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Introduction

Alpha-beta pruning is the standard searching procedure used for
solving 2-person perfect-information zero sum games exactly.
Definitions:
• A position p.
• The value of a position p, f(p), is a numerical value computed from

evaluating p.
. Value is computed from the root player’s point of view.
. Positive values mean in favor of the root player.
. Negative values mean in favor of the opponent.
. Since it is a zero sum game, thus from the opponent’s point of view,

the value can be assigned −f(p).
• A terminal position: a position whose value can be decided.

. A position where win/loss/draw can be concluded.

. In practice, we encounter a position where some constraints, e.g., time
limit and depth limit, are met.

• A position p has b legal moves p1, p2, . . . , pb.
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Tree node numbering

1 2 3

1.1 1.2 1.3 2.1 2.2 3.1 3.2

3.1.1 3.1.2

From the root, number a node in a search tree by a sequence
of integers a1.a2.a3.a4 · · ·
• Meaning from the root, you first take the a1th branch, then the a2th

branch, and then the a3th branch, and then the a4th branch · · ·
• The root is specified as an empty sequence.
• The depth of a node is the length of the sequence of integers specifying

it.

This is called “Dewey decimal system.”
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Mini-max formulation

max

min

max

min

1 5 6 27

81

7

Mini-max formulation:
•

F ′(p) =

{
f(p) if b = 0
max{G′(p1), . . . , G′(pb)} if b > 0

•

G′(p) =

{
f(p) if b = 0
min{F ′(p1), . . . , F ′(pb)} if b > 0

• An indirect recursive formula with a bottom-up evaluation!
• Equivalent to AND-OR logic.
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Algorithm: Mini-max (native)

Algorithm F ′(position p) // max node
• determine the successor positions p1, . . . , pb
• if b = 0, then return f(p) else begin

. m := −∞

. for i := 1 to b do

. t := G′(pi)

. if t > m then m := t // find max value

• end;
• return m

Algorithm G′(position p) // min node
• determine the successor positions p1, . . . , pb
• if b = 0, then return f(p) else begin

. m :=∞

. for i := 1 to b do

. t := F ′(pi)

. if t < m then m := t // find min value

• end;
• return m
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Mini-max: comments

A brute-force method to try all possibilities!
• May visit a position many times.

Depth-first search
• Move ordering is according to order the successor positions are gener-

ated.
• Bottom-up evaluation.
• Post-ordering traversal.

Q:
• Iterative deepening?
• BFS?
• Other types of searching?
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Mini-max: depth limited (1/2)

Search a max-node position p with a depth of depth.
Algorithm F0′(position p, integer depth) // max node
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

then return f(p)// current board value
else begin

. m := −∞ // initial value

. for i := 1 to b do // try each child

. begin

. t := G0′(pi, depth− 1)

. if t > m then m := t // find max value

. end

end
• return m
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Mini-max: depth limited (2/2)

Search a min-node position p with a depth of depth.
Algorithm G0′(position p, integer depth) // min node
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

then return f(p)// current board value
else begin

. m :=∞ // initial value

. for i := 1 to b do // try each child

. begin

. t := F0′(pi, depth− 1)

. if t < m then m := t // find min value

. end

end
• return m
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Nega-max formulation

max

max

1 5 6 27 7

−8−1

min
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Nega-max formulation:
Let F (p) be the greatest possible value achievable from position
p against the optimal defensive strategy.
•

F (p) =

{
h(p) if b = 0
max{−F (p1), . . . ,−F (pb)} if b > 0

.

h(p) =

{
f(p) if depth of p is 0 or even
−f(p) if depth of p is odd

. h(p) is the position’s value from the point of view of the player of p.
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Algorithm: Nega-max (native)

Algorithm F (position p)
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node
• then return h(p) else
• begin

. m := −∞

. for i := 1 to b do

. begin

. t := −F (pi) // recursive call, the returned value is negated

. if t > m then m := t // always find a max value

. end

• end
• return m
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Algorithm: Nega-max (depth limited)

Algorithm F0(position p, integer depth)
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return h(p) else
• begin

. m := −∞

. for i := 1 to b do

. begin

. t := −F0(pi, depth − 1) // recursive call, the returned value is
negated

. if t > m then m := t // always find a max value

. end

• end
• return m
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Nega-max: comments

Another brute-force method to try all possibilities.
• Use h(p) instead of f(p).

. Zero-sum game: if one player thinks a position p has a value of w, then
the other player thinks it is −w.

• De Morgan’s laws
. min{x, y, z} = −max{−x,−y,−z}.
. max{x, y, z} = −min{−x,−y,−z}.

• Watch out the code in dealing with search termination conditions.
. Leaf.
. Reach a given searching depth.
. Timing control.
. Other constraints such as the score is good or bad enough.

Notations:
• F ′ means the Mini-max version.

. Need a G′ companion.

. Easy to explain.

• F means the Nega-max version.
. Simpler code.
. May be difficult to explain.
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Intuition for improvements

Branch-and-bound: using information you have so far to cut or
prune branches.
• A branch is cut means we do not need to search it anymore.
• If you know for sure or almost sure the value of your result is more

than x and the current search result for this branch so far can give you
no more than x,

. then there is no/almost no need to search this branch any further.

Two types of approaches
• Exact algorithms: through mathematical proof, it is guaranteed that

the branches pruned won’t contain the solution.
. Alpha-beta pruning: reinvented by several researchers in the 1950’s

and 1960’s.
. Scout.
. · · ·

• Approximated heuristics: with a high probability that the solution won’t
be contained in the branches pruned.

. Obtain a good estimation on the remaining cost.

. Cut a branch when it is in a very bad position and there is little hope
to gain back the advantage.
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Alpha cut-off

1 2

2.1 2.2

V=15

V=10

V <= 10

cut

V>=15

• On the max node which is the root:
. Assume you have finished exploring the branch at 1 and obtained the

best value from it as bound.
. You now search the branch at 2 by first searching the branch at 2.1.
. Assume branch at 2.1 returns a value that is ≤ bound.
. Then no need to evaluate the branch at 2.2 and all later branches of 2,

if any, at all.
. The best possible value for the branch at 2 must be ≤ bound.
. Hence we should take value returned from the branch at 1 as the best

possible solution.
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Beta cut-off

1 2

cut

1.1 1.2

1.2.1 1.2.2

V=8

V<=8

V=13

V >= 13

• On the min node 1:
. Assume you have finished exploring the branch at 1.1 and obtained the

best value from it as bound.
. You now search the branch at 1.2 by first exploring the branch at 1.2.1.
. Assume the branch at 1.2.1 returns a value that is ≥ bound.
. Then no need to evaluate the branch at 1.2.2 and all later branches of

1.2, if any, at all.
. The best possible value for the branch at 1.2 is ≥ bound.
. Hence we should take value returned from the branch at 1.1 as the best

possible solution.
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Deep alpha cut-off

For alpha cut-off:
. For a min node u, a branch of its ancestor (e.g., an elder brother of its parent)

produces a lower bound Vl.
. The first branch of u produces an upper bound Vu for v.
. If Vl ≥ Vu, then there is no need to evaluate the second branch and all later

branches, of u.

Deep alpha cut-off:
. Definition: For a node u in a tree and a positive integer g, Ancestor(g, u) is

the direct ancestor of u by tracing the parent’s link g times.
. When the lower bound Vl is produced at and propagated from u’s great grand

parent, i.e., Ancestor(3,u), or any Ancestor(2i+ 1,u), i ≥ 1.
. When an upper bound Vu is returned from the a branch of u and Vl ≥ Vu,

then there is no need to evaluate all later branches of u.

We can find similar properties for deep beta cut-off.
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Illustration — Deep alpha cut-off

1 2

2.1 2.2

V=15

cut

V>=15

2.1.1

2.1.1.1 2.1.1.2

V=7

V <= 7

V>=15
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Meanings of the two bounds

During searching, maintain two values alpha and beta for a node
u so that
• alpha is the current lower bound of the possible returned value;

. This means you have known a way to achieve the value alpha from
searching a max node that is u or an ancestor of u.

. This will be a pre-condition set for every min node v that is a descendent
of u.

. Node v lowers its beta value after searching a child.

. When v’s beta is lower than u’s alpha, we have an alpha cut.

• beta is the current upper bound of the possible returned value.
. This means your opponent have known a way to to achieve the value
beta from searching a min node that is u or an ancestor of u.

. This will be a pre-condition set for every max node v that is a descen-
dent of u.

. Node v hightens its alpha value after searching a child.

. When v’s alpha is higher than u’s beta, we have a beta cut.

Q: Does it help at all to record how “bad” this pre-condition is
violated?
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Ideas for refinements

If alpha = beta = val, then we have found the solution which is
val.
If during searching, we know for sure alpha > beta, then there
is no need to search any more in this branch.
• The returned value cannot be in this branch.
• Backtrack until it is the case alpha < beta.

The two values alpha and beta are called the ranges of the
current search window.
• These values are dynamic.
• Initially, alpha is −∞ and beta is ∞.
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Alpha-beta pruning: Mini-Max (1/2)

Algorithm F1′(position p, value alpha, value beta, integer depth)

• // max node
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return f(p) else
. m := alpha
. for i := 1 to b do
. t := G1′(pi,m, beta, depth− 1)
. if t > m then m := t // improve the current best value
. if m ≥ beta then return(beta) // beta cut off

• end;
• return m
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Alpha-beta pruning: Mini-Max (2/2)

Algorithm G1′(position p, value alpha, value beta, integer depth)

• // min node
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return f(p) else
. m := beta
. for i := 1 to b do
. t := F1′(pi, alpha,m, depth− 1)
. if t < m then m := t
. if m ≤ alpha then return(alpha) // alpha cut off

• end;
• return m
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Example

Initial call: F1′(root,−∞,∞,depth)

• m = −∞
• call G1′(node 1,−∞,∞,depth− 1)

. it is a terminal node

. return value 15

• t = 15;
. since t > m, m is now 15

• call G1′(node 2,15,∞,depth− 1)
. call F1′(node 2.1,15,∞,depth−2)
. it is a terminal node; return 10
. t = 10; since t <∞, m is now 10
. alpha is 15, m is 10, so we have

an alpha cut off,
. no need to call
F1′(node 2.2,15,10,depth− 2)

. return 15

. · · ·

1 2

2.1 2.2

V=15

V=10

V <= 10

cut

V>=15
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A complete example

max

min

max

min

7

8 1

2 7 1 5 6
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A complete example

max

min

max

min

7

8 1

2 7 1 5 6

The solution is the same with or without the cut.
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Alpha-beta pruning algorithm: Nega-max

Algorithm F1(position p, value alpha, value beta, integer depth)

• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return h(p) else
• begin

. m := alpha

. for i := 1 to b do

. begin

. t := −F1(pi,−beta,−m, depth− 1)

. if t > m then m := t

. if m ≥ beta then return(beta) // cut off

. end

• end
• return m
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Examples (1/4)
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Examples (2/4)
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Examples (3/4)
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Examples (4/4)
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What happened in the last examples

Assume we run F1′ and G1′ in the order of from left to right.
The tree on the top and the tree on the bottom are the same
game tree with different searching ordering.
We can prune 4 nodes in the tree on the top, but cannot prune
any node in the tree on the bottom.
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Lessons from the previous examples

It looks like for the same tree, different move orderings give
very different cut branches.
It looks like if a node can evaluate a child with the best possible
outcome earlier, then it has a chance to cut earlier.
• For a min node, this means to search the child branch that gives the

lowest value first.
• For a max node, this means to search the child branch that gives the

highest value first.

Comments:
• Watch out the returned value when alpha or beta cut-off happens.

. It is the value of one of the current window bound, obtained in other
branches, not the one in the current branch.

• It is impossible to always know which the best branch is; otherwise we
do not need to do a brute-force exhaustive search.

Q: In the best case scenario, how many nodes can be cut?
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Analysis of a possible best case

Definitions:
• A path in a search tree is a sequence of numbers indicating the branches

selected in each level using the Dewey decimal system.
• A position is denoted as a path a1.a2. · · · .a` from the root.
• A position a1.a2. · · · .a` is critical if

. ai = 1 for all even values of i or

. ai = 1 for all odd values of i.

• Note: as a special case, the root is critical.
• Examples:

. 2.1.4.1.2, 1.3.1.5.1.2, 1.1.1.2.1.1.1.3 and 1.1 are critical

. 1.2.1.1.2 is not critical

• The number of 1’s in a path has little to do with whether it is critical
or not.

Q: Why does the root need to be critical?
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Perfect-ordering tree

A perfect-ordering tree:

F (a1. · · · .a`) =
{

h(a1. · · · .a`) if a1. · · · .a` is a terminal
−F (a1. · · · .a`.1) otherwise

• The first successor of every non-terminal position gives the best possible
value.
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Theorem 1

Theorem 1: F1 examines precisely the critical positions of a
perfect-ordering tree.
Proof sketch:
• Classify the critical positions, a.k.a. nodes, into different types.

. You must evaluate the first branch from the root to the bottom.

. Alpha cut off happens at odd-depth nodes as soon as the first branch
of this node is evaluated.

. Beta cut off happens at even-depth nodes as soon as the first branch of
this node is evaluated.

• For nodes of the same type, associate them with pruning of same
characteristics occurred.
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Types of nodes

Classification of critical positions a1.a2. · · · .aj. · · · .a` where j is
the least index, if exists, such that aj 6= 1 and ` is the last
index.
• j is the anchor in the analysis.
• Definition: let IS1(ai) be a boolean function so that it is 0 if it is not

the value 1 and it is 1 if it is.
. We call this IS1 parity of a number.

• If j exists and ` > j, then
. aj+1 = 1 because this position is critical and thus the IS1 parities of aj

and aj+1 are different.

• Since this position is critical, if aj 6= 1, then ah = 1 for any h such that
h− j is odd.

We now classify critical nodes into three types.
• Nodes of the same type share some common properties.
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Illustration — critical nodes

1

*

1

1

1 1 1 1*1

1

1

:1 

: not 1

: any

1 * 1 ...

j l

?
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Type 1 nodes

type 1: the root, or a node with all the ai are 1;
• This means j does not exist.
• Nodes on the leftmost branch.
• The leftmost child of a type 1 node except the root.

In a DFS-like searching, type 1 nodes are examined first.

type 1
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Type 2 nodes

Classification of critical positions a1.a2. · · · .aj. · · · .a` where j is
the least index such that aj 6= 1 and ` is the last index.
The anchor j exists.
Type 2: `− j is zero or even;
• type 2.1: `− j = 0 which means ` = j.

. It is in the form of 1.1.1. · · · .1.1.1.a` and a` 6= 1.

. The non-leftmost children of a type 1 node.

• type 2.2: `− j > 0 and is even.
. It is in the form of 1.1. · · · .1.1.aj.1.aj+2. · · · .a`−2.1.a`.
. Note, we have already defined 1.1. · · · .1.1.aj.1.aj+2. · · · .a`−2.1 to be a

type 3 node.
. All of the children of a type 3 node.

Q:
• Can a` be 1 or non-1 for a type 2 node?
• Can a` be 1 or non-1 for a type 2.1 node?
• Can a` be 1 or non-1 for a type 2.2 node?
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Type 3 nodes

Classification of critical positions a1.a2. · · · .aj. · · · .a` where j is
the least index such that aj 6= 1 and ` is the last index.
The anchor j exists.
Type 3: `− j is odd;
• aj 6= 1 and `− j is odd

. Since this position is critical, the IS1 parities of aj and a` are different.
=⇒ a` = 1
=⇒ aj+1 = 1

• It is in the form of
. 1.1. · · · .1.aj.1.aj+2.1. · · · .1.a`−1.1.

• The leftmost child of a type 2 node.
• type 3.1: `− j = 1.

. It is of the form 1.1. · · · .1.aj.1

. The leftmost child of a type 2.1 node.

• type 3.2: `− j > 1.
. It is of the form 1.1. · · · .1.aj.1.aj+2.1. · · · .1.a`−1.1
. The leftmost child of a type 2.2 node.

Q: Can a` be 1 or non-1 for a type 3 node?
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Comments

Nodes of the same type have common properties.
These properties can be used in solving other problems.
• Example: Efficient parallelization of alpha-beta based searching algo-

rithms.

Main techniques used:
• For each non-1 number, any number appeared later and is odd distance

away must be 1.
. You cannot have two consecutive non-1 numbers in the ID of a critical

node.
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Type 2.1 nodes

Classification of critical positions a1.a2. · · · .aj. · · · .a` where j is
the least index such that aj 6= 1 and ` is the last index.
type 2: `− j is zero or even;
• type 2.1: `− j = 0.

. Then ` = j.

. It is of the form of 1.1.1. · · · .1.1.1.a` and a` 6= 1.

. The non-leftmost children of a type 1 node.

type 1

type 2.1
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Type 3.1 nodes

Classification of critical positions a1.a2. · · · .aj. · · · .a` where j is
the least index such that aj 6= 1 and ` is the last index.
type 3: `− j is odd;
• type 3.1: `− j = 1.

. Then ` = j + 1.

. It is of the form 1.1. · · · .1.aj.1 and a` 6= 1.

. The leftmost child of a type 2.1 node.

type 1

type 2.1

type 3.1
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Type 2.2 nodes

Classification of critical positions a1.a2. · · · .aj. · · · .a` where j is
the least index such that aj 6= 1 and ` is the last index.
type 2: `− j is zero or even;
• type 2.2: `− j > 0 and is even.

. The IS1 parties of aj and aj+1 are different.
=⇒ Since aj 6= 1, aj+1 = 1.

. (`− 1)− j is odd:
=⇒ The IS1 parties of a`−1 and aj are different.
=⇒ Since aj 6= 1, a`−1 = 1.

. It is in the form of 1.1. · · · .1.1.aj.1.aj+2. · · · .a`−2.1.a`.

. Note, we will show 1.1. · · · .1.1.aj.1.aj+2. · · · .a`−2.1 is a type 3 node
later.

. All of the children of a type 3 node.
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Illustration: Type 2.2 nodes

type 1

type 2.1

type 3.1

type 2.2
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Type 3.2 nodes

Classification of critical positions a1.a2. · · · .aj. · · · .a` where j is
the least index such that aj 6= 1 and ` is the last index.
type 3: `− j is odd;
• type 3.2: `− j > 1.

. It is of the form 1.1. · · · .1.aj.1.aj+2.1. · · · .1.a`−1.1

. The leftmost child of a type 2.2 node.
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Illustration: Type 3.2 nodes

type 1

type 2.1

type 3.1

type 2.2

type 3.2
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Illustration of all nodes

type 1

TCG: α-β Pruning, 20211229, Tsan-sheng Hsu c© 54



Illustration of all nodes

type 1

type 2.1
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Illustration of all nodes

type 1

type 2.1

type 3.1
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Illustration of all nodes

type 1

type 2.1

type 3.1

type 2.2
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Illustration of all nodes

type 1

type 2.1

type 3.1

type 2.2

type 3.2
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Illustration of all nodes

type 1

type 2.1

type 3.1

type 2.2

type 3.2

type 2.2
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Illustration of all nodes

type 1

type 2.1

type 3.1

type 2.2

type 3.2

type 2.2

TCG: α-β Pruning, 20211229, Tsan-sheng Hsu c© 60



Theorem 1: Proof sketch

Properties (invariants)
• A type 1 position p is examined by calling F1(p,−∞,∞, depth)

. p’s first successor p1 is of type 1

. F (p) = −F (p1) 6= ±∞

. p’s other successors p2, . . . , pb are of type 2

. pi, i > 1, are examined by calling F1(pi,−∞, F (p1), depth)

• A type 2 position p is examined by calling F1(p,−∞, beta, depth) where
−∞ < beta ≤ F (p)

. p’s first successor p1 is of type 3

. F (p) = −F (p1)

. p’s other successors p2, . . . , pb are not examined

• A type 3 position p is examined by calling F1(p, alpha,∞, depth) where
∞ > alpha ≥ F (p)

. p’s successors p1, . . . , pb are of type 2

. they are examined by calling F1(p1,−∞,−alpha, depth),
F1(p2,−∞,−max{m1, alpha}, depth), . . . ,
F1(pi,−∞,−max{mi−1, alpha}, depth)
where mi = F1(pi,−∞,−max{mi−1, alpha}, depth)

Using an inductive argument to prove.

TCG: α-β Pruning, 20211229, Tsan-sheng Hsu c© 61



Properties of Theorem 1

To cut off a subtree rooted at a node u entirely using alpha-beta
based algorithms, at the very least, we need to know the values
of
• one of u’s elder sibling, and
• one of v’ elder sibling where v is the parent of u.

To know the value of a node rooted at a subtree, the subtree’s
left-most branch must be examined at the very least.
Branches of a vertex that are examined
• leftmost branch only

. type 2.1 to type 3.1

. type 2.2 to type 3.2

• all branches
. type 1
. type 3.1
. type 3.2
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Analysis: best case

Corollary 1: Assume each position has exactly b successors
• The number of positions examined by the alpha-beta procedure on

level i is exactly
bdi/2e + bbi/2c − 1.

Proof:
• There are bbi/2c sequences of the form a1. · · · .ai with 1 ≤ ai ≤ b for all
i such that ai = 1 for all odd values of i.

• There are bdi/2e sequences of the form a1. · · · .ai with 1 ≤ ai ≤ b for all
i such that ai = 1 for all even values of i.

• We subtract 1 for the sequence 1.1. · · · .1.1 which are counted twice.

Total number of nodes visited is

∑̀
i=0

bdi/2e + bbi/2c − 1.
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Analysis: average case

Assumptions: Let a random game tree be generated in such a
way that each position on level j has
• a probability qj of being nonterminal and
• an average of bj successors.

Properties of the above random game tree
• Expected number of positions on level ` is b0 × b1 × · · · × b`−1
• Expected number of positions on level ` examined by an alpha-beta

procedure assumed the random game tree is perfectly ordered is

b0q1b2q3 · · · b`−2q`−1 + q0b1q2b3 · · · q`−2b`−1 − q0q1 · · · q`−1if ` is even;

b0q1b2q3 · · · q`−2b`−1 + q0b1q2b3 · · · b`−2q`−1 − q0q1 · · · q`−1if ` is odd

Proof sketch:
• If x is the expected number of positions of a certain type on level j,

then x × bj is the expected number of successors of these positions,
and x× qj is the expected number of “numbered 1” successors.

• The above numbers equal to those of Corollary 1 when qj = 1 and
bj = b for 0 ≤ j < `.
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Perfect ordering is not always the best

Intuitively, we may “think” alpha-beta pruning would be most
effective when a game tree is perfectly ordered.
• That is, when the first successor of every position is the best possible

move.
• This is not always the case!

2 3 3

4

2 1 2 1

4

>=4

<=2

>=4

<=3

Truly optimum order of game trees traversal is not obvious.

TCG: α-β Pruning, 20211229, Tsan-sheng Hsu c© 65



When is a branch pruned?

Assume a node r has two children u and v with u being visited
before v using some move ordering.
• Further assume u produced a new bound bound.

Assume node v has a child w.
• If the value new returned from w can cause a range conflict with bound,

then branches of v later than w are cut.

This means as long as the “relative” ordering of u and v is
good enough, then we can have a cut-off.
• There is no need to have a perfect ordering to enable cut-off to happen.
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Theorem 2

Theorem 2: Alpha-beta pruning is optimum in the following
sense:
• Given any game tree and any algorithm which computes the value of

the root position, there is a way to permute the tree
. by reordering successor positions if necessary;

• so that every terminal position examined by the alpha-beta method
under this permutation is examined by the given algorithm.

• Furthermore if the value of the root is not ∞ or −∞, the alpha-beta
procedure examines precisely the positions which are critical under this
permutation.
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Variations of alpha-beta search

Initially, to search a tree with the root r by calling
F1(r,−∞,+∞,depth).
• What does it mean to search a tree with the root r by calling
F1(r,alpha,beta,depth)?

. To search the tree rooted at r requiring that the returned value to be
within alpha and beta.

In an alpha-beta search with a pre-assigned window (alpha, beta):

• Failed-high means it returns a value that is larger than or equal to its
upper bound beta.

• Failed-low means it returns a value that is smaller than or equal to its
lower bound alpha.

Variations:
• Brute force Nega-Max version: F/F0

. Always finds the correct answer according to the Nega-Max formula.

• Original alpha-beta cut (Nega-Max) version: F1
• Fail hard alpha-beta cut (Nega-Max) version: F2
• Fail soft alpha-beta cut (Nega-Max) version: F3

TCG: α-β Pruning, 20211229, Tsan-sheng Hsu c© 68



Original version

Requiring alpha ≤ beta; nega-max version
Algorithm F1(position p, value alpha, value beta, integer depth)

• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return h(p) else
• begin

. m := alpha // hard initial value

. for i := 1 to b do

. begin

. t := −F1(pi,−beta,−m, depth− 1)

. if t > m then m := t // the returned value is “used”

. if m ≥ beta then return(beta) // cut off and return the hard bound

. end

• end
• return m // if nothing is over alpha, then alpha is returned
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Properties of F1

Assumptions:
• alpha ≤ beta
• p is not a leaf
• depth =∞
• there is no additional resource or knowledge constraints

F1(p, alpha, beta, depth) = alpha if F (p) ≤ alpha
F1(p, alpha, beta, depth) = F (p) if alpha < F (p) < beta
F1(p, alpha, beta, depth) = beta if F (p) ≥ beta
F1(p,−∞,+∞, depth) = F (p)
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Comments

F1(p, alpha, beta, depth): find the best possible value according
to a nega-max formula for the position p with the constraints
that

. If F (p) ≤ alpha, then F1(p, alpha, beta, depth) returns with the value alpha
from a terminal position whose value is ≤ alpha.

. If F (p) ≥ beta, then F1(p, alpha, beta, depth) returns the value beta from a
terminal position whose value is ≥ beta.

The meanings of alpha and beta during searching:
. For a max node: the current best value is at least alpha.
. For a min node: the current best value is at most beta.

F1 always finds a value that is within alpha and beta.
. The bounds are hard, i.e., cannot be violated.
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F1: Example

−200

W Q

−v

return(−200)

return(−v)

A

4000return max{           ,200,v}

F1(W,−5000,−4000,d)

F1(Q,−5000,−4000,d)

window

(4000,5000)

As long as the value of the leaf node W is less than the current
alpha value, the returned value of A will be alpha.
If the value of the leaf node W is greater than the current beta
value, the returned value of A will be beta.
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Alpha-beta pruning: Fail hard, Mini-Max (1/2)

Algorithm F2′(position p, value alpha, value beta, integer depth)

• // max node
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return f(p) else
. m := alpha
. for i := 1 to b do
. t := G2′(pi,m, beta, depth− 1)
. if t > m then m := t // improve the current best value
. if m ≥ beta then return(m) // beta cut off, return m

• end;
• return m // if nothing is over alpha, then alpha is returned
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Alpha-beta pruning: Fail hard, Mini-Max (2/2)

Algorithm G2′(position p, value alpha, value beta, integer depth)

• // min node
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return f(p) else
. m := beta
. for i := 1 to b do
. t := F2′(pi, alpha,m, depth− 1)
. if t < m then m := t // improve the current best value
. if m ≤ alpha then return(m) // alpha cut off, return m

• end;
• return m // if nothing is below beta, then beta is returned
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Alpha-beta pruning: Fail hard, Nega-Max

Algorithm F2(position p, value alpha, value beta, integer depth)

• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return h(p) else
• begin

. m := alpha

. for i := 1 to b do

. begin

. t := −F2(pi,−beta,−m, depth− 1)

. if t > m then m := t

. if m ≥ beta then return(m) // cut off, return m that is ≥ beta

. end

• end
• return m
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Properties of F2

Assumptions:
• alpha ≤ beta
• p is not a leaf
• depth =∞
• there is no additional resource or knowledge constants

F2(p, alpha, beta, depth) = alpha if F (p) ≤ alpha
F2(p, alpha, beta, depth) = F (p) if alpha < F (p) < beta
F2(p, alpha, beta, depth) ≥ beta and F (p) ≥ F2(p, alpha, beta, depth)
if F (p) ≥ beta
F2(p,−∞,+∞, depth) = F (p)
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Comments

F2(p, alpha, beta, depth): find the best possible value according
to a nega-max formula for the position p with the constraints
that

. If F (p) ≤ alpha, then F2(p, alpha, beta, depth) returns with the value alpha
from a terminal position whose value is ≤ alpha.

. If F (p) ≥ beta, then F2(p, alpha, beta, depth) returns a value ≥ beta from a
terminal position whose value is ≥ beta.

An intermediate version.
. The lower bound is hard, cannot be violated.
. Always return something better than expected, but never something worse!!
. Easier to find the branch where the returned value is coming from.

For historical reason [Fishburn 1983][Knuth & Moore 1975],
this is called fail hard.
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Example

Initial call: F2′(root,−∞,∞,depth)

• m = −∞
• call G2′(node 1,−∞,∞,depth− 1)

. it is a terminal node

. return value 15

• t = 15;
. since t > m, m is now 15

• call G2′(node 2,15,∞,depth− 1)
. call F2′(node 2.1,15,∞,depth−2)
. it is a terminal node; return 10
. t = 10; since t <∞, m is now 10
. alpha is 15, m is 10, so we have

an alpha cut off,
. no need to call
F2′(node 2.2,15,10,depth− 2)

. return 10

. · · ·

1 2

2.1 2.2

V=15

V=10

V <= 10

cut

V>=15
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Alpha-beta pruning: Fail soft, Mini-Max (1/2)

Algorithm F3′(position p, value alpha, value beta, integer depth)

• // max node
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return f(p) else
• begin

. m := −∞ // soft initial value

. for i := 1 to b do

. begin

. t := G3′(pi,max{m, alpha}, beta, depth− 1)

. if t > m then m := t // the returned value is “used”

. if m ≥ beta then return(m) // beta cut off

. end

• end
• return m
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Alpha-beta pruning: Fail soft, Mini-Max (2/2)

Algorithm G3′(position p, value alpha, value beta, integer depth)

• // min node
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return f(p) else
• begin

. m :=∞ // soft initial value

. for i := 1 to b do

. begin

. t := F3′(pi, alpha,min{m, beta}, depth− 1)

. if t < m then m := t // the returned value is “used”

. if m ≤ alpha then return(m) // alpha cut off

. end

• end
• return m
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Alpha-beta pruning: Fail soft, Nega-Max

Algorithm F3(position p, value alpha, value beta, integer depth)

• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return h(p) else
• begin

. m := −∞ // soft initial value

. for i := 1 to b do

. begin

. t := −F3(pi,−beta,−max{m, alpha}, depth− 1)

. if t > m then m := t // the returned value is “used”

. if m ≥ beta then return(m) // cut off

. end

• end
• return m
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Properties of F3

Assumptions
• alpha ≤ beta
• p is not a leaf
• depth =∞
• there is no additional resource or knowledge constants

F3(p, alpha, beta, depth) ≤ alpha and F (p) ≤ F3(p, alpha, beta, depth)
if F (p) ≤ alpha
F3(p, alpha, beta, depth) = F (p) if alpha < F (p) < beta
F3(p, alpha, beta, depth) ≥ beta and F (p) ≥ F3(p, alpha, beta, depth)
if F (p) ≥ beta
F3(p,−∞,+∞, depth) = F (p)
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Comments: F3

F3 finds a “better” value when the value is out of the search
window.
• Better means a tighter bound.

. The bounds are soft, i.e., can be violated.

• When it is failed-high, F3 normally returns a value that is higher than
that of F1 or F2.

. Never higher than that of F !

• When it is failed-low, F3 normally returns a value that is lower than
that of F1 or F2.

. Never lower than that of F !

Example: assume you search the root r, a MAX node, with a
very high alpha value and actually F (r) << alpha.
• F2(r, alpha, beta,∞) returns alpha.
• F3(r, alpha, beta,∞) may return a value < alpha which is more infor-

matic than returning alpha.
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Fail soft version (F3): Example

−200

W Q

−v

return(−200)

return(−v)

return max{200,v}

A

F3(W,−5000,−4000,d)

F3(Q,−5000,−4000,d)

(4000,5000)

window

Let the value of the leaf node W be u.
If u < alpha, then the returned value of A will be at least u.
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Comparisons between F2 and F3

Both versions find the corrected value v if v is within the
window (alpha, beta).
Both versions scan the same set of nodes during searching.

. If the returned value of a subtree is decided by a cut, then F2 and F3 return
the same value.

F3 provides more information when the true value is out of the
pre-assigned search window.
• Can provide a feeling on how bad or good the game tree is.
• Use this “better” value to guide searching later on.

F3 saves about 7% of time than that of F2 when a transposition
table is used to save and re-use searched results [Fishburn
1983].
• A transposition table is a data structure to record the results of previous

searched results.
• The entries of a transposition table can be efficiently accessed, i.e.,

read and write, during searching.
• Need an efficient addressing scheme, e.g., hash, to translate between

a position and its address.
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F2 and F3: Example (1/2)

−200

W
Q

P1 P2

A

window

(4000,5000)

window

(390,600)

Assume the node A can be reached from the starting position
using path P1 and path P2.
• If W is visited first along P1 with a window (4000, 5000), and returns a

value of 200, then
. the returned value of W , 200, is stored into the transposition table.

• If A is visited again along P2 with the window (390, 600), then a better
value of previously stored value of W helps to decide whether the
subtree rooted at W needs to be searched again.
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F2 and F3: Example (2/2)

−200

W
Q

P1 P2

A

window

(4000,5000)

window

(390,600)

Fail soft version has a chance to record a better value to be
used later when this position is revisited.
• If A is visited again along P2 with the window (390, 600), then

. it does not need to be searched again, since the previous stored value
of W is −200.

• However, if the value of W is 450, then it needs to be searched again.

Fail hard version does not store the returned value of W after
its first visit since this value is less than alpha.
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Comments

For historical reason, comparisons are made between F2 and
F3, while we should compare F1 and F3.
• To me, F1 fails really hard. F2 is only an intermediate version!
• However, F1 is never a choice over F2 and F3 practically.

What move ordering is good?
• It may not be good to search the best possible move first.
• It may be better to cut off a branch with more nodes first.

Q: How about the case when the tree is not uniform?
Q: What is the effect of using iterative-deepening alpha-beta
cut off?
Q: How about the case for searching a game graph instead of a
game tree?
• Some nodes are visited more than once.
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