# Theory of Computer Games： Selected Advanced Topics 

Tsan－sheng Hsu

徐讚昇

tshsu＠iis．sinica．edu．tw
http：／／www．iis．sinica．edu．tw／～tshsu

## Abstract

- Some advanced research issues.
- The graph history interaction (GHI) problem.
- Opponent models.
- Multi-player game tree search.
- Bit board speedup.
- Proof-number search.
- More research topics.
- The influence of rules on games.
$\triangleright$ Allowing long cycles in Go.
$\triangleright$ The scoring of a suicide ply in chess.
- Why a position is difficult to human?
- Unique features in games.


## Graph history interaction problem

- The graph history interaction (GHI) problem [Campbell 1985]:
- In a game graph, a position can be visited by more than one paths from a starting position.
- The value of the position depends on the path visiting it.
$\triangleright$ It can be win, loss or draw for Chinese chess.
$\triangleright$ It can only be draw for Western chess and Chinese dark chess.
$\triangleright$ It can only be loss for Go.
- In the transposition table, you record the value of a position, but not the path leading to it.
- Values computed from rules on repetition cannot be used later on.
- It takes a huge amount of storage to store all the paths visiting it.
- This is a very difficult problem to be solved in real time [Wu et al '05] [Kishimoto and Müller '04].


## GHI: when loop draws



- Assume if the game falls into a loop, then it is a draw.


## GHI: when loop draws



- Assume if the game falls into a loop, then it is a draw.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is draw by rules of repetition. $\triangleright$ Memorized $J$ as a draw position.


## GHI: when loop draws



- Assume if the game falls into a loop, then it is a draw.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is draw by rules of repetition. $\triangleright$ Memorized $J$ as a draw position.
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence $D$ is win.


## GHI: when loop draws



- Assume if the game falls into a loop, then it is a draw.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is draw by rules of repetition. $\triangleright$ Memorized $J$ as a draw position.
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence $D$ is win.
- $A \rightarrow B \rightarrow E$ is a loss. Hence $B$ is loss.


## GHI: when loop draws



- Assume if the game falls into a loop, then it is a draw.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is draw by rules of repetition. $\triangleright$ Memorized $J$ as a draw position.
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence $D$ is win.
- $A \rightarrow B \rightarrow E$ is a loss. Hence $B$ is loss.
- $A \rightarrow C \rightarrow F \rightarrow J$ is draw because $J$ is recorded as draw.
- $A$ is draw because one child is loss and the other chile is draw.


## GHI: when loop draws



- Assume if the game falls into a loop, then it is a draw.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is draw by rules of repetition. $\triangleright$ Memorized $J$ as a draw position.
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence $D$ is win.
- $A \rightarrow B \rightarrow E$ is a loss. Hence $B$ is loss.
- $A \rightarrow C \rightarrow F \rightarrow J$ is draw because $J$ is recorded as draw.
- $A$ is draw because one child is loss and the other chile is draw.
- However, $A \rightarrow C \rightarrow F \rightarrow J \rightarrow D \rightarrow H$ is a win (for the root).


## GHI: when loop wins



- Assume the one causes loops wins the game.


## GHI: when loop wins



- Assume the one causes loops wins the game.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is loss because of rules of repetition. $\triangleright$ Memorized $J$ as a loss position (for the root).


## GHI: when loop wins



- Assume the one causes loops wins the game.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is loss because of rules of repetition. $\triangleright$ Memorized $J$ as a loss position (for the root).
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence $D$ is win.


## GHI: when loop wins



- Assume the one causes loops wins the game.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is loss because of rules of repetition. $\triangleright$ Memorized $J$ as a loss position (for the root).
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence $D$ is win.
- $A \rightarrow B \rightarrow E$ is a loss. Hence $B$ is loss.


## GHI: when loop wins



- Assume the one causes loops wins the game.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is loss because of rules of repetition. $\triangleright$ Memorized $J$ as a loss position (for the root).
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence $D$ is win.
- $A \rightarrow B \rightarrow E$ is a loss. Hence $B$ is loss.
- $A \rightarrow C \rightarrow F \rightarrow J$ is loss because $J$ is recorded as loss.
- $A$ is loss because both branches lead to loss.


## GHI: when loop wins



- Assume the one causes loops wins the game.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is loss because of rules of repetition.
$\triangleright$ Memorized $J$ as a loss position (for the root).
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence $D$ is win.
- $A \rightarrow B \rightarrow E$ is a loss. Hence $B$ is loss.
- $A \rightarrow C \rightarrow F \rightarrow J$ is loss because $J$ is recorded as loss.
- $A$ is loss because both branches lead to loss.
- However, $A \rightarrow C \rightarrow F \rightarrow J \rightarrow D \rightarrow H$ is a win (for the root).


## Comments

- Using DFS to search the above game graph from left first or from right first produces two different results.
- Position $A$ is actually a win position.
- Problem: memorize $J$ being draw is only valid when the path leading to it causes a loop.
- Storing the path leading to a position in a transposition table requires too much memory.
- Maybe we can store some forms of hash code to verify it.
- Finding a better data structure for solving this problem remains to be a challenging research issue.
- Remark: It real settings, it is usually the case that the rule of loops is enforced after 3 repetitions. However, GHI problem holds for any times of repetition.


## Opponent models

- In a normal alpha-beta search, it is assumed that you and the opponent use the same strategy.
- What is good to you is bad to the opponent and vice versa!
- Hence we can reduce a minimax search to a NegaMax search.
- This is normally true when the game ends, but may not be true in the middle of the game.
- What will happen when there are two strategies or evaluation functions $f_{1}$ and $f_{2}$ so that
- for some positions $p, f_{1}(p)$ is better than $f_{2}(p)$
$\triangleright$ "better" means closer to the real value $f(p)$
- for some positions $q, f_{2}(q)$ is better than $f_{1}(q)$
- If you are using $f_{1}$ and you know your opponent is using $f_{2}$, what can be done to take advantage of this information.
- This is called OM (opponent model) search [Carmel and Markovitch 1996].
$\triangleright$ In a MAX node, use $f_{1}$.
$\triangleright$ In a MIN node, use $f_{2}$.


## Other usage of the opponent model

- Depend on strength of your opponent, decide whether to force an easy draw or not.
- This is called the contempt factor.
- Example in CDC:
- It is easy to chase the king of your opponent using your pawn.
- Drawing a weaker opponent is a waste.
- Drawing a stronger opponent is a gain.
- It is feasible to use a learning model to "guess" the level of your opponent as the game goes and then adapt to its model in CDC [Chang et al 2021].


## Opponent models - comments

- Comments:
- Need to know your opponent's model precisely or to have some knowledge about your opponent.
- How to learn the opponent model on-line or off-line?
- When there are more than 2 possible opponent strategies, use a probability model (PrOM search) to form a strategy.
- Remark: A common misconception is that if your opponent uses a worse strategy $f_{3}$ than the one, namely $f_{2}$, used in your model, then he may get advantage.
- This is impossible if $f_{2}$ is truly better than $f_{3}$.
- If $f_{1}$ can beat $f_{2}$, then $f_{1}$ can sure beat $f_{3}$.


## Multi-player game tree search

- Games with more than 2 players.
- Mahjong: 4 players
- Contract bridge or bridge: 4 players
- Monopoly: 2 to many players
- Scrabble: 2 to 4 players
- Risk: 2 to 6 players
- Assume we have $n$ players, $y_{1}, \ldots, y_{n}$ in a game.
- We have $n$ evaluating functions, score $_{i}$, one for each player.
- Given a position $p$ with the children $p_{1}, \ldots, p_{m}$, let $\operatorname{score}_{i}(p)$ be the score of $y_{i}$ for $p$.
$\triangleright$ If $p$ is a terminal position for $y_{i}$, then $m=0$ and $\operatorname{score}_{i}(p)$ is the "true" score of $y_{i}$ in $p$.
$\triangleright$ Otherwise, $\operatorname{score}_{i}(p)=\max _{j=1}^{m} \operatorname{score}_{i}\left(p_{j}\right)$.
- The above algorithm is called MAX $^{n}$ where stands for during each turn, each player maximizes his own score without considering scores of others.


## MAX $^{n}$ : algorithm

- next_player $(i d x)$ : the player who is next to player $i d x$.
- Brute force algorithm for multi-player games.
- Algorithm MAXN(position $p$, player $i d x$ )
- output: best which is an array with best $[i]$ being the best value for player $i$ so far.
- If $p$ is terminal, then return best $[i]=\operatorname{score}_{i}(p), \forall i$;
- initialize best to be best $[i]=-\infty, \forall i$;
- Let $p_{i}$ be the $i$ th child of $p$;
- for $i=1$ to last child of $p$ do
$\triangleright$ current $=\operatorname{MAXN}\left(p_{i}\right.$, next_player $\left.(i d x)\right)$;
$\triangleright$ if current $[i d x]>$ best $[i d x]$, best $=$ current; // maximized player idx
- return best;


## MAX $^{n}$ : example $(n=3)$



## Opportunities for pruning (1/2)

- Let $p$ be a position in a multi-player game.
- Alpha-beta pruning is a special case for $n=2$ and cannot be generalized for $n>2$.
- Property used in alpha-beta pruning:
$\triangleright$ What is good for $y_{1}$ is definitely bad for $y_{2}$ by using the zero sum principle which is for a position $p, \operatorname{score}_{1}(p)+\operatorname{score}_{2}(p)=0$.
- The above may not be true for $n>2$.
$\triangleright$ When $n=3$, what is good for $y_{1}$ may be also good for $y_{2}$, but very bad for $y_{3}$.


## Opportunities for pruning (2/2)

- For a position $p$, if there is no constraints on the $n$ scores of $p$, then it is impossible to have any cut offs for MAX ${ }^{n}$.
- In applications we often have the following properties.
$\triangleright$ Zero sum.
$\triangleright$ The sum of all $n$ scores for $p$ has an upper bound $U$.
$\triangleright$ The score of $p$ for any player has a lower bound $L$.
- Examples:
$\triangleright$ Go for $n$ players: each player owns pieces of a distinct color. $\rightarrow$ the sum of all points $\leq$ the board size, and the score cannot be negative.
$\triangleright$ Othello for $n$ players: each player owns pieces of a distinct color and flips all pieces of different colors.
$\rightarrow$ the sum of all points $\leq$ the plys played so far and the score cannot be negative.


## Pruning

- Recall: a position $p$ with the children $p_{1}, \ldots, p_{m}$ and the parent $p^{\prime}$, and $\operatorname{score}_{i}(p)$ is the score of player $i$ for $p$.
- Direct pruning:
- During the turn of the $i$ th player, if $\operatorname{score}_{i}\left(p_{j}\right)=U$, then no more search is needed.
- Shallow pruning:
- Without loss of generality, assume $L=0$.
- During the turn of the $i$ th player, if $\operatorname{score}_{i}\left(p_{j}\right)=v$ so far, then score $_{i}(p) \geq v$ since each player is a max player.
- This implies $\operatorname{score}_{j}(p) \leq U-v$ if $j \neq i$.
- Let $i^{\prime}$ be the index of the immediate previous player.
- We know score $_{i^{\prime}}\left(p^{\prime}\right) \geq h$ if he has done some searching.
- If $h \geq U-v$, then we have a cut off.


## MAX $^{n}$ : ideas for cutoff



## MAX $^{n}$ : cutoff example $(n=3, U=9)$



## Remarks about pruning in $\mathrm{MAX}^{n}$

- Direct pruning is a degenerated case of the shallow pruning by the following settings.
- If $v=U$, then the scores of all other players are all zero.
- Using the lower bound $L$, you can get a cut off.
- Compared to two-player alpha-beta pruning, both direct and shallow pruning can be used in $n \geq 2$.
- Deep pruning does not work when $n>2$.
- Assume you are searching the node $w, v$ is your parent and $u$ is an ancestor that is not $v$.
- Assume node $x$ is the turn of player player $(x)$.
- Any value of $\operatorname{score} e_{\operatorname{player}(u)}(u)$ cannot produce any cutoff on searching the tree $T_{w}$ because player $(v)$ makes the decision first in propagating the values up.
- Any value of $\operatorname{score}_{\operatorname{player}(u)}(w)$ can be propagated up and be used by $u$.


## Algorithm for shallow cut off

- Functions and data structures
- next_player $(i d x)$ : the player who is next to player $i d x$.
- $\operatorname{score}_{i}(p)$ : the score of player $i$ for the position $p$.
- $U$ : the upper bound of sum of all scores among all players on a position.
- Assume $L$ is 0 .
- best and current are both arrays of size $n$.
- Algorithm shallow(position $p$, player $i d x$, value bound)
- return value: best which is an array with best $[i]$ being the best value for player $i$ so far.
- If $p$ is terminal, then return $\operatorname{best}^{2}[i]=\operatorname{score}_{i}(p), \forall i$;
- Let $p_{i}$ be the $i$ th child of $p$;
- best $=\operatorname{shallow}\left(p_{1}, \operatorname{next}(i d x), U\right)$; // recursive call on the first child
- for $i=2$ to last child of $p$ do
4.1: if best $[i d x]=U$, then return best // immediate cut off
4.2: if best $[i d x] \geq$ bound, then return best // shallow cut off
4.3: current $=\operatorname{shallow}\left(p_{i}\right.$, next_player $(i d x), U-$ best $\left.[i d x]\right)$;
4.4: if current $[i d x]>$ best $[i d x]$, best $=$ current; // maximize player idx
- return best;


## Comments

- A generalization of alpha-beta cutoff on adjacent depths.
- Does not work on deep alpha-beta cutoff [Korf 1991].
- In the best case, the effective branching factor is $\frac{1+\sqrt{4 b-3}}{2}$ where $b$ is the average branching factor.
- Comparing to alpha-beta cut off, the best effective branching factor is $\sqrt{b}$.
- In the average case, the effective branching factor is approaching $O(b)$.
- Comparing to alpha-beta cut off, the the average effective branching factor is $b^{0.75}$ [Fuller et al 1975].
- This implies most of the cut off come from deep pruning in the average case.
- More research are needed to get more cutoff by observing additional constraints on the values from the application domain.
- MCTS can be easily extended to work on any number of players, but need to work on better properties of convergence.


## Hardware Speedup

- Using hardware to speed up searching is not new.
- Parallel computing.
$\triangleright$ The Northwestern University CHESS program series on the 1970's makes full usage of hardware advantages from supercomputers [Atkin \& Slate 1977].
- Special hardware acceleration:
$\triangleright$ Belle: a chess machine with special micro instructions for move generation, alpha-beta pruning and transposition table operations [Condon \& Thompson 1982].
$\triangleright$ Deep Blue: custom VLSI FPGA chips for operating chess playing expert systems [Hsu et al 1995].
- The above's are very costed.


## Bit board techniques

- Everyone can make use of the benefits of hardware acceleration now by smart usage of fast parallel bitwise operations provided by modern day CPU's.
- Intel CPU's: MMX and SSE [Intel 2021]
- AMD: 3D Now! [AMD 2000]
- Main technique
- Using bits to represent the board and pieces on the board.
$\triangleright$ Transfer a board into an $n \times m$ picture
$\triangleright$ Transfer pieces into patterns of pixel rectangles
- These instructions are usually in the form of SIMD (single instruction multiple data).
- Many are for image related operations.
- May also make use of GPU.


## Special instruction sets (1/2)

- Make use of fast parallel bitwise operations provided by modern day CPU's.
- Many different types
- Find aggregated information
- Parallel bit deposit and extract
- Most of the instructions can be done using AND, OR, NOT operations, but can be done much faster using special CPU instructions.


## Special instruction sets (2/2)

- Find aggregated information:
- population count (POPCNT): the number of 1-bits in a "word".
- leading/trailing zero count: LZCNT, TZCNT
- Parallel bit deposit and extract
- Pack in sequence selected bits (PEXT): extract something out
$\triangleright P E X T(W, M a s k)$ returns a word by packing to the right those bits in the word $W$ whose corresponding bits in the word Mask are equal to 1.
$\triangleright$ Example: PEXT(010110010, 010101010) extracts the four even numbered bit and then pack it to the right. Thus it returns 01100.
- Distribute bits in sequence to selected locations (PDEP): deposit something into.
$\triangleright P D E P(W, M a s k)$ returns a word by sending the ith bit in the word $W$ to the location addressed by the $i$ th 1.
$\triangleright$ Example: $\operatorname{PEXT}(01100,010101010)$ deposits the four bits to the even numbered location. Thus it returns 010100000.


## Example I

- In Go, how to find the number of empty intersections on the board?
- Assume you have a long hardware word $W$ of $19 * 2=38$ bits.
$\triangleright$ Use 19 words $W_{1}, \ldots, W_{19}$ to represent the rows.
- Encoding: bits $i$ and $i+1$ in $W_{j}$ represents the status of the intersection at the $i$ th column and $j$ th row.
- 00 means empty.
$\triangleright 10$ means a black stone.
$\triangleright 01$ means a white stone.
- POPCOUNT $\left(W_{j}\right)$ gives the number of stones in the $j$ th row.
- 19-POPCOUNT $\left(W_{j}\right)$ gives the number of empty intersections in the $j$ th row.


## Example II

- In Chinese Dark Chess (CDC), how to find all revealed pieces of a color on the board?
- Assume you have a long hardware word $W$ of $32 * 3=96$ bits.
- Encoding: bits $3 i, 3 i+1$, and $3 i+2$ in $W_{b}$ represents the status of the $i$ th cell on the board with regard to the black side. Similarly, we have $W_{r}$ for the red side.
$\triangleright 000$ means empty, or pieces of other color or dark.
$\triangleright x y z$ means the $x y z t h$ kind of piece where there are up to only 7 different kinds of pieces of a color. Thus the encodings used are from 1 to 7 .

Algorithm Find_PCES(color $c$ )

- // find all pieces of color $c$ and put them in $\mathbf{m}[]$
- $i=0$
- while $W_{c}$ ! $=0$ do
$\triangleright a=T Z C N T\left(W_{c}\right) / /$ count the number of tailing zeros
$\triangleright W_{c} \gg=a / /$ right shift a bits, find next piece
$\triangleright m[i++]=W_{c} \& 07 / /$ gives a piece of color $c$
$\triangleright W_{c} \&=\sim(07) / /$ mask off the lowest 3 bits
- return $m$


## Example III

- In Othello, how to pack information in a column in a continuous sequence of cells?
- Problem:
$\triangleright$ The board of Othello is a 8 by 8 rectangle. Assume we use a word to represent the board and use the row-major ordering, then cells in a column are non-adjacent.
$\triangleright$ Example: The first (leftmost) column are numbered 0, 8, 16, 24, 32, 40, 48, and 56 in a row-major ordering.
- Encoding:
$\triangleright$ Assume you have a hardware word $W$ of 64 bits.
$\triangleright W_{b}$ and $W_{w}$ are words for black and white stones respectively.
$\triangleright 0$ means empty or other color.
$\triangleright\left(W_{b} \mid W_{w}\right)$ gives the word for empty spaces.
Algorithm Find_Column(color $c$, int $i d x$ )
- // pack information in column idx into adjacent bits
- // Loc is an array which gives the masks of bits in column idx
- Mask $=\operatorname{Loc}[i d x]$
- $W=P E X T\left(W_{c}, M a s k\right)$
- return $W$


## Comments

- Read carefully the instruction set of the CPU used to find out any special SIMD operations that are or aren't provided.
- The speedup is a lot, sometimes more than 50 times, if the encoding used is good [Browne 2014].


## Proof number search

- Consider the case of a 2 -player game tree with either 0 or 1 on the leaves.
- win, or not win which is lose or draw;
- lose, or not lose which is win or draw;
- Call this a binary valued game tree.
- If the game tree is known as well as the values of some leaves are known, can you make use of this information to search this game tree faster?
- The value of the root is either 0 or 1 .
- If a branch of the root returns 1 , then we know for sure the value of the root is 1 .
- The value of the root is $\mathbf{0}$ only when all branches of the root returns 0 .
- An AND-OR game tree search.


## Which node to search next?

- A most proving node for a node $u$ : a descendent node if its value is 1 , then the value of $u$ is 1 .
- A most disproving node for a node $u$ : a descendent node if its value is 0 , then the value of $u$ is 0 .



## Most proving node

- Node $h$ is a most proving node for $a$.



## Most disproving node

- Node $e$ or $f$ is a most disproving node for $a$.



## Proof or Disproof Number

- Assign a proof number and a disproof number to each node $u$ in a binary valued game tree.
- $\operatorname{proof}(u)$ : the minimum number of leaves needed to visited in order for the value of $u$ to be 1 .
- disproof $(u)$ : the minimum number of leaves needed to visited in order for the value of $u$ to be 0 .
- The definition implies a bottom-up ordering.


## Proof number

- Proof number for the root $a$ is $\mathbf{2}$.
$\triangleright$ Need to at least prove $e$ and $f$.



## Disproof number

- Disproof number for the root $a$ is 2 .
$\triangleright$ Need to at least disprove $i$, and either $e$ or $f$.



## Proof Number: Definition

- $u$ is a leaf:
- If value $(u)$ is unknown, then $\operatorname{proof}(u)$ is the cost of evaluating $u$.
- If $\operatorname{value}(u)$ is $\mathbf{1}$, then $\operatorname{proof}(u)=0$.
- If $\operatorname{value}(u)$ is $\mathbf{0}$, then $\operatorname{proof}(u)=\infty$.
- $u$ is an internal node with all of the children $u_{1}, \ldots, u_{b}$ :
- if $u$ is a MAX node,

$$
\operatorname{proof}(u)=\min _{i=1}^{i=b} \operatorname{proof}\left(u_{i}\right) ;
$$

- if $u$ is a MIN node,

$$
\operatorname{proof}(u)=\sum_{i=1}^{i=b} \operatorname{proof}\left(u_{i}\right)
$$

## Disproof Number: Definition

- $u$ is a leaf:
- If value $(u)$ is unknown, then $\operatorname{disproof}(u)$ is cost of evaluating $u$.
- If $\operatorname{value}(u)$ is $\mathbf{1}$, then $\operatorname{disproof}(u)=\infty$.
- If $\operatorname{value}(u)$ is $\mathbf{0}$, then $\operatorname{disproof}(u)=0$.
- $u$ is an internal node with all of the children $u_{1}, \ldots, u_{b}$ :
- if $u$ is a MAX node,

$$
\operatorname{disproof}(u)=\sum_{i=1}^{i=b} \operatorname{disproof}\left(u_{i}\right)
$$

- if $u$ is a MIN node,

$$
\operatorname{disproof}(u)=\min _{i=1}^{i=b} \operatorname{disproof}\left(u_{i}\right) .
$$

## Illustrations


proof number, disproof number

proof number, disproof number

## How these numbers are used (1/2)

- Scenario:
- For example, the tree $T$ represents an open game tree or an endgame tree.
$\triangleright$ If $T$ is an open game tree, then maybe it is asked to prove or disprove a certain open game is win.
$\triangleright$ If $T$ is an endgame tree, then maybe it is asked to prove or disprove a certain endgame is win o loss.
$\triangleright$ Each leaf takes a lot of time to evaluate.
$\triangleright$ We need to prove or disprove the tree using as few time as possible.
- Depend on the results we have so far, pick a leaf to prove or disprove.
- Goal: solve as few leaves as possible so that in the resulting tree, either proof (root) or disproof(root) becomes 0 .
- If $\operatorname{proof}(r o o t)=0$, then the tree is proved.
- If disproof (root) $=0$, then the tree is disproved.
- Need to be able to update these numbers on the fly.


## How these numbers are used (2/2)

- Let $G V=\min \{p r o o f(r o o t), \operatorname{disproof}($ root $)\}$.
- $G T$ is "prove" if $G V=\operatorname{proof}($ root $)$, which means we try to prove it.
- $G T$ is "disprove" if $G V=\operatorname{disproof}$ (root), which means we try to disprove it.
- In the case of $\operatorname{proof}($ root $)=\operatorname{disproof}($ root $)$, we set $G T$ to "prove" for convenience.
- From the root, we search for a leaf whose value is unknown.
- The leaf found is a most proving node if $G T$ is "prove", or a most disproving node if $G T$ is "disprove".
- To find such a leaf, we start from the root downwards recursively as follows.
$\triangleright$ If we have reached a leaf, then stop.
$\triangleright$ If GT is "prove", then pick a child with the least proof number for a MAX node, and any node that has a chance to be proved for a MIN node.
$\triangleright$ If GT is "disprove", then pick a child with the least disproof number for a MIN node, and any node that has a chance to be disproved for a MAX node.


## PN-search: algorithm (1/2)

- $\{*$ Compute and update proof and disproof numbers of the root in a bottom up fashion until it is proved or disproved. *\}
- loop:
- If $\operatorname{proof}($ root $)=0$ or disproof $($ root $)=0$, then we are done, otherwise
$\triangleright \operatorname{proof}($ root $) \leq d i s p r o o f(r o o t)$ : we try to prove it.
$\triangleright \operatorname{proof}($ root $)>\operatorname{disproof}($ root $)$ : we try to disprove it.
- $u \leftarrow \operatorname{root} ;\{*$ find a leaf to prove or disprove $*\}$
- if we try to prove, then
$\triangleright$ while $u$ is not a leaf do
$\triangleright \quad$ if $u$ is a MAX node, then
$u \leftarrow$ leftmost child of $u$ with the smallest non-zero proof number;
$\triangleright \quad$ else if $u$ is a MIN node, then $u \leftarrow$ leftmost child of $u$ with a non-zero proof number;
- else if we try to disprove, then
$\triangleright$ while $u$ is not a leaf do
$\triangleright$ if $u$ is a MAX node, then
$u \leftarrow$ leftmost child of $u$ with a non-zero disproof number;
$\triangleright \quad$ else if $u$ is a MIN node, then
$u \leftarrow$ leftmost child of $u$ with the smallest non-zero disproof number;


## PN-search: algorithm (2/2)

- $\{*$ Continued from the last page $*\}$
- solve $u$;
- repeat $\{*$ bottom up updating the values $*\}$
$\triangleright$ update proof $(u)$ and disproof $(u)$
$\triangleright u \leftarrow u$ s parent
until $u$ is the root
- go to loop;


## Multi-Valued game Tree

- The values of the leaves may not be binary.
- Assume the values are non-negative integers.
- Note: it can be in any finite countable domain.
- Revision of the proof and disproof numbers.
- $\operatorname{proof}_{v}(u)$ : the minimum number of leaves needed to visited in order for the value of $u$ to $\geq v$.
$\triangleright \operatorname{proof}(u) \equiv \operatorname{proof}_{1}(u)$.
- disproof $f_{v}(u)$ : the minimum number of leaves needed to visited in order for the value of $u$ to $<v$.
$\triangleright \operatorname{disproof}(u) \equiv \operatorname{disproof}_{1}(u)$.


## Illustration



## Illustration



## Multi-Valued proof number

- $u$ is a leaf:
- If value $(u)$ is unknown, then $\operatorname{proo}_{v}(u)$ is cost of evaluating $u$.
- If value $(u) \geq v$, then $\operatorname{proof}_{v}(u)=0$.
- If $\operatorname{value}(u)<v$, then $\operatorname{proof}_{v}(u)=\infty$.
- $u$ is an internal node with all of the children $u_{1}, \ldots, u_{b}$ :
- if $u$ is a MAX node,

$$
\operatorname{proof}_{v}(u)=\min _{i=1}^{i=b} \operatorname{proo}_{v}\left(u_{i}\right)
$$

- if $u$ is a MIN node,

$$
\operatorname{proo}_{v}(u)=\sum_{i=1}^{i=b} \operatorname{proo}_{v}\left(u_{i}\right)
$$

## Multi-Valued disproof number

- $u$ is a leaf:
- If value $(u)$ is unknown, then $\operatorname{disproof} f_{v}(u)$ is cost of evaluating $u$.
- If $\operatorname{value}(u) \geq v$, then $\operatorname{disproof}_{v}(u)=\infty$.
- If $\operatorname{value}(u)<v$, then $\operatorname{disproof~}_{v}(u)=0$.
- $u$ is an internal node with all of the children $u_{1}, \ldots, u_{b}$ :
- if $u$ is a MAX node,

$$
\operatorname{disproof}_{v}(u)=\sum_{i=1}^{i=b} \operatorname{disproof}_{v}\left(u_{i}\right)
$$

- if $u$ is a MIN node,

$$
\operatorname{disproo}_{v}(u)=\min _{i=1}^{i=b} \operatorname{disproo}_{v}\left(u_{i}\right)
$$

## Revised PN-search( $v$ ): algorithm (1/2)

- $\left\{*\right.$ Compute and update $\operatorname{proof}_{v}$ and disproof ${ }_{v}$ numbers of the root in a bottom up fashion until it is proved or disproved. $*\}$
- loop:
- If $\operatorname{proo} f_{v}($ root $)=0$ or $\operatorname{disproof~}_{v}($ root $)=0$, then we are done, otherwise
$\triangleright \operatorname{proof}_{v}($ root $) \leq$ disproof $_{v}($ root $)$ : we try to prove it.
$\triangleright \operatorname{proof}_{v}($ root $)>\operatorname{disproof} v($ root $)$ : we try to disprove it.
- $u \leftarrow \operatorname{root} ;\{*$ find a leaf to prove or disprove $*\}$
- if we try to prove, then
$\triangleright$ while $u$ is not a leaf do
$\triangleright \quad$ if $u$ is a MAX node, then
$u \leftarrow$ leftmost child of $u$ with the smallest non-zero proof $f_{v}$ number;
$\triangleright \quad$ else if $u$ is a MIN node, then $u \leftarrow$ leftmost child of $u$ with a non-zero proof $f_{v}$ number;
- else if we try to disprove, then
$\triangleright$ while $u$ is not a leaf do
$\triangleright \quad$ if $u$ is a MAX node, then
$u \leftarrow$ leftmost child of $u$ with a non-zero disproof ${ }_{v}$ number;
$\triangleright \quad$ else if $u$ is a MIN node, then
$u \leftarrow$ leftmost child of $u$ with the smallest non-zero disproof ${ }_{v}$ number;


## PN-search: algorithm (2/2)

- $\{*$ Continued from the last page $*\}$
- solve $u$;
- repeat $\{*$ bottom up updating the values $*$ \}
$\triangleright$ update $\operatorname{proo}_{v}(u)$ and $\operatorname{disproof}_{v}(u)$
$\triangleright u \leftarrow u^{\prime}$ s parent
until $u$ is the root
- go to loop;


## Multi-valued PN-search: algorithm

- When the values of the leaves are not binary, use an open value binary search to find an upper bound of the value.
- Set the initial value of $v$ to be 1 .
- loop: PN-search( $v$ )
$\triangleright$ Prove the value of the search tree is $\geq v$ or disprove it by showing it is $<v$.
- If it is proved, then double the value of $v$ and go to loop again.
- If it is disproved, then the true value of the tree is between $\lfloor v / 2\rfloor$ and $v-1$.
- $\{*$ Use a binary search to find the exact returned value of the tree. $*\}$
- low $\leftarrow\lfloor v / 2\rfloor$; high $\leftarrow v-1$;
- while low $\leq$ high do
$\triangleright$ if low $=$ high, then return low as the tree value
$\triangleright$ mid $\leftarrow\lfloor($ low $+h i g h) / 2\rfloor$
$\triangleright P N$-search (mid)
$\triangleright$ if it is disproved, then high $\leftarrow$ mid -1
$\triangleright$ else if it is proved, then low $\leftarrow$ mid


## Comments

- Can be used to construct opening books.
- Appear to be good for searching certain types of game trees.
- Find the easiest way to prove or disprove a conjecture.
- A dynamic strategy depends on work has been done so far.
- Performance has nothing to do with move ordering.
- Performances of most previous algorithms depend heavily on whether good move orderings can be found.
- Searching the "easiest" branch may not give you the best performance.
- Performance depends on the value of each internal node.
- Commonly used in verifying conjectures, e.g., first-player win.
- Partition the opening moves in a tree-like fashion.
- Try to the "easiest" way to prove or disprove the given conjecture.
- Take into consideration the fact that some nodes may need more time to process than the other nodes.


## More research topics

- Does a variation of a game make it different?
- Whether Stalemate is draw or win in chess.
- Japanese and Chinese rules in Go.
- Chinese and Asia rules in Chinese chess.
- ...
- Why a position is easy or difficult to human players?
- Can be used in tutoring or better understanding of the game.


## Unique features in games

- Games are used to model real-life problems.
- Do unique properties shown in games help modeling real applications?
- Chinese chess
$\triangleright$ Very complicated rules for loops: can be draw, win or loss.
$\triangleright$ The usage of cannons for attacking pieces that are blocked.
- Go: the rule of Ko to avoid short cycles, and the right to pass.
- Chinese dark chess: a chance node that makes a deterministic ply first, and then followed by a random toss.
- EWN: a chance node that makes a random toss first, and then followed with a deterministic ply later.
- Shogi: the ability to capture an opponent's piece and turn it into your own.
- Chess: stalemate is draw.
- Promotion: a piece may turn into a more/less powerful one once it satisfies some pre-conditions.
$\triangleright$ Chess
$\triangleright$ Shogi
$\triangleright$ Chinese chess: the mobility of a pawn is increased once it advances twice, but is decreased once it reaches the end of a column.


## References and further readings (1/4)

- L. V. Allis, M. van der Meulen, and H. J. van den Herik. Proof-number search. Artificial Intelligence, 66(1):91-124, 1994.
- David Carmel and Shaul Markovitch. opponent models in adversary search.

Learning and using Technical Report CIS9609, Technion, 1996.

- M. Campbell. The graph-history interaction: on ignoring position history. In Proceedings of the 1985 ACM annual conference on the range of computing : mid-80's perspective, pages 278-280. ACM Press, 1985.
- Akihiro Kishimoto and Martin Müller (2004). A General Solution to the Graph History Interaction Problem. AAAI, 644-648, 2004.
- Kuang-che Wu, Shun-Chin Hsu and Tsan-sheng Hsu " The Graph History Interaction Problem in Chinese Chess," Proceedings of the 11th Advances in Computer Games Conference, (ACG), Springer-Verlag LNCS\# 4250, pages 165-179, 2005.


## References and further readings (2/4)

- C.A. Luckhardt and K.B. Irani in "An algorithmic solution of N-person games", Proceedings of the Fifth National Conference on Artificial Intelligence (AAAI'86), p.158-162, AAAI Press.
- Nathan R. Sturtevan A Comparison of Algorithms for Multiplayer Games Computers and Games, Third International Conference, CG 2002, Edmonton, Canada, July 25-27, 2002.
- Richard Korf "Multi-player alpha-beta pruning" in Artificial Intelligence 48 (1991), p.99-111.
- Condon, J.H. and K. Thompson, "Belle Chess Hardware", In Advances in Computer Chess 3 (ed. M.R.B.Clarke), Pergamon Press, 1982.
- Hsu, Feng-hsiung; Campbell, Murray; Hoane, A. Joseph, Jr. (1995). "Deep Blue System Overview" (PDF). Proceedings of the 9th International Conference on Supercomputing. 1995 International Conference on Supercomputing. Association for Computer Machinery. pp. 240--244


## References and further readings (3/4)

-"Chess Skill in Man and Machine", Chess 4.5 - The Northwestern University Chess Program, L. Atkin \& D. Slate, pp. 82-118, Springer-Verlag, 1977.

- Fuller, S.H, Gaschnig, J.G. and Gillogly, J.J. Analysis of the Alpha-beta Pruning Algorithm Carnegie Mellon University. Computer Science Department https://books.google.com.tw/books?id=cOTmlwEACAAJ, 1973. C. Browne. Bitboard methods for games ICGA Journal, vol. 37, no. 2, pp. 67-84, 2014
- Intel, Intel Architecture Instruction Set Extension and Future Features Programming Reference, 2021. https://community.intel.com/legacyfs/online/drupal_files/ managed/c5/15/
architecture-instruction-set-extensions-programming-reference.pdf
- AMD, 3D Now! Technology manual, 2000. https://www.amd.com/system/files/TechDocs/21928.pdf


## References and further readings (4/4)

- Hung-Jui Chang and Cheng Yueh and Gang-Yu Fan and Ting-Yu Lin and Tsan-sheng Hsu (2021). Opponent Model Selection Using Deep Learning. Proceedings of the 2021 Advances in Computer Games (ACG).

