Heuristic Search with Pre-Computed Databases

Tsan-sheng Hsu

徐讚昇

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

Abstract

- Use pre-computed partial results to improve the efficiency of heuristic search.
- Introducing a new form of heuristic called pattern databases.
 - Compute the cost of solving individual subgoals independently.
 - If the subgoals are disjoint, then we can use the sum of costs of the subgoals as a new and better admissible cost function.
 - ▶ A way to get a new and better heuristic function by composing known heuristic functions.
 - Make use of the fact that computers can memorize lots of patterns.
 - Solutions to pre-stored patterns can be pre-computed.
 - This year-2002 result has a speed up factor of over 2000 compared to a year-1985 previous result.

Definitions

- $n^2 1$ puzzle problem:
 - The numbers 1 through n^2-1 are arranged in a n by n square with one empty cell.
 - ▶ **Let** $N = n^2 1$.
 - Slide the tiles to a given goal position.

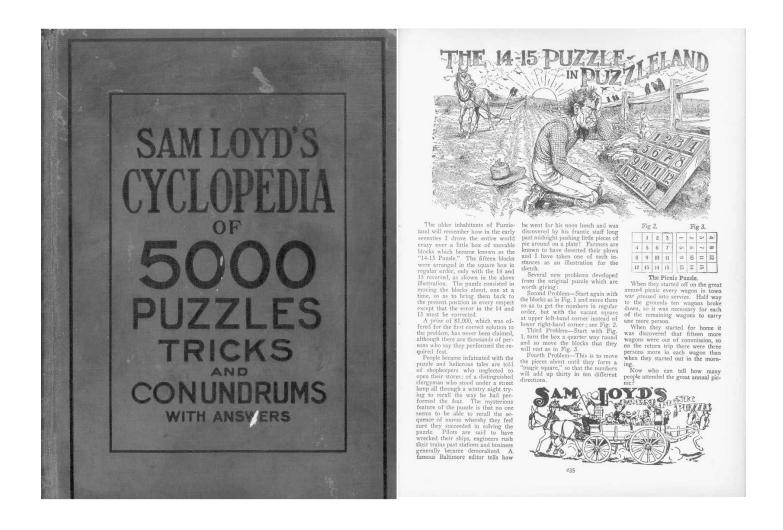
15 puzzle:

- May be invented in 1874 and was popular in 1880.
- It looks like one can rearrange an arbitrary state into a given goal state.
- Publicized and published by Sam Lloyd in January 1896.
 - ▶ A prize of US\$ 1000 was offered to solve one "impossible", but seems to be feasible case.
 - ▶ Note: average wage per hour for a worker is US\$0.3.
 - ▶ Page 235, Cyclopedia of Puzzles, 1914, Sam Lloyd

Generalizations:

- $n \cdot m 1$ puzzle.
- Puzzles of different shapes.

Original offer



Page 235, Cyclopedia of Puzzles, 1914, Sam Lloyd http://www.mathpuzzle.com/loyd/

15 puzzle

Rules:

- 15 tiles in a 4*4 square with numbers from 1 to 15.
- One empty cell.
- A tile can be slid horizontally or vertically into an empty cell.
- From an initial position, slide the tiles into a goal position.
 - ▶ Optimal version: using the fewest number of moves.

Examples:

• Initial position:

10	8		12
3	7	6	2
1	14	4	11
15	13	9	5

Goal position:

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

15 Puzzle — State Space

- State space is divided into two disjoint subsets of even and odd permutations [Johnson & Story 1879].
 - Treat a board into a permutation by appending non-empty cells in the rows from left to right and from top to bottom.
 - f_1 is number of inversions in a permutation $\pi_1\pi_2\cdots\pi_N$ where an inversion is a distinct pair $\pi_i>\pi_j$ such that i< j.
 - ▶ Let inv(i, j) = 1 if $\pi_i > \pi_j$ and i < j; otherwise, it is 0.
 - $ightharpoonup f_1 = \sum_{\forall i,j} inv(i,j).$
 - ▶ Example: the permutation 10.8,12.3,7.6,2.1,14.4,11.15,13.9,5 has 9+7+9+2+5+4+1+0+5+0+2+3+2+1+0=50 inversions.
 - f_2 is the row number, i.e., 1, 2, 3, or 4, of the empty cell.
 - $f = f_1 + f_2$.
 - Board parity
 - \triangleright Even parity: one whose f value is even.
 - ▶ Odd parity: one whose f value is odd.

15 Puzzle — Properties 1 and 2

- Property 1: The parity of a board is either even or odd.
- Property 2: There exists some boards with even parity and some other boards with odd parity.
 - There is a board with an even parity.
 - ▶ The goal position:

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

- $ightharpoonup f_1 = 0 \text{ and } f_2 = 4.$
- There is a board with an odd parity.

	1	2	3	4
_	5	6	7	8
\triangleright	9	10	11	12
	13	15	14	

- $ightharpoonup f_1 = 1 \text{ and } f_2 = 4.$
- The above two form the cash-prize challenge posed by Sam Lloyd in 1914.

15 Puzzle — Properties 3 and 4

- Property 3: Slide a tile never change the parity of a 15-puzzle board.
 - This may not be true for other values of n and for other shapes.
 - A proof sketch is given in the next slide.
- Property 4: Given 2 boards with the same parity, we can obtain one from the other by sliding tides.
 - Proof is omitted.
 - Note: it suffices to pick a fixed goal position for the even/odd permutations. Then prove every other permutation of the same parity can be slid into this picked goal position.
 - \triangleright If A can be slid into G, and B can be slid into G, then A can be slid into B, and vice versa.

Proof sketch of Property 3

- Slide a tile horizontally does not change the parity.
- Slide a tile vertically:
 - Change the parity of f_2 , i.e., row number of the empty cell.
 - Change the value of f_1 , i.e., the number of inversions by
 - ▶ +3▶ +1
 - \triangleright -1
 - \triangleright -3
 - Example: when "a" is slid down
 - ▶ only the relative order of "a", "b", "c" and "d" are changed
 - ▶ analyze the 4 cases according to the rank of "a" in "a", "b", "c" and "d".

*	*	*	*
*	a	b	С
d		*	*
*	*	*	*

Warning

- Most properties discussed here works only for 15 puzzles.
- Other sizes or types of sliding piece puzzles are challenging and worth individual research.
- Ref: Sliding Piece Puzzles, Edward Hordern, 1986, Oxford University Press, ISBN 0-19-853204-0

Core of past algorithms

- Using DEC 2060 a 1-MIPS machine: solves several random instances of the 15 puzzle problem within 30 CPU minutes in 1985.
- Using Iterative-deepening A*.
- Using the Manhattan distance heuristic as an estimation of the remaining cost.
 - Suppose a tile is currently at (i,j) and its goal is at (i',j'), then by the Manhattan distance for this tile is |i-i'|+|j-j'|.
 - The Manhattan distance between a board and a goal board is the sum of the Manhattan distance of all the tiles.
- Manhattan distance is a lower bound on the number of slides needed to reach the goal position.
 - It is admissible.
 - Not good enough in terms of speed and space for solving the 24 puzzle problem.

Non-additive pattern databases

- Intuition: do not measure the distance of one tile at a time.
 - Pattern database: measure the collective distance of a pattern, i.e., a group of tiles, at a time.
- Complications.
 - The tiles get in each other's way.
 - Sliding a tile to reach its goal destination may make the other tiles that are already in their destinations to move away.
 - A form of interaction is called linear conflict:
 - ▶ To flip two adjacent tiles needs more than 2 moves.
 - ▶ In addition, sliding tiles other than the two adjacent tiles to be flipped is also needed in order to flip them.

Example: Linear conflict

The sum of Manhattan distance between the board on the left and the goal board on the right is 4.

1	2	3	4
5	6	7	8
9	12	10	11
13	14	15	

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

However it takes much more than 4 slides to reach the goal.

Fringe (1/2)

- A fringe is the arrangement of a subset of tiles, and may include the empty cell, by treating tiles not selected don't-care.
 - Don't-cared tiles are indistinguishable within themselves.
 - The subset of tiles selected is called a pattern.

Example:

*	*	4	
*	8	*	12
*	13	*	15

- Notations for specifying a pattern.
 - "*" means don't-care.
 - We need to know the whereabout of the empty cell no matter it is selected or not.
 - ▶ An empty space means a selected empty cell.
 - ▶ "♡" means an unselected empty cell.

Fringe (2/2)

Example:

*	*	4	
*	8	*	12
*	13	*	15
*	*	14	*

- In this example, there are 7 selected tiles, including the empty cell.
 - There are 16!/9! = 57,657,600 possible fringe arrangements which is called the pattern size.
- The goal fringe arrangement for the selected subset of tiles:

*	*	*	4
*	*	*	8
*	*	*	12
13	14	15	

Solving a fringe arrangement

- For each fringe arrangement, pre-compute the minimum number of moves needed to make it into the goal fringe arrangement.
 - This is called the fringe number for the given fringe arrangement.
 - There are many possible ways to solve this problem since the pattern size is small enough to fit into the main memory.
 - > Sample solution 1: Using the original Manhattan distance heuristic to solve this smaller problem.
 - ▶ Sample solution 2: BFS.

Comments on pattern size

Pro's.

- Pattern with a larger size is better in terms of having a larger fringe number.
- A larger fringe number usually means better estimation, i.e., closer to the goal fringe arrangement.

Con's.

- Pattern with a larger size means consuming lots of memory to memorize these arrangements.
- Pattern with a larger size also means consuming lots of time in constructing these arrangements.
 - ▶ Depend on your resource, pick the right pattern size.

Usage of fringe numbers (1/2)

- Divide and conquer.
 - Reduce a 15-puzzle problem into a 8-puzzle one.
 - Solution =
 - ▶ First reach a goal fringe arrangement consisted of the first row and column.
 - ▶ Then solve the 8-puzzle problem without using the fringe tiles.
 - ▶ Finally Combining these two partial solutions to form a solution for the 15-puzzle problem.

\bigcirc	*	*	4	1	2	3	4
13	*	3	*	5	*	\Diamond	*
*	9	5	*	9	*	*	*
*	2	*	1	13	*	*	*

- May not be optimal.
- Divide and conquer may not be working because often times you cannot combine two sub-solutions to form the final optimal solution easily.
 - In solving the second half, you may affect tiles that have reached the goal destinations in the first half.
 - The two partial solutions may not be disjoint.

Usage of fringe numbers (2/2)

- New heuristic function h() for IDA*: using the fringe number as the new lower bound estimation.
 - The fringe number is a lower bound on the remaining cost.
 - ▶ It is admissible.
 - ▶ *Q*: how to prove it is admissible?
- How to find better patterns for fringes?
 - Large pattern require more space to store and more time to compute.
 - Can we combine smaller patterns to form bigger patterns?
 - > They are not disjoint.
 - ▶ May be overlapping physically.
 - ▶ May be overlapping in solutions.

More than one patterns

Can have many different patterns that may have some overlaps:

*	*	3	*
*	*	7	*
9	10	11	12
*	*	15	\bigcirc

1	2	3	4
5	*	*	*
9	*	*	*
13	*	*	\Diamond

- Cannot use the divide and conquer approach anymore for some of the patterns.
- If you have many different pattern databases P_1 , P_2 , P_3 , \dots
 - The heuristics or patterns may not be disjoint.
 - ▶ Solving tiles in one pattern may help/hurt solving tiles in another pattern even if they have no common cells.
 - The heuristic function we can use is

$$h(P_1, P_2, P_3, \ldots) = \max\{h(P_1), h(P_2), h(P_3), \ldots\}.$$

Problems with multiple patterns (1/2)

- If you have many different pattern databases P_1 , P_2 , P_3 , ...
 - It is better to have

```
h(P_1, P_2, P_3, ...) = h(P_1) + h(P_2) + h(P_3) + \cdots, instead of
```

- $h(P_1, P_2, P_3, \ldots) = \max\{h(P_1), h(P_2), h(P_3), \ldots\}.$
- A larger h() means a better performance for A^* .
- Key problem: how to make sure h() is admissible?

Problems with multiple patterns (2/2)

- Why not making the heuristics and the patterns disjoint?
 - If the patterns are not disjoint, then we cannot add them together.
 - Divide the board into several disjoint regions.
 - Though patterns are disjoint, their costs are not disjoint.
 - > Some moves are counted more than once.
- Q: Why can we add the Manhattan distance of all tiles together to form a heuristic function?
 - We add 15 1-cell patterns together to form a better heuristic function.
 - What are the property of these patterns so that they can be added together?

Key observations (1/2)

- Partition the board into disjoint regions.
 - Using the tiles in a region of the goal arrangement as a pattern.
- Examples:

Α	Α	Α	Α
Α	Α	Α	Α
В	В	В	В
В	В	В	В

Α	Α	В	В
Α	Α	В	В
Α	Α	В	В
Α	Α	В	В

Can also divide the board into more than 2 disjoint patterns.

Α	Α	Α	В
Α	Α	В	В
C	Α	С	В
C	C	С	В

Key observations (2/2)

- For each region, solve the problem optimally and then count the moves that are made only by tiles in this region.
 - Note: if the empty cell is selected, we do not count the moves of the empty cell.
 - The "fringe" number for an arrangement is the minimum number of slides made on tiles in this region.
 - It is now possible to add fringe numbers of all disjoint regions together to form a composite fringe number.
 - ▶ *Q*: How to prove this?
- For the Manhattan distance heuristic:
 - Each pattern is a tile.
 - They are disjoint.
 - ▶ They only count the number of slides made by each tile.
 - Thus they can be added together to form a heuristic function.

Disjoint patterns

- lacksquare A heuristic function f() is disjoint with respect to two patterns P_1 and P_2 if
 - P_1 and P_2 have no common cells.

Example:

1	2	3	4
5	*	*	*
9	*	*	*
13	*	*	\Diamond

*	*	*	*
*	6	7	8
*	9	10	11
*	14	15	

- The solutions corresponding to $f(P_1)$ and $f(P_2)$ do not interfere each other.
 - ▶ The above example does interfere each other.
- Then $f(P_1) + f(P_2)$ is admissible if
 - (1) f() is disjoint with respect to P_1 and P_2 and
 - (2) both $f(P_1)$ and $f(P_2)$ are admissible.
 - Q: How to prove this?

Revised fringe number

- Fringe number: for each fringe arrangement, the minimum number of moves needed to make it into the goal fringe arrangement.
 - Given a fringe arrangement H, let f(H) be its fringe number.
- Revised fringe number: for each fringe arrangement F during the course of making a sequence of moves to the goal fringe arrangement, the minimum number of fringe-only moves in the sequence of moves.
 - Given a fringe arrangement H, let f'(H) be its revised fringe number.
- Given two patterns P_1 and P_2 without overlapping cells, then
 - $f(P_1)$ and $f'(P_1)$ are both admissible.
 - $f(P_2)$ and $f'(P_2)$ are both admissible.
 - $f(P_1) + f(P_2)$ is not admissible.
 - $f'(P_1) + f'(P_2)$ is admissible.
- Note: the Manhattan distance of a 1-cell pattern is a lower bound of its revised fringe number.

Comments

- A special form of divide and conquer with additional properties.
- Spaces required by patterns must be within the main memory.
- Each pattern must be able to be solved optimally by "primitive" methods.
- It is better to put near-by tiles together to better deal with the conflicting problem.
- It is now possible to design a better admissible heuristic function f by composing two simple admissible heuristic functions f_1 and f_2 .
 - Let f_1' be the function that does not count moves of tiles not in its region when computing f_1 .

$$ightharpoonup f_1'(x) \leq f_1(x)$$

• Let f_2' be the function that does not count moves of tiles not in its region when computing f_2 .

$$f_2'(x) \le f_2(x)$$

• Let $f = f'_1 + f'_2$.

$$ightharpoonup$$
 Hopefully, $f(x) > f_1(x)$ and $f(x) > f_2(x)$.

Performance

- Running on a 440-MHZ Sun Ultra 10 workstation.
 - SPECint = 1.0 (1 MIPS) in 1985.
 - SPECint = 17.9 in 2002.
- Solves the 15 puzzle problem that is more than 2,000 times faster than the previous result by using the Manhattan distance heuristic.
 - 2,000 * 17.9 times faster in wall clock time.
- Solves the 24-puzzle problem
 - An average of two days per problem instance.
 - Generates 2,110,000 nodes per second.
 - The average solution length was 100.78 moves.
 - The maximum solution length was 114 moves.
 - Prediction: using the Manhattan distance heuristic, it would take an average of about 50,000 years to solve a problem instance.
 - ▶ The average Manhattan distance is 76.078 moves.
 - ▶ The average value for the disjoint database heuristic is 81.607 moves, which gives a tighter bound.
 - ▶ The improvement of heuristic is only 7.27%, but the speed is 2,000 times faster.

Other heuristics (1/3)

 One of the main drawbacks of using the disjoint heuristics is that it does not capture interactions between tiles in different regions.

2-tile pattern database:

- For each pair of tiles, and for each pair of possible destinations, compute the optimal solution, i.e., minimum number of all moves made by these 2 tiles, for this pair of tiles to both move to their destinations.
 - ightharpoonup Example: two tiles i and j can be at locations loc(i) and loc(j) and want to move to destinations des(i) and des(j).
 - ▶ Usually, the destination is fixed for a tile in a puzzle.
 - ▶ The shortest moves to move both tiles *i* and *j* to their destinations is called their pairwise distance.

Complexities:

- Assume the destinations are fixed in a puzzle, then we need to compute $O(n^4)$ pairwise distance for an n^2-1 puzzle since the number of possible locations of tile i, loc(i), is $O(n^2)$.
- ightharpoonup For n = 4, $n^4 = 256$.
- ightharpoonup For n = 5, $n^4 = 625$.

Other heuristics (2/3)

- It is usually the case that the pairwise distance of 2 tiles x and y is much larger than the sum of the Manhattan distances of x and y.
 - The pairwise distance is at least the sum of the Manhattan distances.
 - Q: How to prove this?
- For a given board, partition the board into a collection of 2-tiles so that the sum of cost is maximized.
 - This is called maximum sum of pairwise distance.
 - For partitioning the board, we mean to find eight 2-titles so that they
 cover all tiles, including the empty cell.
 - This new cost estimation function is admissible.
 - ▶ *Q*: How to prove this?

Other heuristics (3/3)

- Finding a maximum sum of pairwise distance can be done using a maximum weighted perfect matching.
 - Build a complete graph with the tiles being the vertices.
 - The edge cost is the pairwise distance between these two tiles.
 - Try to find a perfect matching with the sum of edge costs being the largest possible.
 - Algorithm runs in $O(\sqrt{n} \cdot m)$ time is known where n is the number of vertices and m is the number of edges.
 - ▶ S. Micali and V.V. Vazirani, "An $O(\sqrt{|V|} \cdot |E|)$ algorithm for finding maximum matching in general graphs", Proc. 21st IEEE Symp. Foundations of Computer Science, pp. 17-27, 1980.
 - ▶ Faster algorithms are known since the input is a complete graph.

Comments

- The Manhattan distance is a partition into 1-tile patterns.
- For 2-tile patterns:
 - Faster approximation algorithms for finding maximum perfect matchings on complete graphs are known.
 - The cost for exhaustive enumeration is

- The above formula gives the number of distinct number of ways to partition 16 titles into 8 pairs.
- Can also build 3-tile databases, but the corresponding 3-D matching problem for partitioning is NP-hard.
- Requires much less memory than that of the the fringe method.
- Some kinds of bootstrapping: solving smaller problems using primitive methods, and then using these results to solve larger problems.

What else can be done?

- Looks like some kinds of two-stage search.
 - First stage searching means building pre-computed results, e.g., patterns.
 - Second stage searching meets the pre-computed results if found.
- Better way of partitioning.
- Is it possible to generalize this result to other problem domains?
- How to decide the amount of time used in searching and the amount of time used in retrieving pre-computed knowledge?
 - Memorize vs Compute

References and further readings

- Wm. Woolsey Johnson and William E. Story. Notes on the "15" puzzle. American Journal of Mathematics, 2(4):397–404, December 1879.
- R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree search. Artificial Intelligence, 27:97–109, 1985.
- J. Culberson and J. Schaeffer. Pattern databases. Computational Intelligence, 14(3):318–334, 1998.
- * R. E. Korf and A. Felner. Disjoint pattern database heuristics. *Artificial Intelligence*, 134:9–22, 2002.