
���

Monte-Carlo Game Tree Search:
Advanced Techniques

Tsan-sheng Hsu

�

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1



Abstract

Adding new ideas to the pure Monte-Carlo approach for
computer Go.

• Domain independent knowledge during playing
▷ Progressive pruning (PP)
▷ All moves as first (AMAF) and RAVE heuristic
▷ Node expansion policy
▷ Temperature
▷ Depth-i tree search

Conclusion:
• Augmented with domain-independent knowledge extracted using sta-
tistical tools, Monte-Carlo approach reaches a new high for computer
Go.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 2



Domain independent refinements

Main considerations
• Avoid doing un-needed computations
• Increase the speed of convergence
• Avoid early mis-judgement
• Avoid extreme cases

Refinements obtained from on-line domain independent knowl-
edge.

• Progressive pruning.
▷ Cut hopeless nodes early.

• All moves at first and RAVE.
▷ Increase the speed of convergence.

• Node expansion policy.
▷ Grow only nodes with a potential.

• Temperature.
▷ Introduce randomness.

• Depth-i enhancement.
▷ With regard the initial phase, the one on obtaining an initial game tree,

exhaustively enumerate all possibilities instead of using only the root.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 3



Warning

Many of the domain independent refinements are invented
earlier than the idea of UCT tree search.
For a better flow of introduction, UCT is introduced earlier.
These domain independent techniques can be used with or
without UCT.
These techniques speed up the convergence rate, but cannot
really replace the importance of getting more simulations.

• If the amount of simulations performed is well enough, then you can
most likely find a good answer without using those techniques. In
the worst case, you will be hurt by spending more time to do these
additional techniques.

• In the extreme case, if you can do well enough simulations, then no
UCB formula is needed at all.

Lesson: Do enough, but not over, simulations for the problem
instance under the current resource constraint.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 4



Progressive pruning (1/5)

Each position has a mean value µ and a standard deviation σ
after performing some simulations.

• Left expected outcome µl = µ− rd ∗ σ.
• Right expected outcome µr = µ+ rd ∗ σ.
• The value rd is a constant fixed up empirically.

Let P1 and P2 be two child positions of a position P .
P1 is statistically inferior to P2 if P1.µr < P2.µl, P1.σ < σe and
P2.σ < σe.

• The value σe is called standard deviation for equality.
• Its value is determined empirically.

P1 and P2 are statistically equal if P1.σ < σe, P2.σ < σe, which
means no one is statistically inferior to the other.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 5



Progressive pruning (2/5)

After a minimal number of random games, say 100 per move,
a position is pruned as soon as it is statistically inferior to
another.

• For a pruned position:
▷ Not considered as a legal move.
▷ No need to maintain its UCB information.

• This process is stopped when
▷ this is the only one move left for its parent, or
▷ the moves left are statistically equal, or
▷ a maximal threshold, say 10,000 multiplied by the number of legal

moves, of iterations is reached.

Two different pruning rules.
• Hard: a pruned move cannot be a candidate later on.
• Soft: a move pruned at a given time can be a candidate later on if its
value is no longer statistically inferior to a currently active move.

▷ The score of an active move may be decreased when more simulations
are performed.

▷ Periodically check whether to reactive it.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 6



Progressive pruning (3/5)

Remarks:
• Assume each trial is an independent Bernoulli trial and hence the
distribution is normal.

▷ This needs to be checked in your application.

• We only compare nodes that are of the same parent.
• We usually compare their raw scores not their UCB values.

▷ UCB and PP are similar in ideas, but using different pre-assumptions.

• If you compare UCB scores, then the mean and standard deviation of
a move are those calculated only from its un-pruned children.

Experimental setup:
• 9 by 9 Go.
• Difference of stones plus eyes after Komi is applied.
• The experiment is terminated if any one of the followings is true.

▷ There is only move left for the root.
▷ All moves left for the root are statistically equal.
▷ A given number of simulations are performed.

• The baselines of the experiments are those with scores 0.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 7



Progressive pruning (4/5)

Selection of rd.
• The greater rd is,

▷ the less pruned the moves are;
▷ the better the algorithm performs;
▷ the slower the play is.

• Results [Bouzy et al’04]:
rd 1 2 4 8

score 0 + 5.6 + 7.3 +9.0
time 10’ 35’ 90’ 150’

Selection of σe.
• The smaller σe is,

▷ the fewer equalities there are;
▷ the better the algorithm performs;
▷ the slower the play is.

• Results [Bouzy et al’04]:
σe 0.2 0.5 1

score 0 -0.7 -6.7
time 10’ 9’ 7’

Conclusions:
• rd plays an important role in the move pruning process.
• σe is less sensitive.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 8



Progressive pruning (5/5)

Comments:
• It makes little sense to compare nodes of different depths or belonging
to different players.

• Another trick that may need consideration is progressive widening or
progressive un-pruning.

▷ A node is effective if enough simulations are done on it and its values
are good.

• Note that we can set a threshold on whether to expand or grow the
end of the selected PVUCB path.

▷ This threshold can be enough simulations are done and/or the score is
good enough.

▷ Use this threshold to control the way the underline tree is expanded.
▷ If this threshold is high, then it will not expand any node and looks

like the original version.
▷ If this threshold is low, then we may make not enough simulations for

each node in the underline tree.

• If you want to do the above, you need to use a hash table to store the
number of simulations done a node and its win rate.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 9



Comments in using PP

Important remarks:
• Ideas for using the confidence interval on PP and the ideas for using
upper and lower confidence bounds (LCB and UCB) are similar.

• Statistical issues.
▷ If the result of a simulation can only be 0 or 1, then the mean of a

sampling uniquely determines its standard deviation.
▷ If the result of a simulation can have only very few variations, e.g., -1,

0, 1, then there are only a few possible standard deviations once the
mean of a sampling is given.

• The range of possible scores is important in using PP.
▷ A very narrow range makes the cutting not very flexible.
▷ A very wide range makes the cutting too random.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 10



All-moves-as-first heuristic (AMAF)

How to perform statistics for a completed playout?
• Basic idea: its score is used for the first move of the game only.
• All-moves-as-first AMAF: its score is used for all moves played in the
game as if they were the first to be played [Bruegmann’93].

AMAF updating rules:
• If a playout S, starting from the position following PVUCB towards
the best leaf and then appending a simulation run, passes through a
position V from W with a sibling position U , then

▷ the counters at the position V leads to is updated;
▷ the counters at the node U leads to is also updated if S later contains

a ply from W to U .

• Note, we apply this update rule for all nodes in S regardless nodes
made by the player that is different from the root player.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 11



Illustration: AMAF

• Assume a playout P is simulated
from the root with the sequence of
plys starting from the position L be-
ing v, y, u, w, · · · .

• The winning rates of nodes along
this path are updated.

• The winning rates of node L′, a child
of L, and node L′′, a descendent of
L, are also updated.

▷ In the added playout P ′ at L′, ex-
change u and v in the playout.

▷ In the added playout P ′′ at L′′,
exchange w and y in the playout.

• In this example, 3 playouts are
recorded for the position L though
only one is performed.

• Note: Need to also update the ex-
ploration scores of affected nodes.

�

u

w

w

y

L

v u

PV

L"

playout P

added playout P’

added playout P’’

L’

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 12



AMAF: Implementation

When a playout, say P1, P2, . . . , Ph is simulated where P1 is
the root position of the selected PVUCB and Ph is the end
position of the playout, then we perform the following updating
operations bottom up:

• count := 1
• for i := h− 1 downto 1 do

▷ for each child position W of Pi that is not equal to Pi+1 do
▷ if the ply (Pi → W ) is played in Pi, Pi+1, . . . , Ph then
▷ {
▷ update the score and counters of W ;
▷ count + = 1;
▷ }
▷ update the score and counters of Pi as though count playouts are per-

formed

Some forms of hashing is needed to check the if condition
efficiently.
It is better to use a good data structure to record the children
of a position when it is first generated to avoid regenerating.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 13



AMAF: Pro’s and Con’s

Advantage:
• All-moves-as-first helps speeding up the convergence of the simulations.

Drawbacks:
• The evaluation of a move from a random game in which it was played
at a late stage is less reliable than when it is played at an early stage.

• Recapturing.
▷ Order of moves is important for certain games.
▷ Modification: if several moves are played at the same place because of

capturing, modify only the statistics for the player who played first.

• Some move is good only for one player.
▷ It does not evaluate the value of an intersection for the player to move,

but rather the difference between the values of the intersections when
it is played by one player or the other.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 14



AMAF: results

Results [Bouzy et al’04]:
• Relative scores between different heuristics.

AMAF basic idea PP
0 +13.7 + 4.0

▷ Basic idea is very slow: 2 hours vs 5 minutes.

• Number of random games N : relative scores with different values of
N using AMAF.

N 1000 10000 100000
score -12.7 0 +3.2

▷ Using the value of 10000 is better.

Comments:
• The statistical natural is something very similar to the history heuristic
as used in alpha-beta based searching.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 15



AMAF refinements

Definitions:
• Let v1(P ) be the score of a position P without using AMAF.
• Let v2(P ) be the score of a position P with AMAF.

▷ In calculating v2(P ) we need to take into consideration all playouts,
actual and added ones.

▷ It is odd to use only added playouts to compute.

Remark: v2(P ) uses both information of actual playouts and the
added playouts from AMAF, while v1(P ) uses only information
from actual playouts only.
Observations:

• v1(P ) is a good indicator for the goodness of P when sufficient number
of trials are performed starting with P .

• v2(P ) is a good guess for the goodness of P for the true score of the
position P when

▷ it is approaching the end of a game;
▷ too few trials are performed starting with P such as when the node for

P is first expanded.

Q: How to make the best use of v1(P ) and v2(P ) together?

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 16



RAVE

Definitions:
• Let v1(P ) be the score of a position P without using AMAF.
• Let v2(P ) be the score of a position P with AMAF.

Rapid Action Value Estimate (RAVE) [Silver’09]
• Let the revised score v3(P ) = α · v1(P ) + (1− α) · v2(P ) with a properly
chosen value of α.

▷ Other formulas for mixing the two scores exist.

• Can dynamically change α as the game goes.

▷ For example: α = min{1, NP
10000}, where NP is the number of playouts

done on P .
▷ This means when NP reaches 10000, no AMAF is used.

v3(P ) = α · v1(P ) + (1− α) · v2(P )
• When α = 0, it is pure AMAF.
• When α = 1, it uses no AMAF.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 17



Other formulations of RAVE (1/2)

Note: v3(P ) = α · v1(P ) + (1− α) · v2(P )
Example: Silver in his 2009 Ph.D. thesis [Silver’09] originally
set the parameters as follows:

• Let ÑP = NP +N ′
P where NP is the number of actual simulations done

at the position P and N ′
P is the number of extra added simulations

generated from AMAF at P .
▷ ÑP is the total number of simulations (actual and added) used to gen-

erate the AMAF score v2(P ).
▷ NP is the total number of actual simulations used to generate v1(P ).

• 1 − α = β = ÑP

NP+ÑP+4b2NP ÑP
where b is a constant to be decided

empirically.
• Namely, v3(P ) = (1− β) · v1(P ) + β · v2(P )

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 18



Other formulations of RAVE (2/2)

Note: v3(P ) = (1− β) · v1(P ) + β · v2(P )
Discussion:

• β = 1
NP
ÑP

+1+4b2NP

• We know ÑP ≥ NP , hence
1

2+4b2NP
≤ β ≤ 1

1+4b2NP
.

• When NP >> 1/(4b2) is large, then β → 0 which means uses mostly
information in v1(P ).

▷ When NP is small, β is larger.

• For the same ÑP , if NP is smaller, then β is larger, which means using
more information in v2(P ).

Comments:
• Silver is the first one to propose RAVE, but we choose to introduce a
simpler formulation earlier for ease of description.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 19



Node expansion

May decide to expand potentially good nodes judging from the
current statistics [Yajima et al’11].

• All ends: expand all possible children of a newly added node.
• Visit count: delay the expansion of a node until it is visited a certain
number of times.

▷ When simulations are done to a leaf node v, keep counts of simulations
done to each child.

▷ When v is to be expanded in the future, only expand the children
having been simulated a certain number of times before.

• Transition probability: delay the expansion of a node until the confi-
dence of the current “score” is high enough comparing to that of its
siblings.

▷ Use the current mean, variance and parent’s values to derive a good
estimation using statistical methods.

Expansion policy with some transition probability is much better
than the “all ends” or pure “visit count” policy.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 20



Temperature

Idea: add a degree of randomness, called temperature, in
accessing the score.

• Constant temperature
• Temperature from high to low.

Do not always pick one with the best score . Give each one a
chance to be picked according to its score.

• The probability of playing the ith move is Pi =
scorei∑
∀q scorei

.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 21



Constant temperature (1/2)

Constant temperature: consider all the legal moves and play
the ith move with a probability proportional to e(K·vi), where

• vi is the current value of the position obtained by taking move i;
▷ It is usually the case vi ≥ 0.

▷ e(K·vi) ≥ 1.

• K ≥ 0 is the inverse of the temperature T used in a simulated annealing
setting.

▷ Add extra randomness by setting a constant K = 1/T .

▷ The probability of playing the ith move is Pi(K) = eK·vi∑
∀q eK·vq .

▷ When K → 0, which means temperature T → ∞, and the selection is
uniformly random.

▷ If vi > vj and K1 > K2, then Pi(K1) − Pj(K1) > Pi(K2) − Pj(K2).
→ When K becomes larger,
the value of vi contributes more in the calculation of Pi(K).

▷ When K is very large, which means temperature is very low, it looks
like some form of the “greedy”, or best first, approach.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 22



Constant temperature (2/2)

Results for using a constant temperature [Bouzy et al’04]:

K 0 2 5 10 20
score -8.1 0 +2.6 -4.9 -11.3

• When temperature is very high (K = 0) when means pure random,
then it looks bad.

• When there is no added randomness (K > 5), it also looks bad.
• Tradeoff between the current score and randomness.

▷ Currently, a greedy approach is worse than a random approach!!!

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 23



Temperature from high to low

Simulated annealing (temperature decreasing, or K increasing):

Pi(Kt) =
eKt·vi∑
∀q e

Kt·vq where Kt is the value of K at the tth moment.

• Change the temperature, namely 1/K, over the time.
▷ In the beginning, allow more randomness, and decrease the amount of

randomness over the time.

• Increasing K from 0 to 5 gradually over the time does not enhance the
performance [Bouzy et al’04].

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 24



Depth-i enhancement

Algorithm:
• Enumerate all possible positions from the root after i moves are made.
• For each position, use Monte-Carlo simulation to get an average score.
• Use a minimax formula to compute the best move from the average
scores on the leaves.

Result [Bouzy et al’04]: depth-2 is worse than depth-1 due to
oscillating behaviors normally observed in iterative deepening.

• Depth-1 overestimates the root’s value.
• Depth-2 underestimates the root’s value.
• It is computational difficult for computer Go to get depth-i results
when i > 2.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 25



Putting everything together

Two versions [Bouzy et al’04]:
• Depth = 1, rd = 1, σe = 0.2 with PP, and basic idea.
• K = 2, no PP, and all-moves-as-first.

Still worse than GnuGo in 2004, a Go program with lots of
domain knowledge, by more than 30 points.
Note: as we said before, most of the techniques are invented
before UCT.

• The idea of UCT is not part of “everything” used in his experiments.
• This somehow shows that the idea of UCT may be critical among all
techniques.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 26



Conclusions

Add tactical search: for example, ladders.
• A ladder is a kind of string whose live-or-death is certain many plys
ahead.

Add more domain knowledge besides no filling of eyes: for
example, in Go, simulate extending plys first.

• An extending ply is one which increases the liberty of some strings that
are in danger.

As the computer goes faster, more domain knowledge can be
added.
Exploring the locality of Go using statistical methods.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 27



Ladder

White to move next at 1, then black at 2, then white at 3, and
then black at 4, ...

�������������������
�������������������
����
�
��������������
���
�
�
�
�������������
����
�
�
�
������������
�����
�
�
�
�����������
������
�
 6 7����������
������ 5 8�����������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
������������������	

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 28



Ladder: comments

Ladder in Go is a perfect example to illustrate the idea of
getting the “right” sampling is important.

• In the previous shown Ladder example, it is very bad for BLACK.
• However, the WHITE only has one correct response out of a few
hundreds of bad ones.

• If you do uniform sampling, then the odds of finding the right one is
remote.

The “true” meaning of doing a “fair” random sampling is thus
• when the position is good, do sampling so that the final outcome of a
playout is more likely to be good;

• when the position is bad, do sampling so that the final outcome of a
playout is more likely to be bad.

“Fair” sampling will be a very hard, though may not be
impossible, task for a program that has no domain knowledge.

• “Fairness” has something to do with your opponent.
▷ If your opponent is weak, then thinking too much may not be optimal.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 29



Comments

We only describe some specific implementations of some general
Monte-Carlo techniques.

• Other implementations exist for say AMAF and others.
• Other techniques such as early playout termination, quality based
rewards [Hsueh et al ’16] are also available.

Depending on the amount of resources you have, you can
• decide the frequency to update the node information;
• decide the frequency to re-pick PVUCB;
• decide the frequency to prune/un-prune nodes.

Most of the methods introduced have a statistical flavor.
• First the heuristic is “discovered” based on some clever intuitions or
observations.

• Then people try to fine tune the parameters used in the heuristic
manually.

• Finally statistical tools are found or established to formally settle it.

Over-use too many heuristics may cause bad side effects.
• A warning for using the cock tail styled method.

▷ Do not know where the real contribution comes from.
▷ Using too much resource.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 30



References and further readings (1/2)

* Sylvain Gelly and David Silver. Combining online and offline
knowledge in UCT. In Proceedings of the 24th international
conference on Machine learning, ICML ’07, pages 273–280,
New York, NY, USA, 2007. ACM.

* David Silver. Reinforcement Learning and Simulation-Based
Search in Computer Go. PhD thesis, University of Alberta,
2009.

* B. Bouzy and B. Helmstetter. Monte-Carlo Go develop-
ments. In H. Jaap van den Herik, Hiroyuki Iida, and
Ernst A. Heinz, editors, Advances in Computer Games,
Many Games, Many Challenges, 10th International Con-
ference, ACG 2003, Graz, Austria, November 24-27, 2003,
Revised Papers, volume 263 of IFIP, pages 159–174. Kluwer,
2004.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 31



References and further readings (2/2)

Coulom, R. (2007). Computing Elo ratings of move patterns in
the game of go. In Computer games workshop.
Takayuki Yajima, Tsuyoshi Hashimoto, Toshiki Matsui, Junichi
Hashimoto, and Kristian Spoerer. Node-expansion operators
for the UCT algorithm. In H. Jaap van den Herik, H. Iida,
and A. Plaat, editors, Lecture Notes in Computer Science
6515: Proceedings of the 7th International Conference on
Computers and Games, pages 116–123. Springer-Verlag,
New York, NY, 2011.
Chu-Hsuan Hsueh, I-Chen Wu, Wen-Jie Tseng, Shi-Jim Yen,
Jr-Chang Chen, An analysis for strength improvement of an
MCTS-based program playing Chinese dark chess, Theoretical
Computer Science, Volume 644, 2016, Pages 63-75, ISSN
0304-3975.
Couëtoux A., Hoock JB., Sokolovska N., Teytaud O., Bonnard
N. (2011) Continuous Upper Confidence Trees. In: Coello
C.A.C. (eds) Learning and Intelligent Optimization. LION 2011.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 32



Lecture Notes in Computer Science, vol 6683. Springer, Berlin,
Heidelberg.
Chaslot, Guillaume, Winands, Mark, Herik, H., Uiterwijk, Jos,
Bouzy, Bruno. (2008). Progressive Strategies for Monte-Carlo
Tree Search. New Mathematics and Natural Computation. 04.
343-357. 10.1142/S1793005708001094.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20231109, Tsan-sheng Hsu © 33


