Chance Node Searching

Tsan－sheng Hsu

徐讚昇

tshsu＠iis．sinica．edu．tw
http：／／www．iis．sinica．edu．tw／～tshsu

Abstract

- Searching stochastic games
- Alpha-beta based techniques
- Star0: exhaustive enumeration without cuts
- Star0.5: cuts in between choices
- Star1: cuts inside choices using bounds from an arbitrary move ordering
- Star2: cuts inside choices using bounds from a good probing strategy
- Star2.5: using an even better probing strategy
- MCTS based approaches
- Sparse sampling

Stochastic games

- Stochastic games have nodes whose outcome or move selections cannot be decided completely by players.
- Pure stochastic: no action can be taken by a player before or after a random toss.
\triangleright A dice game.
- A priori chance node: a random toss is made first and then you make a decision based on the toss.
\triangleright EinStein Würfelt Nicht (EWN) [Lorentz et al '12]: you make a random toss to decide what pieces that you can move, and then you make a move.
- A posteriori chance node: you make a decision first and then followed by a random toss.
\triangleright Chinese dark chess [Yen et al '14]: you pick a dark piece to flip, and then the piece is revealed decided by a random toss

Searching stochastic games

- Because of a coin toss, the search space is greatly enlarged.
- Example: In the opening phase, Chinese dark chess game tree has a very large branching factor.
\triangleright After using reduction in symmetry, the first ply has $7 * 8$ possible outcomes.
\triangleright The second ply has unto $14 * 31$ possible outcomes which is larger than 19x19 Go.
- Maybe need to compute all possible results from the coin toss to decide a good playing strategy.
- The expected value of all possible outcomes is needed which may be difficult to apply any cuts.

Search with chance nodes

- Example: Chinese dark chess (CDC)
- Two-player, zero sum
- Complete information
- Perfect information
- Stochastic
- There is a chance node during searching.
\triangleright The value of a chance node is a distribution, not a fixed value.
- Previous work
- Alpha-beta based [Ballard 1983]
- Monte-Carlo based [Lancoto et al 2013] [Jouandeau and Cazenave '14]

Example (1/4)

- It's BLACK turn and BLACK has 6 different possible legal moves which includes the four different moving made by its elephant and the two flipping moves at a1 or a8.
- It is difficult for BLACK to secure a win by moving its elephant along any of the 3 possible directions, namely up, right or left, or by capturing the RED pawn at the left hand side.

Example (2/4)

- If BLACK flips a1, then there are 2 possible cases.
- If a1 is BLACK cannon, then it is difficult for RED to win.
\triangleright RED guard is in danger.
- If a1 is BLACK king, then it is difficult for BLACK to lose.
$\triangleright B L A C K$ king can go up through the right.

Example (3/4)

- If BLACK flips a8, then there are 2 possible cases. - If a8 is BLACK cannon, then it is easy for RED to win.
\triangleright RED cannon captures it immediately.
- If a8 is BLACK king, then it is also easy for RED to win.
\triangleright RED cannon captures it immediately.

Example (4/4)

Conclusion:

- It is vary bad for BLACK to flip a8.
- It is bad for BLACK to move its elephant.
- It is better for BLACK to flip a1.

Example: illustration

Conclusion:

- It is vary bad for BLACK to flip a8.
- It is bad for BLACK to move its elephant.
- It is better for BLACK to flip a1.

Basic ideas for searching chance nodes

- Assume a chance node x has a score probability distribution function $\operatorname{Pr}(*)$ with the range of possible outcomes from 1 to N where N is a positive integer.
- For each possible outcome i, we need to compute $\operatorname{score}(i)$.
- The expected value $E=\sum_{i=1}^{N} \operatorname{score}(i) * \operatorname{Pr}(x=i)$.
- The minimum value is $m=\min _{i=1}^{N}\{\operatorname{score}(i) \mid \operatorname{Pr}(x=i)>0\}$.
- The maximum value is $M=\max _{i=1}^{N}\{\operatorname{score}(i) \mid \operatorname{Pr}(x=i)>0\}$.
- Example: open game in Chinese dark chess.
- For the first ply, $N=14 * 32$.
\triangleright Using symmetry, we can reduce it to $7^{*} 8$.
- We now consider the chance node of flipping the piece at the cell a1.
$\triangleright N=14$.
\triangleright Assume $x=1$ means a BLACK King is revealed and $x=8$ means a RED King is revealed.
\triangleright Then score $(1)=\operatorname{score}(8)$ since the first player owns the revealed king no matter its color is.
$\triangleright \operatorname{Pr}(x=1)=\operatorname{Pr}(x=8)=1 / 14$.

Illustration

The probability distribution

- General case
- Assume a chance node x has c choices k_{1}, \ldots, k_{c}.
- The i th choice happens with the probability $P r_{i}$.

$$
\triangleright \sum_{i=1}^{c} P r_{i}=1
$$

- Special cases
- Special case 1, called uniform (EQU): $\operatorname{Pr} r_{i}=1 / c$.
\triangleright All choices happen with an equal chance.
\triangleright Example: EinStein Würfelt Nicht (EWN).
- Special case 2, called GCD: $\operatorname{Pr} r_{i}=w_{i} / D$ where each w_{i} is an integer and D is also an integer.

$$
\triangleright D=\sum_{i=1}^{c} w_{i} \text { as in Chinese dark chess. }
$$

- The above two special cases usually happen in game playing and can use the characteristics to do some optimization in arithmetic calculations.

Comments about EWN (1/3)

- $\sum_{i=1}^{c} P r_{i}$ is always 1 .
- In EWN when there are only two pieces left, it appears that the above claim is not true.
- Example 1: 1 and 6 with both probabilities being selected may look like $\frac{5}{6}$.
\triangleright Assume the winning rates in example 1 are 0.75 and 0.23 for 1 and 6 being picked respectively.
- Example 2: 1 and 2 may look like the probability of 1 being selected is $\frac{1}{6}$, but is $\frac{5}{6}$ for 2 being picked.
\triangleright Assume the winning rates in example 2 are also 0.75 and 0.23 for 1 and 2 being picked respectively.
- Example 1 is favored over example 2 not because the sum of probabilities is larger!!!

Comments about EWN (2/3)

- EWN always has SIX choices.
- Example 1:
- For choices 1 to 5, we can choose to move piece 1.
- For choices 2 to 6 , we can choose to move piece 6.
- It appears that for choices 2 to 5, we have an equal chance of choosing either piece 1 or 6 .
\triangleright However, due to the difference in winning rates, we always choose piece 1.
- This means $\mathbf{1}$ is chosen with a probability of $\frac{5}{6}$ and 6 is picked with a probability of $\frac{1}{6}$.
\triangleright Hence the expected winning rate is $5 * \frac{1}{6} * 0.75+1 * \frac{1}{6} * 0.23$
- Example 2:
- For choice 1, we can choose to move piece 1.
- For choices 2 to 6, we can choose to move piece 2.
- This means 1 is chosen with a probability of $\frac{1}{6}$ and 2 is picked with a probability of $\frac{5}{6}$.
\triangleright Hence the expected winning rate is $1 * \frac{1}{6} * 0.75+5 * \frac{1}{6} * 0.23$

Comments about EWN (3/3)

- Using transposition tables will help a lot in searching when some pieces are captured!!!
- Only ONE piece can be picked when choice $=1$ or 6 .
- If piece i is not being captured, then choice i can only pick that piece.
- For choices between 2 and 5, if the corresponding piece is being captured, then it has at most TWO pieces to choose from.

Illustration for EWN

Algorithm: Chance_Search with Star0 (MAX)

- Algorithm $F 3.0^{\prime}$ (position p, value alpha, value beta, integer depth)
- // max node
- determine the successor positions p_{1}, \ldots, p_{b}
- if $b=0 / /$ a terminal node
or depth $=0 / /$ remaining depth to search
or time is running up // from timing control or some other constraints are met // add knowledge here
- then return $f(p)$ else begin

```
\(\triangleright m:=-\infty\)
\(\triangleright\) for \(i:=1\) to \(b\) do
\(\triangleright\) begin
\(\triangleright \quad\) if \(p_{i}\) is to play a chance node \(x\)
    then \(t:=\) Star \(0 \_F 3.0^{\prime}\left(p_{i}, x, \max \{\right.\) alpha,\(m\}\), beta, depth -1\()\)
\(\triangleright \quad\) else \(t:=G 3.0^{\prime}\left(p_{i}, \max \{\operatorname{alpha}, m\}\right.\), beta, depth -1\()\)
\(\triangleright \quad\) if \(t>m\) then \(m:=t\)
\(\triangleright \quad\) if \(m \geq\) beta then return \((m) / /\) beta cut off
\(\triangleright\) end
```

- end;
- return m

Algorithm: Chance_Search with Star0 (MIN)

- Algorithm $G 3.0^{\prime}$ (position p, value alpha, value beta, integer depth)
- // min node
- determine the successor positions p_{1}, \ldots, p_{b}
- if $b=0 / /$ a terminal node
or depth $=0 / /$ remaining depth to search
or time is running up // from timing control or some other constraints are met // add knowledge here
- then return $f(p)$ else begin

```
\(\triangleright m:=\infty\)
\(\triangleright\) for \(i:=1\) to \(b\) do
\(\triangleright\) begin
\(\triangleright \quad\) if \(p_{i}\) is to play a chance node \(x\)
    then \(t:=\) Star0_G3.0' \(\left(p_{i}, x\right.\), alpha, \(\min \{\) beta,\(m\}\), depth -1\()\)
\(\triangleright \quad\) else \(t:=F 3.0^{\prime}\left(p_{i}\right.\), alpha, min\{beta, \(\left.m\right\}\), depth -1\()\)
\(\triangleright \quad\) if \(t<m\) then \(m:=t\)
\(\triangleright \quad\) if \(m \leq\) alpha then return \((m) / /\) alpha cut off
\(\triangleright\) end
```

- end;
- return m

Algorithm: Star0, uniform case (MAX)

version when all choices have equal probabilities

- max node
- Algorithm Star0_EQU_F3.0'(position p, node x, value alpha, value beta, integer depth)
- // a max chance node x with c equal probability choices k_{1}, \ldots, k_{c}
- // exhaustive search all possibilities and return the expected value
- determine the possible values of the chance node x to be k_{1}, \ldots, k_{c}
- vsum $=0$; // initial sum of expected value
- for $i=1$ to c do
- begin
\triangleright let p_{i} be the position of assigning k_{i} to x in p;
\triangleright vsum $+=G 3.0^{\prime}\left(p_{i},-\infty,+\infty\right.$,depth $)$;
- end
- return $v s u m / c$; // return the expected score

Algorithm: Star0, uniform case (MIN)

version when all choices have equal probabilities
min node

- Algorithm Star0_EQU_G3.0'(position p, node x, value alpha, value beta, integer depth)
- // a min chance node x with c equal probability choices k_{1}, \ldots, k_{c}
- // exhaustive search all possibilities and return the expected value
- determine the possible values of the chance node x to be k_{1}, \ldots, k_{c}
- vsum $=0$; // initial sum of expected value
- for $i=1$ to c do
- begin
\triangleright let p_{i} be the position of assigning k_{i} to x in p;
\triangleright vsum $+=F 3.0^{\prime}\left(p_{i},-\infty,+\infty\right.$, depth $)$;
- end
- return $v s u m / c$; // return the expected score

Star0: note

- depth stays the same in Star0 search since we are unwrapping a chance node.
- The search window from normal alpha-beta pruning cannot be applied in a chance node search since we are looking at the average of the outcome.
- It is okay for one choice to have a very large or small value because it may be evened out by values from other choices.
- Thus the search window is reset to $(-\infty, \infty)$.

Algorithm: Star0, general case (MAX)

- Algorithm Star0_F3.0'(position p, node x, value alpha, value beta,integer depth)
- // a max chance node x with c choices k_{1}, \ldots, k_{c}
- // the i th choice happens with the probability Pr_{i}
- // exhaustive search all possibilities and return the expected value
- determine the possible values of the chance node x to be k_{1}, \ldots, k_{c}
- $\operatorname{vexp}=0$; // initial sum of expected value
- for $i=1$ to c do
- begin
\triangleright let p_{i} be the position of assigning k_{i} to x in p;
\triangleright vexp $+=\operatorname{Pr}_{i} * G 3.0^{\prime}\left(p_{i},-\infty,+\infty\right.$, depth $)$
- end
- return vexp; // return the expected score

Algorithm: Star0, general case (MIN)

- Algorithm Star0_G3.0'(position p, node x, value alpha, value beta,integer depth)
- // a min chance node x with c choices k_{1}, \ldots, k_{c}
- // the i th choice happens with the probability Pr_{i}
- // exhaustive search all possibilities and return the expected value
- determine the possible values of the chance node x to be k_{1}, \ldots, k_{c}
- vexp $=0$; // initial sum of expected value
- for $i=1$ to c do
- begin
\triangleright let p_{i} be the position of assigning k_{i} to x in p;
$\triangleright \operatorname{vexp}+=\operatorname{Pr}_{i} * F 3.0^{\prime}\left(p_{i},-\infty,+\infty\right.$, depth $)$
- end
- return vexp; // return the expected score

Algorithm: Star0, GCD case (MAX)

- Algorithm Star0_GCD_F3.0'(position p, node x, value alpha, value beta, integer depth)
- // a max chance node x with c choices k_{1}, \ldots, k_{c}
- // whose occurrence probability are $w_{1} / D, \ldots, w_{c} / D$
- // and each w_{i} is an integer
- // exhaustive search all possibilities and return the expected value
- determine the possible values of the chance node x to be k_{1}, \ldots, k_{c}
- vsum = 0; // initial sum of weight values
- for $i=1$ to c do
- begin
\triangleright let p_{i} be the position of assigning k_{i} to x in p;
\triangleright vsum $+=w_{i} * G 3.0^{\prime}\left(p_{i},-\infty,+\infty\right.$,depth $)$;
- end
- return $v s u m / D$; // return the expected score

Algorithm: Star0, GCD case (MIN)

- Algorithm Star0_GCD_G3.0'(position p, node x, value alpha, value beta, integer depth)
- // a min chance node x with c choices k_{1}, \ldots, k_{c}
- // whose occurrence probability are $w_{1} / D, \ldots, w_{c} / D$
- // and each w_{i} is an integer
- // exhaustive search all possibilities and return the expected value
- determine the possible values of the chance node x to be k_{1}, \ldots, k_{c}
- vsum $=0$; // initial sum of weight values
- for $i=1$ to c do
- begin
\triangleright let p_{i} be the position of assigning k_{i} to x in p;
\triangleright vsum $+=w_{i} * F 3.0^{\prime}\left(p_{i},-\infty,+\infty\right.$, depth $)$;
- end
- return $v s u m / D$; // return the expected score

Ideas for improvements

- During a chance search, an exhaustive search method is used without any pruning.
- Ideas for further improvements
- When some of the choices turn out very bad or good results, we know information about lower/upper bounds of the final value.
- When you are in advantage, search for a bad choice first.
\triangleright If the worst choice cannot is not too bad, then you can take this chance.
- When you are in disadvantage, search for a good choice first.
\triangleright If the best choice cannot is not good enough, then there is no need to take this chance.
- Examples: the average of 2 drawings of a dice is similar to a position with 2 choices with scores in [1..6].
- The first drawing is 5 . Then bounds of the average:
\triangleright lower bound is 3
\triangleright upper bound is 5.5.
- The first drawing is $\mathbf{1}$. Then bounds of the average:
\triangleright lower bound is 1
\triangleright upper bound is 3.5.

Bounds in a chance node

- Assume the various possibilities of a chance node is evaluated one by one in the order that at the end of phase i, the i th choice is evaluated.
- Assume $v_{\min } \leq \operatorname{score}(i) \leq v_{\max }$.
- What are the lower and upper bounds, namely m_{i} and M_{i}, of the expected value of the chance node immediately after the end of phase i ?
- $i=0$.

$$
\begin{aligned}
& \triangleright m_{0}=v_{\min } \\
& \triangleright M_{0}=v_{\max }
\end{aligned}
$$

- $i=1$, we first compute $\operatorname{score}(1)$, and then know

$$
\begin{aligned}
& \triangleright m_{1} \geq \operatorname{score}(1) * \operatorname{Pr}(x=1)+v_{\min } *(1-\operatorname{Pr}(x=1)), \text { and } \\
& \triangleright M_{1} \leq \operatorname{score}(1) * \operatorname{Pr}(x=1)+v_{\max } *(1-\operatorname{Pr}(x=1)) .
\end{aligned}
$$

- $i=i^{*}$, we have computed $\operatorname{score}(1), \ldots, \operatorname{score}\left(i^{*}\right)$, and then know

$$
\begin{aligned}
& \triangleright m_{i^{*}} \geq \sum_{i=1}^{i^{*}} \operatorname{score}(i) * \operatorname{Pr}(x=i)+v_{\min } *\left(1-\sum_{i=1}^{i^{*}} \operatorname{Pr}(x=i)\right), \text { and } \\
& \triangleright M_{i^{*}} \leq \sum_{i=1}^{i^{*}} \operatorname{score}(i) * \operatorname{Pr}(x=i)+v_{\max } *\left(1-\sum_{i=1}^{i^{*}} \operatorname{Pr}(x=i)\right) .
\end{aligned}
$$

Star0.5: uniform case (1/3)

- For simplicity, let's assume $\operatorname{Pr}(x=i)=\frac{1}{c}$, that is, the uniform case.
- For all i, and the evaluated value of the i th choice is v_{i}.
- Assume the search window entering a chance node with $N=c$ choices is (alpha, beta).
- The value of a chance node after the first i choices are explored can be expressed as
- an expected value $E_{i}=v s u m_{i} / c$ obtained so far;
$\triangleright \operatorname{vsum}_{i}=\sum_{j=1}^{i} v_{j}$
\triangleright This value is returned only when all choices are explored.
\Rightarrow The expected value of an un-explored child shouldn't be $\frac{v_{\min }+v_{\max }}{2}$.
- a range of possible values $\left[m_{i}, M_{i}\right]$.

$$
\begin{aligned}
& \triangleright m_{i}=\left(\sum_{j=1}^{i} v_{j}+v_{\min } \cdot(c-i)\right) / c \\
& \triangleright M_{i}=\left(\sum_{j=1}^{i} v_{j}+v_{\max } \cdot(c-i)\right) / c
\end{aligned}
$$

- Invariants:

$$
\begin{aligned}
& \triangleright E_{i} \in\left[m_{i}, M_{i}\right] \\
& \triangleright E_{c}=m_{c}=M_{c}
\end{aligned}
$$

Star0.5: uniform case $(2 / 3)$

- Let m_{i} and M_{i} be the current lower and upper bounds, respectively, of the expected value of this chance node immediately after the evaluation of the i th node.
- $m_{i}=\left(\sum_{j=1}^{i-1} v_{j}+v_{i}+v_{\text {min }} \cdot(c-i)\right) / c$
- $M_{i}=\left(\sum_{j=1}^{i-1} v_{j}+v_{i}+v_{\max } \cdot(c-i)\right) / c$
- How to incrementally update m_{i} and M_{i} :
- $m_{0}=v_{\text {min }}$
- $M_{0}=v_{\max }$

$$
\begin{align*}
& m_{i}=m_{i-1}+\left(v_{i}-v_{\min }\right) / c \tag{1}\\
& M_{i}=M_{i-1}+\left(v_{i}-v_{\max }\right) / c \tag{2}
\end{align*}
$$

Star0.5: uniform case (3/3)

- Let m_{i} and M_{i} be the current lower and upper bounds, respectively, of the expected value of this chance node immediately after the evaluation of the i th node.
- $m_{i}=\left(\sum_{j=1}^{i-1} v_{j}+v_{i}+v_{m i n} \cdot(c-i)\right) / c$
- $M_{i}=\left(\sum_{j=1}^{i-1} v_{j}+v_{i}+v_{\max } \cdot(c-i)\right) / c$
- The current search window is (alpha, beta).
- No more searching is needed when
$\triangleright m_{i} \geq$ beta, chance node cut off I;
\Rightarrow The lower bound found so far is good enough.
\Rightarrow Similar to a beta cut off.
\Rightarrow The returned value is m_{i}.
$\triangleright M_{i} \leq$ alpha, chance node cut off II.
\Rightarrow The upper bound found so far is bad enough.
\Rightarrow Similar to an alpha cut off.
\Rightarrow The returned value is M_{i}.

Example for Star0.5

- Assumption:
- The range of the scores of Chinese dark chess is $[-10,10]$ inclusive, alpha $=-10$ and beta $=10$.
- $N=7$.
- $\operatorname{Pr}(x=i)=1 / N=1 / 7$.

Calculation:

- $i=0$,

$$
\begin{aligned}
& \triangleright m_{0}=-10 . \\
& \triangleright M_{0}=10 .
\end{aligned}
$$

- $i=1$ and if $\operatorname{score}(1)=-2$, then

$$
\begin{aligned}
& \triangleright m_{1}=-2 * 1 / 7+-10 * 6 / 7=-62 / 7 \simeq-8.86 . \\
& \triangleright M_{1}=-2 * 1 / 7+10 * 6 / 7=58 / 7 \simeq 8.26 .
\end{aligned}
$$

- $i=1$ and if $\operatorname{score}(1)=3$, then

$$
\begin{aligned}
& \triangleright m_{1}=3 * 1 / 7+-10 * 6 / 7=-57 / 7 \simeq-8.14 . \\
& \triangleright M_{1}=3 * 1 / 7+10 * 6 / 7=63 / 7=9 .
\end{aligned}
$$

Star0.5: uniform case (MAX)

- Algorithm Star0.5_EQU_F3.0'(position p, node x, value alpha, value beta, integer depth)
- // a max chance node x with c equal probability choices k_{1}, \ldots, k_{c}
- determine the possible values of the chance node x to be k_{1}, \ldots, k_{c}
- $m_{0}=v_{\min }, M_{0}=v_{\max } / /$ initial lower and upper bounds
- vsum $=0$; // initial sum of expected values
- for $i=1$ to c do
- begin
\triangleright let p_{i} be the position of assigning k_{i} to x in p;
$\triangleright t:=G 3.0^{\prime}\left(p_{i}, v_{\min }, v_{\max }\right.$, depth $)$
$\triangleright m_{i}=m_{i-1}+\left(t-v_{\min }\right) / c, M_{i}=M_{i-1}+\left(t-v_{\max }\right) / c ; / /$ update the bounds
\triangleright if $m_{i} \geq$ beta then return $m_{i} ; / /$ failed high, chance node cut off I
\triangleright if $M_{i} \leq$ alpha then return M_{i}; // failed low, chance node cut off II
\triangleright vsum $+=t$;
- end
- return $v s u m / c$;

Star0.5: uniform case (MIN)

- Algorithm Star0.5_EQU_G3.0'(position p, node x, value alpha, value beta, integer depth)
- // a min chance node x with c equal probability choices k_{1}, \ldots, k_{c}
- determine the possible values of the chance node x to be k_{1}, \ldots, k_{c}
- $m_{0}=v_{\min }, M_{0}=v_{\max } / /$ initial lower and upper bounds
- vsum $=0$; // initial sum of expected values
- for $i=1$ to c do
- begin
\triangleright let p_{i} be the position of assigning k_{i} to x in p;
$\triangleright t:=F 3.0^{\prime}\left(p_{i}, v_{\min }, v_{\max }\right.$, depth $)$
$\triangleright m_{i}=m_{i-1}+\left(t-v_{\min }\right) / c, M_{i}=M_{i-1}+\left(t-v_{\max }\right) / c$; // update the bound
\triangleright if $m_{i} \geq$ beta then return $m_{i} ; / /$ failed high, chance node cut off I
\triangleright if $M_{i} \leq$ alpha then return $M_{i} ; / /$ failed low, chance node cut off II
\triangleright vsum $+=t$;
- end
- return $v s u m / c$;

Illustration: Star0.5

Ideas for further improvements $(1 / 2)$

- The above two cut offs comes from each time a choice is completely searched.
- When $m_{i} \geq$ beta, chance node cut off I,
\triangleright which means $\left(\sum_{j=1}^{i-1} v_{j}+v_{i}+v_{\text {min }} \cdot(c-i)\right) / c \geq$ beta.
- When $M_{i} \leq a l p h a$, chance node cut off II,
\triangleright which means $\left(\sum_{j=1}^{i-1} v_{j}+v_{i}+v_{\max } \cdot(c-i)\right) / c \leq$ alpha.
- Further cut off can be obtained before during searching a choice.
- Assume after searching the first $i-1$ choices, no chance node cut off happens.
- Before searching the i th choice, we know that if v_{i} is large enough, then it will raise the lower bound of the chance node which may trigger a chance node cut off I.
- How large should v_{i} be for this to happen?
\triangleright chance node cut off I:
$\left(\sum_{j=1}^{i-1} v_{j}+v_{i}+v_{\text {min }} \cdot(c-i)\right) / c \geq$ beta
$\triangleright \Rightarrow v_{i} \geq B_{i-1}=c \cdot \operatorname{beta}-\left(\sum_{j=1}^{i-1} v_{j}-v_{\text {min }} *(c-i)\right)$
$\triangleright B_{i-1}$ is the threshold for cut off I to happen.

Ideas for further improvements $(2 / 2)$

- Similarly,

- Assume after searching the first $i-1$ choices, no chance node cut off happens.
- Before searching the i th choice, we know that if v_{i} is small enough, then it will lower the upper bound of the chance node which may trigger a chance node cut off II.
- How small should v_{i} be for this to happen?
\triangleright chance node cut off II:
$\left(\sum_{j=1}^{v-1} v_{j}+v_{i}+v_{\text {max }} \cdot(c-i)\right) / c \leq$ alpha
$\triangleright \Rightarrow v_{i} \leq A_{i-1}=c \cdot a l p h a-\left(\sum_{j=1}^{i-1} v_{j}-v_{\max } *(c-i)\right)$
$\triangleright A_{i-1}$ is the threshold for cut off II to happen.

Example: Star1

- Example: the average of 2 drawings of a dice is similar to a position with 2 choices with scores in [1..6].
- $\left[m_{0}, M_{0}\right]=\left[v_{\min }, v_{\max }\right]=[1,6]$
- Assume (alpha, beta) $=(3.25,3.95)$
- The first drawing $v_{1}=3$. Then bounds of the average:
- lower bound is 2; upper bound is 4.5.
- $\left[m_{1}, M_{1}\right]=[2,4.5]$
- Before the second drawing, the search will
- failed-low if $\frac{v_{2}+3}{2} \leq a l p h a=3.25$ which means the search fails low if $v_{2} \leq 3.5$.
- failed-high if $\frac{v_{2}+3}{2} \geq$ beta $=3.95$ which means the search fails high if $v_{2} \geq 4.9$.
- Hence we can set the search window for the second search to be $(3.5,4.9)$ instead of $[1,6]$.
\triangleright We only need to do a test on whether v_{2} is 4 or not.

Formulas for the uniform case: Star1

- Set the window for searching the i th choice to be $\left(A_{i-1}, B_{i-1}\right)$ which means no further search is needed if the result is not within this window.
- $\left(A_{i-1}, B_{i-1}\right)$ is the window for searching the i th choice instead of using (alpha, beta).
- How to incrementally update A_{i} and B_{i} ?

$$
\begin{gather*}
A_{0}=c \cdot\left(\text { alpha }-v_{\max }\right)+v_{\max } \tag{3}\\
B_{0}=c \cdot\left(\text { beta }-v_{\min }\right)+v_{\min } \tag{4}\\
A_{i}=A_{i-1}+v_{\max }-v_{i} \tag{5}\\
B_{i}=B_{i-1}+v_{\min }-v_{i} \tag{6}
\end{gather*}
$$

Comment:

- May want to use zero-window search to test first.

Algorithm: Chance_Search with Star1 (MAX)

- Algorithm $F 3.1^{\prime}$ (position p, value alpha, value beta, integer depth)
- // max node
- determine the successor positions p_{1}, \ldots, p_{b};
- if $b=0 / /$ a terminal node
or depth $=0 / /$ remaining depth to search
or time is running up // from timing control or some other constraints are met // add knowledge here
- then return $f(p)$; else begin

```
\triangleright m:= - ; ;
for i}:=1\mathrm{ to b do
\triangleright begin
\triangleright \quad \text { if } p _ { i } \text { is to play a chance node } x
    then t := Star 1_F3.1'( }\mp@subsup{p}{i}{},x,max{alpha,m}, beta, depth - 1);
\triangleright ~ e l s e ~ t : = G 3 . 1 ' ( ~ ( p i , ~ m a x \{ a l p h a , m \} , b e t a , d e p t h ~ - ~ 1 ) ;
\triangleright if }t>m\mathrm{ then }m:=t\mathrm{ ;
\triangleright if m \geqbeta then return(m);// beta cut off
\triangleright end;
```

- end;
- return m;

Algorithm: Chance_Search with Star1 (MIN)

- Algorithm $G 3.1^{\prime}$ (position p, value alpha, value beta, integer depth)
- // min node
- determine the successor positions p_{1}, \ldots, p_{b};
- if $b=0 / /$ a terminal node
or depth $=0 / /$ remaining depth to search
or time is running up // from timing control or some other constraints are met // add knowledge here
- then return $f(p)$; else begin

```
\triangleright m:= \infty;
\triangleright ~ f o r ~ i : = 1 ~ t o ~ b ~ d o
\triangleright begin
\triangleright if p}\mp@subsup{p}{i}{}\mathrm{ is to play a chance node }
    then t := Star1_G3.1'( }\mp@subsup{p}{i}{},x\mathrm{ , alpha,min{beta,m},depth - 1);
\triangleright ~ e l s e ~ t ~ : = F 3 . 1 ' ( ~ p i , ~ a l p h a , ~ m i n \{ b e t a , m \} , d e p t h ~ - ~ 1 ) ;
\triangleright if }t<m\mathrm{ then }m:=t\mathrm{ ;
\triangleright \quad \text { if } m \leq a l p h a ~ t h e n ~ r e t u r n ( m ) ; / / ~ a l p h a ~ c u t ~ o f f ~
\triangleright end;
```

- end;
- return m;

Star1: uniform case (MAX)

- Algorithm Star1_EQU_F3.1'(position p, node x, value alpha, value beta, integer depth)
- // a max chance node x with c equal probability choices k_{1}, \ldots, k_{c}
- determine the possible values of the chance node x to be k_{1}, \ldots, k_{c}
- $A_{0}=c \cdot\left(a l p h a-v_{\max }\right)+v_{\max }, B_{0}=c \cdot\left(\right.$ beta $\left.-v_{\min }\right)+v_{\min }$;
- $m_{0}=v_{\min }, M_{0}=v_{\max } / /$ initial lower and upper bounds
- vsum $=0$; // initial sum of expected values
- for $i=1$ to c do
- begin
\triangleright let p_{i} be the position of assigning k_{i} to x in p;
$\triangleright t:=G 3.1^{\prime}\left(p_{i}, \max \left\{A_{i-1}, v_{\min }\right\}, \min \left\{B_{i-1}, v_{\max }\right\}, \operatorname{depth}\right)$
$\triangleright m_{i}=m_{i-1}+\left(t-v_{\min }\right) / c, M_{i}=M_{i-1}+\left(t-v_{\max }\right) / c$;
\triangleright if $t \geq B_{i-1}$ then return $m_{i} ; / /$ failed high, chance node cut off I
\triangleright if $t \leq A_{i-1}$ then return $M_{i} ; / /$ failed low, chance node cut off II
\triangleright vsum $+=t$;
$\triangleright A_{i}=A_{i-1}+v_{\max }-t, B_{i}=B_{i-1}+v_{\min }-t ;$
- end
- return vsum/c;

Star1: uniform case (MIN)

- Algorithm Star1_EQU_G3.1'(position p, node x, value alpha, value beta, integer depth)
- // a min chance node x with c equal probability choices k_{1}, \ldots, k_{c}
- determine the possible values of the chance node x to be k_{1}, \ldots, k_{c}
- $A_{0}=c \cdot\left(a l p h a-v_{\text {max }}\right)+v_{\text {max }}, B_{0}=c \cdot\left(\right.$ beta $\left.-v_{\text {min }}\right)+v_{\text {min }}$;
- $m_{0}=v_{\min }, M_{0}=v_{\max } / /$ initial lower and upper bounds
- vsum $=0$; // initial sum of expected values
- for $i=1$ to c do
- begin

```
\triangleright ~ l e t ~ p i ~ b e ~ t h e ~ p o s i t i o n ~ o f ~ a s s i g n i n g ~ k i ~ t o ~ x ~ i n ~ p ;
\triangleright t : = F 3 . 1 ' ( p _ { i } , \operatorname { m a x } \{ A _ { i - 1 } , v _ { \operatorname { m i n } } \} , \operatorname { m i n } \{ B _ { i - 1 } , v _ { \operatorname { m a x } } \} , \text { depth)}
\triangleright m _ { i } = m _ { i - 1 } + ( t - v _ { \operatorname { m i n } } ) / c , M _ { i } = M _ { i - 1 } + ( t - v _ { \operatorname { m a x } } ) / c ;
\triangleright ~ i f ~ t \geq B _ { i - 1 } \text { then return } m _ { i } ; / / ~ f a i l e d ~ h i g h , ~ c h a n c e ~ n o d e ~ c u t ~ o f f ~ I ~
\triangleright ~ i f ~ t \leq A _ { i - 1 } \text { then return } M _ { i } ; / / ~ f a i l e d ~ l o w , ~ c h a n c e ~ n o d e ~ c u t ~ o f f ~ I I ~ I
\triangleright vsum += t;
\triangleright A _ { i } = A _ { i - 1 } + v _ { \operatorname { m a x } } - t , B _ { i } = B _ { i - 1 } + v _ { \operatorname { m i n } } - t ;
```

- end
- return $v s u m / c$;

Illustration: Star1

Star1: general case (1/3)

- Assume the search window entering a chance node with $N=c$ choices is (alpha, beta).
- The i th choice happens with the probability $\operatorname{Pr}(x=i)=P r_{i}$.
- For all i, the evaluated value of the i th choice is v_{i}.
- The value of a chance node after the first i choices are explored can be expressed as
- an expected value $E_{i}=$ vexp ;
$\triangleright \operatorname{vexp}_{i}=\sum_{j=1}^{i} P r_{j} * v_{j}$
\triangleright This value is returned only when all choices are explored.
\Rightarrow The expected value of an un-explored child shouldn't be $\frac{v_{\min }+v_{\text {max }}}{2}$.
- a range of possible values $\left[m_{i}, M_{i}\right]$.

$$
\begin{aligned}
& \triangleright m_{i}=\operatorname{vexp}_{i}+\sum_{j=i+1}^{c} P r_{j} * v_{\text {min }} \\
& \triangleright M_{i}=\operatorname{vexp}_{i}+\sum_{j=i+1}^{c} P r_{j} * v_{\max }
\end{aligned}
$$

- Invariants:

$$
\begin{aligned}
& \triangleright E_{i} \in\left[m_{i}, M_{i}\right] \\
& \triangleright E_{c}=m_{c}=M_{c}
\end{aligned}
$$

Star1: general case (2/3)

- Let m_{i} and M_{i} be the current lower and upper bounds, respectively, of the expected value of this chance node immediately after the evaluation of the i th node.
- $m_{i}=\operatorname{vexp}_{i-1}+\operatorname{Pr}_{i} * v_{i}+\sum_{j=i+1}^{c} P r_{j} * v_{\text {min }}$
- $M_{i}=\operatorname{vexp}_{i-1}+\operatorname{Pr}_{i} * v_{i}+\sum_{j=i+1}^{c} P r_{j} * v_{\text {max }}$
- How to incrementally update m_{i} and M_{i} :
- $m_{0}=v_{\text {min }}$
- $M_{0}=v_{\max }$

$$
\begin{align*}
& m_{i}=m_{i-1}+P r_{i} *\left(v_{i}-v_{\min }\right) \tag{7}\\
& M_{i}=M_{i-1}+P r_{i} *\left(v_{i}-v_{\max }\right) \tag{8}
\end{align*}
$$

Star1: general case (3/3)

- The current search window is (alpha, beta).
- No more searching is needed when
- $m_{i} \geq b e t a$, chance node cut off I;
\Rightarrow The lower bound found so far is good enough.
\Rightarrow Similar to a beta cut off.
\Rightarrow The returned value is m_{i}.
- $M_{i} \leq a l p h a$, chance node cut off II.
\Rightarrow The upper bound found so far is bad enough.
\Rightarrow Similar to an alpha cut off.
\Rightarrow The returned value is M_{i}.

Star1 cut off: general case (1/2)

- When $m_{i} \geq$ beta, chance node cut off I,
- which means $\operatorname{vexp}_{i-1}+P r_{i} * v_{i}+\sum_{j=i+1}^{c} P r_{j} * v_{\text {min }} \geq$ beta
- $\Rightarrow v_{i} \geq B_{i-1}=\frac{1}{P r_{i}} \cdot\left(\right.$ beta $\left.-\left(\operatorname{vexp}_{i-1}+\sum_{j=i+1}^{c} P r_{j} * v_{\text {min }}\right)\right)$
- When $M_{i} \leq a l p h a$, chance node cut off II,
- which means $\operatorname{vexp}_{i-1}+P r_{i} * v_{i}+\sum_{j=i+1}^{c} P r_{j} * v_{\max } \leq a l p h a$
- $\Rightarrow v_{i} \leq A_{i-1}=\frac{1}{P r_{i}} \cdot\left(\right.$ alpha $\left.-\left(\operatorname{vexp}_{i-1}+\sum_{j=i+1}^{c} P r_{j} * v_{\text {max }}\right)\right)$
- Hence set the window for searching the i th choice to be (A_{i-1}, B_{i-1}) which means no further search is needed if the result is not within this window.

Star1 cut off: general case (2/2)

- How to incrementally update A_{i} and B_{i} ?

$$
\begin{gather*}
A_{0}=\frac{1}{P r_{1}} \cdot\left(a l p h a-v_{\max } * \sum_{i=1}^{c} P r_{i}\right)+v_{\max } \tag{9}\\
B_{0}=\frac{1}{P r_{1}} \cdot\left(b e t a-v_{\min } * \sum_{i=1}^{c} P r_{i}\right)+v_{\min } \tag{10}\\
A_{i}=\frac{1}{P r_{i+1}} *\left(P r_{i} * A_{i-1}+P r_{i+1} * v_{\max }-P r_{i} * v_{i}\right) \tag{11}\\
B_{i}=\frac{1}{P r_{i+1}} *\left(P r_{i} * B_{i-1}+P r_{i+1} * v_{\text {min }}-P r_{i} * v_{i}\right) \tag{12}
\end{gather*}
$$

Star1: general case (MAX)

Algorithm Star1_F3.1'(position p, node x, value alpha, value beta, integer depth)

- // a max chance node x with c choices k_{1}, \ldots, k_{c}
- // the i th choice happens with the probability Pr_{i}
- determine the possible values of the chance node x to be k_{1}, \ldots, k_{c}
- initialize A_{0} and B_{0} using formulas (9) and (10)
- $m_{0}=v_{\min }, M_{0}=v_{\max } / /$ initial lower and upper bounds
- vexp $=0$; // initial weighted sum of expected values
- for $i=1$ to c do
- begin
\triangleright let P_{i} be the position of assigning k_{i} to x in p;
$\triangleright t:=G 3.1^{\prime}\left(p_{i}, \max \left\{A_{i-1}, v_{\min }\right\}, \min \left\{B_{i-1}, v_{\max }\right\}\right.$, depth $)$
\triangleright incrementally update m_{i} and M_{i} using formulas (7) and (8)
\triangleright if $t \geq B_{i-1}$ then return m_{i}; // failed high, chance node cut off I
\triangleright if $t \leq A_{i-1}$ then return M_{i}; // failed low, chance node cut off II
$\triangleright \operatorname{vexp}+=P r_{i} * t$;
\triangleright incrementally update A_{i} and B_{i} using formulas (11) and (12)
- end
- return vexp;

Star1: general case (MIN)

Algorithm Star1_G3.1'(position p, node x, value alpha, value beta, integer depth)

- // a min chance node x with c choices k_{1}, \ldots, k_{c}
- // the i th choice happens with the probability Pr_{i}
- determine the possible values of the chance node x to be k_{1}, \ldots, k_{c}
- initialize A_{0} and B_{0} using formulas (9) and (10)
- $m_{0}=v_{\text {min }}, M_{0}=v_{\max } / /$ initial lower and upper bounds
- vexp $=0$; // initial weighted sum of expected values
- for $i=1$ to c do
- begin
\triangleright let P_{i} be the position of assigning k_{i} to x in p;
$\triangleright t:=F 3.1^{\prime}\left(p_{i}, \max \left\{A_{i-1}, v_{\min }\right\}, \min \left\{B_{i-1}, v_{\max }\right\}\right.$, depth $)$
\triangleright incrementally update m_{i} and M_{i} using formulas (7) and (8)
\triangleright if $t \geq B_{i-1}$ then return $m_{i} ; / /$ failed high, chance node cut off I
\triangleright if $t \leq A_{i-1}$ then return $M_{i} ; / /$ failed low, chance node cut off II
\triangleright vexp $+=P r_{i} * t$;
\triangleright incrementally update A_{i} and B_{i} using formulas (11) and (12)
- end
- return vexp;

Star1: GCD case (1/2)

- Assume the i th choice happens with a chance w_{i} / c where $c=\sum_{i=1}^{N} w_{i}$ and N is the total number of choices.
- $m_{0}=v_{\text {min }}$
- $M_{0}=v_{\max }$
- $m_{i}=\left(\sum_{j=1}^{i-1} w_{j} \cdot v_{j}+w_{i} \cdot v_{i}+v_{\text {min }} \cdot\left(c-\sum_{j=1}^{i} w_{j}\right)\right) / c$

$$
\begin{equation*}
m_{i}=m_{i-1}+\left(w_{i} / c\right) \cdot\left(v_{i}-v_{m i n}\right) \tag{13}
\end{equation*}
$$

- $M_{i}=\left(\sum_{j=1}^{i-1} w_{j} \cdot v_{j}+w_{i} \cdot v_{i}+v_{\max } \cdot\left(c-\sum_{j=1}^{i} w_{j}\right)\right) / c$

$$
\begin{equation*}
M_{i}=M_{i-1}+\left(w_{i} / c\right) \cdot\left(v_{i}-v_{\max }\right) \tag{14}
\end{equation*}
$$

Star1: GCD case (2/2)

- Assume the i th choice happens with a chance w_{i} / c where $c=\sum_{i=1}^{N} w_{i}$ and N is the total number of choices.

$$
\begin{gather*}
A_{0}=\left(c / w_{1}\right) \cdot\left(a l p h a-v_{\max }\right)+v_{\max } \tag{15}\\
B_{0}=\left(c / w_{1}\right) \cdot\left(\text { beta }-v_{\min }\right)+v_{\min } \tag{16}
\end{gather*}
$$

- $A_{i-1}=\left(c \cdot a l p h a-\left(\sum_{j=1}^{i-1} w_{j} \cdot v_{j}-v_{\max } \cdot\left(c-\sum_{j=1}^{i} w_{j}\right)\right)\right) / w_{i}$

$$
\begin{equation*}
A_{i}=\left(w_{i} / w_{i+1}\right) \cdot\left(A_{i-1}-v_{i}\right)+v_{\max } \tag{17}
\end{equation*}
$$

- $B_{i-1}=\left(c \cdot\right.$ beta $\left.-\left(\sum_{j=1}^{i-1} w_{j} \cdot v_{j}-v_{\text {min }} \cdot\left(c-\sum_{j=1}^{i} w_{j}\right)\right)\right) / w_{i}$

$$
\begin{equation*}
B_{i}=\left(w_{i} / w_{i+1}\right) \cdot\left(B_{i-1}-v_{i}\right)+v_{\min } \tag{18}
\end{equation*}
$$

Remarks

- To know what operations are simplified from the general case to special cases, compare these formulas

	general case	GCD case	
uniform case			
m_{i}	$\mathbf{7}$	$\mathbf{1 3}$	$\mathbf{1}$
M_{i}	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{2}$
a_{0}	$\mathbf{9}$	$\mathbf{1 5}$	$\mathbf{3}$
b_{0}	$\mathbf{1 0}$	$\mathbf{1 6}$	$\mathbf{4}$
A_{i}	$\mathbf{1 1}$	$\mathbf{1 7}$	$\mathbf{5}$
B_{i}	$\mathbf{1 2}$	$\mathbf{1 8}$	$\mathbf{6}$

Comments (1/2)

- Star0.5 finishes searching a choice using the maximum window size and then decide whether to go on searching the next choice or not, where Star1 can use sharper window size to end searching a choice earlier.
- We illustrate the ideas using a fail soft version of the alpha-beta algorithm.
- Original and fail hard version have a simpler logic in maintaining the search interval.
- The semantic of comparing an exact return value with an expected returning value is something that needs careful thinking.
- May want to pick a chance node with a lower expected value but having a hope of winning, not one with a slightly higher expected value but having no hope of winning when you are in disadvantageous.
- May want to pick a chance node with a lower expected value but having no chance of losing, not one with a slightly higher expected value but having a chance of losing when you are in advantage.
- Do not always pick one with a slightly larger expected value. Give the second one some chance to be selected.

Comments (2/2)

- Need to revise algorithms carefully when dealing with the original, fail hard or NegaScout version.
- What does it mean to combine bounds from a fail hard version?
- The lower and upper bounds of the expected score can be used to do alpha-beta pruning.
- Nicely fit into the alpha-beta search algorithm.
- Not only we can terminate the searching of choices earlier, but also we can terminate the searching of a particular choice earlier.
- Exist other improvements by searching choices of a chance node "in parallel".

Implementation hints (1/2)

- Fully unwrap a chance node takes more time than that of a non-chance node.
- If you set your depth limit to d for a game without chance nodes, then the depth limit should be lower for that game when chance node is introduced.
- Technically speaking, a chance node adds at least one level.
\triangleright Depending on the number of choices you have compared to the number of non-chance children, you may need to reduce the search depth limit by at least 3 or 5, and maybe 7.
\triangleright Estimate the complexity of a chance node by comparing the number of choices of a chance node and the number of non-chance-node moves.
- Without searching a chance node, it is easy to obtain not enough progress by just searching a long sequence of non-chance nodes.
- In CDC, when there are only a limited number of revealed pieces, there is not much you can do by just moving around.

Implementation hints (2/2)

- Practical considerations, for example in Chinese Dark Chess (CDC), are as follows.
- You normally do not need to consider the consequence of flipping more than 2 dark pieces.
\triangleright Set a maximum number of chance node searching in any DFS search path.
- It makes little sense to consider ending a search with exploring a chance node.
\triangleright When depth limit left is less than 3 or 4, stop exploring chance nodes.
- It also makes little sense to consider the consequence of exploring 2 chance nodes back to back.
\triangleright Make sure two chance nodes in a DFS search path is separated by at least 3 or 4 non-chance nodes.
- It is rarely the case that a chance node exploration is the first ply to consider in move ordering unless it is recommended by a prior knowledge or no other non-chance-node moves exists.

More ideas for improvements

- Notations
- Assume p is a chance node with the tree T.
$\triangleright T_{i}$ is the tree of p when for the i th choice.
$\triangleright T_{i, j}$ is the j th branch of T_{i}, namely, with the root $p_{i, j}$.
$\triangleright v_{i}$ is the evaluated value of T_{i}.
$\triangleright v_{i, j}$ is the evaluated value of $T_{i, j}$.
- An exact probe of a tree rooted at r is thus to fully search a subtree rooted at a child of r.
\triangleright An exact probe of T is thus to fully search T_{i} for some i and then obtain v_{i}.
\triangleright An exact probe of T_{i} is to fully search $T_{i, j}$ for some j and then obtain $v_{i, j}$.
- Can do better by not searching the DFS order.
- It is not necessary to search completely T_{1} and then start to look at the subtree of T_{2}, \ldots etc.
\triangleright The approach used by Star1.
- Probe T_{i} gives you some information about the possible range of v_{i}.

Illustration: Probe

Star2: MAX node, general case

- p is a MAX node. Thus each child p_{i} is a MIN node.
- We have probed the first child of T_{i} and obtained $v_{i, 1}$.
- Since p_{i} is a MIN node, $v_{i, 1}$ is an upper bound of v_{i} which is usually lower than the maximum possible value $v_{\max }$.
- The upper bound of v_{1} is thus lowered.
- It is possible because of this probe, an alpha cut can be performed.

Notations

- $v \in\left[m_{i}, M_{i}\right]$ which are the lower and upper bounds of v after the i probe.
- $v_{j} \in\left[L_{j}, U_{j}\right]$ which are the lower and upper bounds of v_{j}.
- Formulas for Star2
- $v_{j} \in\left[v_{\min }, v_{j, 1}\right]$ after T_{j} is probed.
- After the i th probe, $v \in\left[m_{0}, M_{i-1}+\operatorname{Pr}_{i} \times\left(v_{i, 1}-v_{\max }\right)\right]$.
$\triangleright m_{i}$ is unchanged, but $\left.M_{i}=M_{i-1}+P r_{i} \times\left(v_{i, 1}-v_{\max }\right)\right]$
$\triangleright A_{i}$ is updated according to 11, but B_{i} is unchanged.
- In comparison, for Star1

$$
\begin{aligned}
& \left.\triangleright m_{i}=m_{i-1}+P r_{i} \times\left(v_{i}-v_{\min }\right)\right] \\
& \left.\triangleright M_{i}=M_{i-1}+P r_{i} \times\left(v_{i}-v_{\max }\right)\right] \\
& \triangleright \text { Both } A_{i} \text { and } B_{i} \text { are updated. }
\end{aligned}
$$

Illustration: Star1 and Star2 probing

Star1: Probe the first child of T

Star2: Probe the first child of each Ti

Star2: MIN node, general case

- p is a MIN chance node. Thus each child p_{i} is a MAX node.
- We have probed the first child of T_{i} and obtained $v_{i, 1}$.
- Since p_{i} is a MAX node, $v_{i, 1}$ is a lower bound of v_{i} which is usually larger than the minimum possible value $v_{\text {min }}$.
- The lower bound of v_{i} is thus raised.
- It is possible because of this probe, a beta cut can be performed.

Notations

- $v \in\left[m_{i}, M_{i}\right]$ which are the lower and upper bounds of v after the i probe.
- $v_{j} \in\left[L_{j}, U_{j}\right]$ which are the lower and upper bounds of v_{j}.
- Formulas for Star2
- $v_{j} \in\left[v_{j, 1}, v_{\text {max }}\right]$ after T_{j} is probed.
- After the i th probe, $v \in\left[m_{i-1}+P r_{i} \times\left(v_{i, 1}-v_{\text {min }}\right), M_{0}\right.$.
$\left.\triangleright m_{i}=m_{i-1}+P r_{i} \times\left(v_{i, 1}-v_{\max }\right)\right]$, but M_{i} is unchanged.
$\triangleright A_{i}$ is unchanged, but B_{i} is updated according to 12 .
- In comparison, for Star1

$$
\begin{aligned}
& \left.\triangleright m_{i}=m_{i-1}+P r_{i} \times\left(v_{i}-v_{\min }\right)\right] \\
& \left.\triangleright M_{i}=M_{i-1}+P r_{i} \times\left(v_{i}-v_{\max }\right)\right] \\
& \triangleright \text { Both } A_{i} \text { and } B_{i} \text { are updated. }
\end{aligned}
$$

Algorithm: Chance_Search with probing (1/2)

- Algorithm $F 3.2^{\prime}$ (position p, value alpha, value beta, integer depth)
- // max node
- determine the successor positions p_{1}, \ldots, p_{b};
- if $b=0 / /$ a terminal node
or depth $=0 / /$ remaining depth to search
or time is running up // from timing control or some other constraints are met // add knowledge here
- then return $f(p)$; else begin

```
\(\triangleright m:=-\infty\);
\(\triangleright\) for \(i:=1\) to \(b\) do
\(\triangleright\) begin
\(\triangleright \quad\) if \(p_{i}\) is to play a chance node \(x\)
    then \(t:=\) Star \(2 \_F 3.2^{\prime}\left(p_{i}, x, \max \{\right.\) alpha, \(m\}\), beta, depth -1\()\);
\(\triangleright \quad\) else \(t:=G 3.2^{\prime}\left(p_{i}, \max \{\right.\) alpha,\(m\}\), beta, depth -1\()\);
\(\triangleright \quad\) if \(t>m\) then \(m:=t\);
\(\triangleright \quad\) if \(m \geq\) beta then return \((m) ; / /\) beta cut off
\(\triangleright\) end;
```

- end;
- return m;

Algorithm: Chance_Search with probing $(2 / 2)$

- Algorithm $G 3.2^{\prime}$ (position p, value alpha, value beta, integer depth)
- // min node
- determine the successor positions p_{1}, \ldots, p_{b};
- if $b=0 / /$ a terminal node
or depth $=0 / /$ remaining depth to search
or time is running up // from timing control or some other constraints are met // add knowledge here
- then return $f(p)$; else begin

```
\triangleright m:= \infty;
\triangleright ~ f o r ~ i : = 1 ~ t o ~ b ~ d o
\triangleright begin
\triangleright \quad ~ i f ~ p i ~ i s ~ t o ~ p l a y ~ a ~ c h a n c e ~ n o d e ~ x ~
    then t := Star2_G3.2'( }\mp@subsup{p}{i}{},x,\mathrm{ alpha,min{beta,m},depth - 1);
\triangleright ~ e l s e ~ t ~ : = F 3 . 2 ' ( ~ p i , ~ a l p h a , ~ m i n \{ b e t a , m \} , d e p t h ~ - ~ 1 ) ;
\triangleright if }t<m\mathrm{ then }m:=t\mathrm{ ;
\triangleright \quad \text { if } m \leq a l p h a ~ t h e n ~ r e t u r n ( m ) ; / / ~ a l p h a ~ c u t ~ o f f ~
\triangleright end;
```

- end;
- return m;

Star2 (1/2)

- Algorithm Star2_F3.2'(position p, node x, value alpha, value beta, integer depth)
- // a max chance node x with c choices k_{1}, \ldots, k_{c}
- // the i th choice happens with the probability Pr_{i}
- determine the possible values of the chance node x to be k_{1}, \ldots, k_{c}
- initialize A_{0}, B_{0}, m_{0} and M_{0} as in Star1_F3.1 ${ }^{\prime}$
- // Do an exact probing for each choice to find cut off's.
- for each choice i from 1 to c do
\triangleright Let p_{i} be the position obtained from p by making x the choice k_{i}.
$\triangleright / /$ do an exact probe on the first MIN child of p_{i}

$$
v:=F 3.2^{\prime}\left(p_{i, 1}, \max \left\{A_{i-1}, v_{\min }\right\}, \min \left\{B_{i-1}, v_{\max }\right\}, \text { depth }\right)
$$

\triangleright update A_{i} and M_{i} as in Star1_F3.1'
\triangleright If $M_{i} \leq$ alpha then return M_{i}; // alpha cut off

- // normal exhaustive search phase
// no cut off is found in the above, do the normal Star1 search.
// Chance node cut off I may happen.
// Chance node cut off II may happen.
- return vexp $=$ Star $1 _F 3.1(p, x$, alpha, beta, depth $)$;

Star2 (2/2)

- Algorithm Star2_G3.2'(position p, node x, value alpha, value beta, integer depth)
- // a min chance node x with c choices k_{1}, \ldots, k_{c}
- // the i th choice happens with the probability Pr_{i}
- determine the possible values of the chance node x to be k_{1}, \ldots, k_{c}
- initialize A_{0}, B_{0}, m_{0} and M_{0} as in Star1_G3.1'
- // Do an exact probing for each choice to find cut off's.
- for each choice i from 1 to c do
\triangleright Let p_{i} be the position obtained from p by making x the choice k_{i}.
$\triangleright / /$ do an exact probe on the first MAX child of p_{i}

$$
v:=G 3.2^{\prime}\left(p_{i, 1}, \max \left\{A_{i-1}, v_{\min }\right\}, \min \left\{B_{i-1}, v_{\max }\right\}, \text { depth }\right)
$$

\triangleright update B_{i} and m_{i} as in Star1_G3.1'
\triangleright If $m_{i} \geq$ beta then return m_{i}; // beta cut off

- // normal exhaustive search phase
// no cut off is found in the above, do the normal Star1 search.
// Chance node cut off I may happen.
// Chance node cut off II may happen.
- return vexp $=$ Star1_G3.1(p, x, alpha, beta, depth $)$;

Comments for Star2

- During the exact probe phase, some bounds are known which can be used to update the search window.
- If no cut off is found in the probing phase, then we need to do the exhaustive searching phase.
- The searched branches in the probing phase do not need to be researched again.

More ideas for probes

- Move ordering in exploring the choices is critical in performance.
- Picking which child to do the probe is also critical.
- Can do exact probes on h children, called probing factor $h>1$, of a choice instead of fixing the number of probings to be exactly one.
- May decide to probe different number of children for each choice.

Probing orders

- Two types of probing orders with a probing factor h
- Cyclic probing
\triangleright Probe one child of a choice at one time for all choices, and do this for h rounds.
\triangleright for $j=1$ to h do for $i=1$ to c do probe the j th child of the i th choice
- Sequential probing
\triangleright Probe h children of a choice at one time and then do it for each choice in sequence
\triangleright for $i=1$ to c do
probe h children of the i th choice
\triangleright Switch lines 6 and 7 in algorithms Star2.5_F3.2.5' and Star2.5_G3.2.5'.
- Special cases
\triangleright When $h=0$, Star $2==$ Star1.
\triangleright When $h=1$, cyclic probing $==$ sequential probing and also Star $2==$ Star2.5.

Illustration: Star2.5 probing

Star2.5: Probe the first h children of each Ti

Chance_Search with h cyclic probings (1/2)

- Algorithm F3.2.5'(position p, value alpha, value beta, integer depth, integer h)
- // max node
- determine the successor positions p_{1}, \ldots, p_{b};
- if $b=0 / /$ a terminal node
or depth $=0 / /$ remaining depth to search
or time is running up // from timing control or some other constraints are met // add knowledge here
- then return $f(p)$; else begin

```
\(\triangleright m:=-\infty\);
\(\triangleright\) for \(i:=1\) to \(b\) do
\(\triangleright\) begin
\(\triangleright \quad\) if \(p_{i}\) is to play a chance node \(x\)
    then \(t:=\) Star \(2 \_F 3.2 .5^{\prime}\left(p_{i}, x, \max \{\right.\) alpha, \(m\}\), beta, depth \(\left.-1, h\right)\);
\(\triangleright \quad\) else \(t:=G 3.2 .5^{\prime}\left(p_{i}, \max \{\right.\) alpha, m\}, beta, depth \(-1, \boldsymbol{h})\);
\(\triangleright \quad\) if \(t>m\) then \(m:=t\);
\(\triangleright \quad\) if \(m \geq\) beta then return \((m) ; / /\) beta cut off
\(\triangleright\) end;
```

- end;
- return m;

Chance_Search with h cyclic probings (2/2)

Algorithm G3.2.5'(position p, value alpha, value beta, integer depth, integer h)

- // min node
- determine the successor positions p_{1}, \ldots, p_{b};
- if $b=0 / /$ a terminal node
or depth $=0 / /$ remaining depth to search
or time is running up // from timing control or some other constraints are met // add knowledge here
- then return $f(p)$; else begin

```
\(\triangleright m:=\infty\);
\(\triangleright\) for \(i:=1\) to \(b\) do
\(\triangleright\) begin
\(\triangleright \quad\) if \(p_{i}\) is to play a chance node \(x\)
    then \(t:=\) Star \(2 \_G 3.2 .5^{\prime}\left(p_{i}, x\right.\), alpha,min \(\{\) beta, \(m\}\), depth \(\left.-1, h\right)\);
\(\triangleright \quad\) else \(t:=F 3.2 .5^{\prime}\left(p_{i}\right.\), alpha, min\{beta, m\}, depth \(\left.-1, h\right)\);
\(\triangleright \quad\) if \(t<m\) then \(m:=t\);
\(\triangleright \quad\) if \(m \leq\) alpha then return \((m) ; / /\) alpha cut off
\(\triangleright\) end;
```

- end;
- return m;

Star2.5: cyclic probing (1/2)

Algorithm Star2.5_F3.2.5'(position p, node x, value $a l p h a$, value beta, integer h) // h is the probing factor

- // a MAX chance node x with c choices k_{1}, \ldots, k_{c}
- // the i th choice happens with the probability Pr_{i}
- determine the possible values of the chance node x to be k_{1}, \ldots, k_{c}
- initialize A_{0}, B_{0}, m_{0} and M_{0} as in Star1_F3.1 ${ }^{\prime}$
- // Do a cyclic probing to decide whether some cut off can be performed.
- 6: for j from 1 to h do

7: for each choice i from 1 to c do
\triangleright Let p_{i} be the position obtained from p by making x the choice k_{i}.
$\triangleright / /$ do an exact probe on the j th MIN child of p_{i}. $v:=G 3.2^{\prime}\left(p_{i, j}, \max \left\{A_{i-1}, v_{\min }\right\}, \min \left\{B_{i-1}, v_{\max }\right\}\right.$, depth $)$
\triangleright update A_{i} and M_{i} as in Star1_F3.1'
\triangleright If $M_{i} \leq$ alpha then return M_{i}; // alpha cut off

- // normal exhaustive search phase
// no cut off is found in the above, do the normal Star1 search.
// Chance node cut off I may happen.
// Chance node cut off II may happen.
- return vexp $=$ Star1_F3.1(p, x, alpha, _eta, depth $)$;

Star2.5: cyclic probing (2/2)

Algorithm Star2.5_G3.2.5'(position p, node x, value alpha, value beta, integer h) // h is the probing factor

- // a MIN chance node x with c choices k_{1}, \ldots, k_{c}
- // the i th choice happens with the probability Pr_{i}
- determine the possible values of the chance node x to be k_{1}, \ldots, k_{c}
- initialize A_{0}, B_{0}, m_{0} and M_{0} as in Star1_G3.1 ${ }^{\prime}$
- // Do a cyclic probing to decide whether some cut off can be performed.
- 6: for j from 1 to h do

7: for each choice i from 1 to c do
\triangleright Let p_{i} be the position obtained from p by making x the choice k_{i}.
$\triangleright / /$ do an exact probe on the j th MAX child of p_{i}. $v:=F 3.2^{\prime}\left(p_{i, j}, \max \left\{A_{i-1}, v_{\min }\right\}, \min \left\{B_{i-1}, v_{\max }\right\}\right.$, depth $)$
\triangleright update B_{i} and m_{i} as in Star1_G3.1'
\triangleright If $m_{i} \geq$ beta then return m_{i}; // beta cut off
// normal exhaustive search phase
// no cut off is found in the above, do the normal Star1 search.
// Chance node cut off I that is similar to beta cut off may happen.
// Chance node cut off II that is similar to alpha cut off may happen.

- return vexp $=$ Star1_G3.1 (p, x, alpha, beta, depth $)$;

Comments

- Experimental results provided in [Ballard '83] on artificial game trees.
- Star1 may not be able to cut more than $\mathbf{2 0 \%}$ of the leaves.
- Star2.5 with $h=1$, i.e. Star2, cuts more than 59% of the nodes and is about twice better than Star1.
- Sequential probing is best when $h=3$ which cuts more than 65% of the nodes and roughly cut about the same nodes as Star2.5 using the same probing factor.
- Sequential probing gets worse when $h>4$. For example, it only cut 20\% of the leaves when $h=20$.
- Star2.5 continues to cut more nodes when h gets larger, though the gain is not that great. At $h=3$, about $\mathbf{7 0 \%}$ of the nodes are cut. At $h=20$, about 72% of the nodes are cut.
- Need to store the bounds and when the bounds produces cuts in the hash table for later to resume searching if needed later when the node is revisited.
- Better move ordering is also needed to get a fast cut off.

Approximated Probes

- We can also have heuristics for issuing approximated probes which returns approximated values.
- Strategy I: random probing of some promising choices
- Do a move ordering heuristic to pick one or some promising choices to expand first.
- These promising choices can improve the lower or upper bounds and can cause beta or alpha cut off.
- Strategy II: fast probing of all choices
- Possible implementations
\triangleright do a static evaluation on all choices
\triangleright do a shallow alpha-beta searching on each choice
\triangleright do a MCTS-like simulation on the choices
- Use these information to decide whether you have enough confidence to do a cut off.

Using MCTS with chance nodes $(1 / 2)$

- Assume a chance node x has c choices k_{1}, \ldots, k_{c} and the i th choice happens with the probability $P r_{i}$
- Selection
- If x is picked in the PV during selection, then a random coin tossing according to the probability distribution of the choices is needed to pick which choice to descent.
\triangleright It is better to even the number of simulations done on each choice.
\triangleright Use random sampling without replacement. When every one is picked once, then start another round of picking.
- Expansion
- If the last node in the PV is x, then expand all choices and simulate each choice some number of times.
\triangleright Watch out the discuss on maxing chance nodes in a searching path such as whether it is desirable to have 2 chance nodes in sequence ... etc.

Using MCTS with chance nodes (2/2)

- Simulation

- When a chance node is to be simulated, then be sure to randomly, according to the probability distribution, pick a choice.
\triangleright Use some techniques to make sure you are doing an effective sampling when the number of choices is huge
\triangleright Watch out what are "reasonable" in a simulated plyout on the mixing of chance nodes.
- Back propagation
- The UCB score of x is $\left.w_{i}+c \sqrt{(} \ln N / N_{i}\right)$ where w_{i} is the weighted winning rate, or score, of the children, N_{i} is the total number of simulations done on all choices. and N is the total number of simulations done on the parent of x.

Sparse sampling (1/2)

- Assume in searching the number of possible outcomes in a, maybe chance, node is too large. A technique called sparse sampling can be used [Kearn et al 2002].
- Can also be used in the expansion phase of MCTS.
- Ideas:
- The number of choices, $a=|\mathcal{A}|$, considered is enlarged as the number of visits to the node increases.
- Use the current choice set as an estimation of its goodness.
- Only consider k_{t} randomly selected choices, called \mathcal{S}_{t}, in the first t visits where $k_{t}=\left\lceil c * t^{\alpha}\right\rceil$, and c and α are constants.
- Algorithm $S S$ for sparse sampling
- $t:=1$
- Initial k_{t} to be a small constant, say 1 .
- Initial the candidate set \mathcal{S} to be an empty set.
- Randomly pick k_{t} children from \mathcal{A} into \mathcal{S}
- loop: Performs some t^{\prime} samplings from \mathcal{S}.
\triangleright Add randomly $k_{t+t^{\prime}}-k_{t}$ new children from \mathcal{A} into \mathcal{S}
$\triangleright t+=t^{\prime}$
- goto loop

Sparse sampling (2/2)

- The estimated value is accurate with a high probability [Kearns et al 2002] [Lanctot et al 2013]
- Theorem:

$$
\operatorname{Pr}(|\tilde{V}-V| \leq \lambda \cdot d) \geq 1-\left(2 \cdot k_{t} \cdot c\right)^{d} \exp \left\{\frac{-\lambda^{2} \cdot k_{t}}{2 \cdot v_{\max }^{2}}\right\}
$$

where
$\triangleright k_{t}$ is the number of choices considered with t samplings,
$\triangleright \tilde{V}$ is the estimation considering only k_{t} choices,
$\triangleright V$ is the value considering all choices,
$\triangleright c$ is the actual number of choices,
$\triangleright d$ is the depth simulated,
$\triangleright \lambda \in\left(0,2 \cdot v_{\max }\right]$ is a parameter chosen, and
$\triangleright v_{\max }$ is the maximum possible value.

- Note: the proof is done by making sampling with replacement, while the algorithm asks for sampling without replacement.

Comments

- Chance node introduces a large searching space that needs careful treatment.
- Need information in every possible branch to come out with a good strategy.
- Suppose that in each move,
- On
\triangleright a prior chance node: you have m possible moves followed by r different random outcomes.
\triangleright a posteriori chance node: there are r different random outcomes from the coin toss and m possible moves followed.
- Depending on r and m, good search algorithms can be designed.
\triangleright When $m \gg r$, you may plainly enumerate all r alternatives.
\triangleright When $m \ll r$, may need to devise good strategies.
- Instead of looking for something that is sure-not-to-loss, may want something that is have-a-chance-to-win.

References and further readings (1/2)

* Bruce W. Ballard The *-minimax search procedure for trees containing chance nodes Artificial Intelligence, Volume 21, Issue 3, September 1983, Pages 327-350
- Marc Lanctot, Abdallah Saffidine, Joel Veness, Chris Archibald, Mark H. M. Winands Monte-Carlo *-MiniMax Search Proceedings IJCAI, pages 580-586, 2013.
- Kearns, Michael; Mansour, Yishay; Ng, Andrew Y. A sparse sampling algorithm for near-optimal planning in large Markov decision processes. Machine Learning, 2002, 49.2-3: 193-208.
- Lorentz, R.J. (2012). An MCTS Program to Play EinStein Würfelt Nicht!. In: van den Herik, H.J., Plaat, A. (eds) Advances in Computer Games. ACG 2011. Lecture Notes in Computer Science, vol 7168. Springer, Berlin, Heidelberg.

References and further readings (2/2)

- Jouandeau, N., Cazenave, T. (2014). Monte-Carlo Tree Reductions for Stochastic Games. In: Cheng, SM., Day, MY. (eds) Technologies and Applications of Artificial Intelligence. TAAI 2014. Lecture Notes in Computer Science(), vol 8916. Springer, Cham.
- S. Yen, C. Chou, J. Chen, I. Wu and K. Kao, "Design and Implementation of Chinese Dark Chess Programs," in IEEE Transactions on Computational Intelligence and Al in Games, vol. 7, no. 1, pp. 66-74, 2014.

