be proved for a MIN node.
 - If GT is "disprove", then pick a child with the least disproof number for a MIN node, and any node that has a chance to be disproved for a MAX node.

PN-search: algorithm (1/2)

• {* Compute and update proof and disproof numbers of the root in a bottom up fashion until it is proved or disproved. *}

loop:

• If proof(root) = 0 or disproof(root) = 0, then we are done, otherwise

 \triangleright proof(root) \leq disproof(root): we try to prove it.

- $\triangleright \ proof(root) > disproof(root): we try to disprove it.$
- $u \leftarrow root$; {* find a leaf to prove or disprove *}
- if we try to prove, then
 - \triangleright while u is not a leaf do
 - $\triangleright \quad if u is a MAX node, then$
 - $u \leftarrow \text{leftmost child of } u \text{ with the smallest non-zero proof number;}$
 - \triangleright else if u is a MIN node, then
 - $u \leftarrow$ leftmost child of u with a non-zero proof number;
- else if we try to disprove, then
 - \triangleright while u is not a leaf do
 - $\triangleright \quad \text{if } u \text{ is a MAX node, then}$
 - $u \leftarrow$ leftmost child of u with a non-zero disproof number;
 - \triangleright else if u is a MIN node, then
 - $u \leftarrow$ leftmost child of u with the smallest non-zero disproof number;

PN-search: algorithm (2/2)

• {* Continued from the last page *}

- solve *u*;
- repeat {* bottom up updating the values *}
 - \triangleright update proof(u) and disproof(u)
 - $\triangleright u \leftarrow u's parent$

until u is the root

• go to *loop*;

Multi-Valued game Tree

The values of the leaves may not be binary.

- Assume the values are non-negative integers.
- Note: it can be in any finite countable domain.

Revision of the proof and disproof numbers.

• $proof_v(u)$: the minimum number of leaves needed to visited in order for the value of u to $\geq v$.

 \triangleright proof(u) \equiv proof₁(u).

• $disproof_v(u)$: the minimum number of leaves needed to visited in order for the value of u to < v.

 $\triangleright \ disproof(u) \equiv disproof_1(u).$

Illustration

Illustration

Multi-Valued proof number

• *u* is a leaf:

- If value(u) is unknown, then $proof_v(u)$ is cost of evaluating u.
- If $value(u) \ge v$, then $proof_v(u) = 0$.
- If value(u) < v, then $proof_v(u) = \infty$.

• u is an internal node with all of the children u_1, \ldots, u_b :

• if u is a MAX node,

$$proof_v(u) = \min_{i=1}^{i=b} proof_v(u_i);$$

• if u is a MIN node,

$$proof_v(u) = \sum_{i=1}^{i=b} proof_v(u_i).$$

TCG: Selected advanced topics, 20220125, Tsan-sheng Hsu \bigcirc

Multi-Valued disproof number

• *u* is a leaf:

- If value(u) is unknown, then $disproof_v(u)$ is cost of evaluating u.
- If $value(u) \ge v$, then $disproof_v(u) = \infty$.
- If value(u) < v, then $disproof_v(u) = 0$.

• u is an internal node with all of the children u_1, \ldots, u_b :

• if u is a MAX node,

$$disproof_v(u) = \sum_{i=1}^{i=b} disproof_v(u_i);$$

• if u is a MIN node,

$$disproof_v(u) = \min_{i=1}^{i=b} disproof_v(u_i).$$

Revised PN-search(v): algorithm (1/2)

- {* Compute and update proof_v and disproof_v numbers of the root in a bottom up fashion until it is proved or disproved. *}
 loop:
 - If $proof_v(root) = 0$ or $disproof_v(root) = 0$, then we are done, otherwise
 - ▷ $proof_v(root) \leq disproof_v(root)$: we try to prove it.
 - ▷ $proof_v(root) > disproof_v(root)$: we try to disprove it.
 - $u \leftarrow root$; {* find a leaf to prove or disprove *}
 - if we try to prove, then
 - \triangleright while u is not a leaf do
 - $\triangleright \quad if u is a MAX node, then$
 - $u \leftarrow \text{leftmost child of } u \text{ with the smallest non-zero proof}_v \text{ number};$
 - \triangleright else if u is a MIN node, then
 - $u \leftarrow \text{leftmost child of } u \text{ with a non-zero proof}_v \text{ number};$
 - else if we try to disprove, then
 - \triangleright while u is not a leaf do
 - $\triangleright \quad \text{if } u \text{ is a MAX node, then}$
 - $u \leftarrow \text{leftmost child of } u \text{ with a non-zero disproof}_v \text{ number};$
 - \triangleright else if u is a MIN node, then
 - $u \leftarrow \text{leftmost child of } u \text{ with the smallest non-zero disproof}_v \text{ number};$

PN-search: algorithm (2/2)

• {* Continued from the last page *}

- solve *u*;
- repeat {* bottom up updating the values *}
 - \triangleright update $proof_v(u)$ and $disproof_v(u)$
 - $\triangleright u \leftarrow u's parent$

until u is the root

• go to *loop*;

Multi-valued PN-search: algorithm

- When the values of the leaves are not binary, use an open value binary search to find an upper bound of the value.
 - Set the initial value of v to be 1.
 - loop: PN-search(v)
 - $\triangleright Prove the value of the search tree is \geq v or disprove it by showing it is < v.$
 - If it is proved, then double the value of v and go to loop again.
 - If it is disproved, then the true value of the tree is between $\lfloor v/2 \rfloor$ and v-1.
 - {* Use a binary search to find the exact returned value of the tree. *}
 - $low \leftarrow \lfloor v/2 \rfloor$; $high \leftarrow v 1$;
 - while $low \leq high$ do
 - \triangleright if low = high, then return low as the tree value
 - $\triangleright \ mid \leftarrow \lfloor (low + high)/2 \rfloor$
 - ▷ **PN-search**(mid)
 - \triangleright if it is disproved, then $high \leftarrow mid 1$
 - \triangleright else if it is proved, then $low \leftarrow mid$

Comments

- Can be used to construct opening books.
- Appear to be good for searching certain types of game trees.
 - Find the easiest way to prove or disprove a conjecture.
 - A dynamic strategy depends on work has been done so far.
- Performance has nothing to do with move ordering.
 - Performances of most previous algorithms depend heavily on whether good move orderings can be found.
- Searching the "easiest" branch may not give you the best performance.
 - Performance depends on the value of each internal node.
- Commonly used in verifying conjectures, e.g., first-player win.
 - Partition the opening moves in a tree-like fashion.
 - Try to the "easiest" way to prove or disprove the given conjecture.
- Take into consideration the fact that some nodes may need more time to process than the other nodes.

More research topics

- Do variations of a game make it different?
 - Whether Stalemate is draw or win in chess.
 - Japanese and Chinese rules in Go.
 - Chinese and Asia rules in Chinese chess.
 - ...
- Why a position is easy or difficult to human players?
 - Can be used in tutoring or better understanding of the game.

Unique features in games

- Games are used to model real-life problems.
- Do unique properties shown in games help modeling real applications?
 - Chinese chess
 - ▷ Very complicated rules for loops: can be draw, win or loss.
 - ▷ The usage of cannons for attacking pieces that are blocked.
 - Go: the rule of Ko to avoid short cycles, and the right to pass.
 - Chinese dark chess: a chance node that makes a deterministic ply first, and then followed by a random toss.
 - EWN: a chance node that makes a random toss first, and then followed with a deterministic ply later.
 - Shogi: the ability to capture an opponent's piece and turn it into your own.
 - Chess: stalemate is draw.
 - Promotion: a piece may turn into a more/less powerful one once it satisfies some pre-conditions.
 - ▷ Chess
 - ▷ Shogi
 - ▷ Chinese chess: the mobility of a pawn is increased once it advances twice, but is decreased once it reaches the end of a column.

References and further readings (1/3)

- L. V. Allis, M. van der Meulen, and H. J. van den Herik. Proof-number search. *Artificial Intelligence*, 66(1):91–124, 1994.
- David Carmel and Shaul Markovitch. Learning and using opponent models in adversary search. Technical Report CIS9609, Technion, 1996.
- M. Campbell. The graph-history interaction: on ignoring position history. In Proceedings of the 1985 ACM annual conference on the range of computing : mid-80's perspective, pages 278–280. ACM Press, 1985.
- Akihiro Kishimoto and Martin Müller (2004). A General Solution to the Graph History Interaction Problem. AAAI, 644–648, 2004.
- Kuang-che Wu, Shun-Chin Hsu and Tsan-sheng Hsu "The Graph History Interaction Problem in Chinese Chess," Proceedings of the 11th Advances in Computer Games Conference, (ACG), Springer-Verlag LNCS# 4250, pages 165–179, 2005.

References and further readings (2/3)

- * Bruce W. Ballard The *-minimax search procedure for trees containing chance nodes Artificial Intelligence, Volume 21, Issue 3, September 1983, Pages 327-350
- Marc Lanctot, Abdallah Saffidine, Joel Veness, Chris Archibald, Mark H. M. Winands Monte-Carlo *-MiniMax Search Proceedings IJCAI, pages 580–586, 2013.
- Kearns, Michael; Mansour, Yishay; Ng, Andrew Y. A sparse sampling algorithm for near-optimal planning in large Markov decision processes. Machine Learning, 2002, 49.2-3: 193-208.
- Chaslot, Guillaume, Winands, Mark, Herik, H., Uiterwijk, Jos, Bouzy, Bruno. (2008). Progressive Strategies for Monte-Carlo Tree Search. New Mathematics and Natural Computation. 04. 343-357. 10.1142/S1793005708001094.

References and further readings (3/3)

- Coutoux A., Hoock JB., Sokolovska N., Teytaud O., Bonnard N. (2011) Continuous Upper Confidence Trees. In: Coello C.A.C. (eds) Learning and Intelligent Optimization. LION 2011. Lecture Notes in Computer Science, vol 6683. Springer, Berlin, Heidelberg.
- Hung-Jui Chang and Cheng Yueh and Gang-Yu Fan and Ting-Yu Lin and Tsan-sheng Hsu (2021). Opponent Model Selection Using Deep Learning. Proceedings of the 2021 Advances in Computer Games (ACG).