Theory of Computer Games: Selected Advanced Topics

Tsan-sheng Hsu

徐讚昇

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

Abstract

- Some advanced research issues.
 - The graph history interaction (GHI) problem.
 - Opponent models.
 - Multi-player game tree search.
 - Bit board speedup.
 - Proof-number search.
- More research topics.
 - The influence of rules on games.
 - ▶ Allowing long cycles in Go.
 - ▶ The scoring of a suicide ply in chess.
 - Why a position is difficult to human?
 - Unique features in games.

Graph history interaction problem

- The graph history interaction (GHI) problem [Campbell 1985]:
 - In a game graph, a position can be visited by more than one paths from a starting position.
 - The value of the position depends on the path visiting it.
 - ▶ It can be win, loss or draw for Chinese chess.
 - ▶ It can only be draw for Western chess and Chinese dark chess.
 - ▶ It can only be loss for Go.
- In the transposition table, you record the value of a position, but not the path leading to it.
 - Values computed from rules on repetition cannot be used later on.
 - It takes a huge amount of storage to store all the paths visiting it.
- This is a very difficult problem to be solved in real time [Wu et al '05] [Kishimoto and Müller '04].

Assume if the game falls into a loop, then it is a draw.

- Assume if the game falls into a loop, then it is a draw.
- $A \to B \to D \to G \to I \to J \to D$ is draw by rules of repetition.
 - \triangleright Memorized J as a draw position.

- Assume if the game falls into a loop, then it is a draw.
- $A \to B \to D \to G \to I \to J \to D$ is draw by rules of repetition. • Memorized J as a draw position.
- $A \to B \to D \to H$ is a win. Hence D is win.

- Assume if the game falls into a loop, then it is a draw.
- $A \to B \to D \to G \to I \to J \to D$ is draw by rules of repetition. • Memorized J as a draw position.
- $A \to B \to D \to H$ is a win. Hence D is win.
- $A \to B \to E$ is a loss. Hence B is loss.

- Assume if the game falls into a loop, then it is a draw.
- $A \to B \to D \to G \to I \to J \to D$ is draw by rules of repetition. • Memorized J as a draw position.
- $A \to B \to D \to H$ is a win. Hence D is win.
- $A \to B \to E$ is a loss. Hence B is loss.
- $A \to C \to F \to J$ is draw because J is recorded as draw.
- A is draw because one child is loss and the other chile is draw.

- Assume if the game falls into a loop, then it is a draw.
- $A \to B \to D \to G \to I \to J \to D$ is draw by rules of repetition. • Memorized J as a draw position.
- $A \to B \to D \to H$ is a win. Hence D is win.
- $A \to B \to E$ is a loss. Hence B is loss.
- $A \to C \to F \to J$ is draw because J is recorded as draw.
- A is draw because one child is loss and the other chile is draw.
- However, $A \to C \to F \to J \to D \to H$ is a win (for the root).

Assume the one causes loops wins the game.

- Assume the one causes loops wins the game.
- $A \to B \to D \to G \to I \to J \to D$ is loss because of rules of repetition.
 - \triangleright Memorized J as a loss position (for the root).

- Assume the one causes loops wins the game.
- $A \to B \to D \to G \to I \to J \to D$ is loss because of rules of repetition. • Memorized J as a loss position (for the root).
- $A \to B \to D \to H$ is a win. Hence D is win.

- Assume the one causes loops wins the game.
- $A \to B \to D \to G \to I \to J \to D$ is loss because of rules of repetition. • Memorized J as a loss position (for the root).
- $A \to B \to D \to H$ is a win. Hence D is win.
- $A \to B \to E$ is a loss. Hence B is loss.

- Assume the one causes loops wins the game.
- $A \to B \to D \to G \to I \to J \to D$ is loss because of rules of repetition. • Memorized J as a loss position (for the root).
- $A \to B \to D \to H$ is a win. Hence D is win.
- $A \rightarrow B \rightarrow E$ is a loss. Hence B is loss.
- $A \to C \to F \to J$ is loss because J is recorded as loss.
- A is loss because both branches lead to loss.

- Assume the one causes loops wins the game.
- $A \to B \to D \to G \to I \to J \to D$ is loss because of rules of repetition. • Memorized J as a loss position (for the root).
- $A \to B \to D \to H$ is a win. Hence D is win.
- $A \to B \to E$ is a loss. Hence B is loss.
- $A \to C \to F \to J$ is loss because J is recorded as loss.
- A is loss because both branches lead to loss.
- However, $A \to C \to F \to J \to D \to H$ is a win (for the root).

Comments

- Using DFS to search the above game graph from left first or from right first produces two different results.
- Position A is actually a win position.
 - ullet Problem: memorize J being draw is only valid when the path leading to it causes a loop.
- Storing the path leading to a position in a transposition table requires too much memory.
 - Maybe we can store some forms of hash code to verify it.
- Finding a better data structure for solving this problem remains to be a challenging research issue.
- Remark: It real settings, it is usually the case that the rule of loops is enforced after 3 repetitions. However, GHI problem holds for any times of repetition.

Opponent models

- In a normal alpha-beta search, it is assumed that you and the opponent use the same strategy.
 - What is good to you is bad to the opponent and vice versa!
 - Hence we can reduce a minimax search to a NegaMax search.
 - This is normally true when the game ends, but may not be true in the middle of the game.
- What will happen when there are two strategies or evaluation functions f_1 and f_2 so that
 - for some positions p, $f_1(p)$ is better than $f_2(p)$
 - \triangleright "better" means closer to the real value f(p)
 - for some positions q, $f_2(q)$ is better than $f_1(q)$
- If you are using f_1 and you know your opponent is using f_2 , what can be done to take advantage of this information.
 - This is called OM (opponent model) search [Carmel and Markovitch 1996].
 - ightharpoonup In a MAX node, use f_1 .
 - ightharpoonup In a MIN node, use f_2 .

Other usage of the opponent model

- Depend on strength of your opponent, decide whether to force an easy draw or not.
 - This is called the contempt factor.
- Example in CDC:
 - It is easy to chase the king of your opponent using your pawn.
 - Drawing a weaker opponent is a waste.
 - Drawing a stronger opponent is a gain.
- It is feasible to use a learning model to "guess" the level of your opponent as the game goes and then adapt to its model in CDC [Chang et al 2021].

Opponent models – comments

Comments:

- Need to know your opponent's model precisely or to have some knowledge about your opponent.
- How to learn the opponent model on-line or off-line?
- When there are more than 2 possible opponent strategies, use a probability model (PrOM search) to form a strategy.
- Remark: A common misconception is that if your opponent uses a worse strategy f_3 than the one, namely f_2 , used in your model, then he may get advantage.
 - This is impossible if f_2 is truly better than f_3 .
 - If f_1 can beat f_2 , then f_1 can sure beat f_3 .

Multi-player game tree search

- Games with more than 2 players.
 - Mahjong: 4 players
 - Contract bridge or bridge: 4 players
 - Monopoly: 2 to many players
 - Scrabble: 2 to 4 players
 - Risk: 2 to 6 players
- **A**ssume we have n players, y_1, \ldots, y_n in a game.
 - We have n evaluating functions, $score_i$, one for each player.
 - Given a position p with the children p_1, \ldots, p_m , let $score_i(p)$ be the score of y_i for p.
 - ▶ If p is a terminal position for y_i , then m = 0 and $score_i(p)$ is the "true" score of y_i in p.
 - \triangleright Otherwise, $score_i(p) = \max_{j=1}^m score_i(p_j)$.
 - The above algorithm is called MAXⁿ where stands for during each turn, each player maximizes his own score without considering scores of others.

MAX^n : algorithm

- $next_player(idx)$: the player who is next to player idx.
- Brute force algorithm for multi-player games.
- Algorithm MAXN(position p, player idx)
 - output: best which is an array with best[i] being the best value for player i so far.
 - If p is terminal, then return $best[i] = score_i(p), \forall i$;
 - initialize best to be $best[i] = -\infty, \forall i$;
 - Let p_i be the *i*th child of p;
 - for i = 1 to last child of p do
 - $ightharpoonup current = MAXN(p_i, next_player(idx));$
 - ightharpoonup if current[idx] > best[idx], best = current; // maximized player idx
 - return best;

MAXⁿ: example (n = 3)

Opportunities for pruning (1/2)

- Let p be a position in a multi-player game.
- Alpha-beta pruning is a special case for n=2 and cannot be generalized for n>2.
 - Property used in alpha-beta pruning:
 - ▶ What is good for y_1 is definitely bad for y_2 by using the zero sum principle which is for a position p, $score_1(p) + score_2(p) = 0$.
 - The above may not be true for n > 2.
 - ▶ When n = 3, what is good for y_1 may be also good for y_2 , but very bad for y_3 .

Opportunities for pruning (2/2)

- For a position p, if there is no constraints on the n scores of p, then it is impossible to have any cut offs for MAX n .
 - In applications we often have the following properties.
 - > Zero sum.
 - \triangleright The sum of all n scores for p has an upper bound U.
 - \triangleright The score of p for any player has a lower bound L.

Examples:

- ▶ Go for n players: each player owns pieces of a distinct color.
 - \rightarrow the sum of all points \leq the board size, and the score cannot be negative.
- ▶ Othello for *n* players: each player owns pieces of a distinct color and flips all pieces of different colors.
 - \rightarrow the sum of all points \leq the plys played so far and the score cannot be negative.

Pruning

- Recall: a position p with the children p_1, \ldots, p_m and the parent p', and $score_i(p)$ is the score of player i for p.
- Direct pruning:
 - During the turn of the *i*th player, if $score_i(p_j) = U$, then no more search is needed.
- Shallow pruning:
 - Without loss of generality, assume L=0.
 - During the turn of the *i*th player, if $score_i(p_j) = v$ so far, then $score_i(p) \ge v$ since each player is a max player.
 - This implies $score_j(p) \leq U v$ if $j \neq i$.
 - Let i' be the index of the immediate previous player.
 - We know $score_{i'}(p') \ge h$ if he has done some searching.
 - If $h \ge U v$, then we have a cut off.

MAX^n : ideas for cutoff

MAXⁿ: cutoff example (n = 3, U = 9)

Remarks about pruning in MAXⁿ

- Direct pruning is a degenerated case of the shallow pruning by the following settings.
 - If v=U, then the scores of all other players are all zero.
 - Using the lower bound L, you can get a cut off.
- Compared to two-player alpha-beta pruning, both direct and shallow pruning can be used in $n \ge 2$.
- Deep pruning does not work when n > 2.
 - Assume you are searching the node w, v is your parent and u is an ancestor that is not v.
 - Assume node x is the turn of player player(x).
 - Any value of $score_{player(u)}(u)$ cannot produce any cutoff on searching the tree T_w because player(v) makes the decision first in propagating the values up.
 - Any value of $score_{player(u)}(w)$ can be propagated up and be used by u.

Algorithm for shallow cut off

- Functions and data structures
 - $next_player(idx)$: the player who is next to player idx.
 - $score_i(p)$: the score of player i for the position p.
 - ullet U: the upper bound of sum of all scores among all players on a position.
 - Assume L is 0.
 - best and current are both arrays of size n.
- Algorithm shallow(position p, player idx, value bound)
 - return value: best which is an array with best[i] being the best value for player i so far.
 - If p is terminal, then return $best[i] = score_i(p), \forall i$;
 - Let p_i be the *i*th child of p;
 - $best = shallow(p_1, next(idx), U)$; // recursive call on the first child
 - for i=2 to last child of p do

```
4.1: if best[idx] = U, then return best // immediate cut off
4.2: if best[idx] \ge bound, then return best // shallow cut off
4.3: current = shallow(p_i, next\_player(idx), U - best[idx]);
```

- 4.4: if current[idx] > best[idx], best = current; // maximize player idx
- return best;

Comments

- A generalization of alpha-beta cutoff on adjacent depths.
- Does not work on deep alpha-beta cutoff [Korf 1991].
- In the best case, the effective branching factor is $\frac{1+\sqrt{4b-3}}{2}$ where b is the average branching factor.
 - Comparing to alpha-beta cut off, the best effective branching factor is \sqrt{b} .
- In the average case, the effective branching factor is approaching ${\cal O}(b)$.
 - Comparing to alpha-beta cut off, the the average effective branching factor is $b^{0.75}$ [Fuller et al 1975].
 - This implies most of the cut off come from deep pruning in the average case.
- More research are needed to get more cutoff by observing additional constraints on the values from the application domain.
- MCTS can be easily extended to work on any number of players, but need to work on better properties of convergence.

Hardware Speedup

- Using hardware to speed up searching is not new.
 - Parallel computing.
 - ▶ The Northwestern University CHESS program series on the 1970's makes full usage of hardware advantages from supercomputers [Atkin & Slate 1977].
 - Special hardware acceleration:
 - ▶ Belle: a chess machine with special micro instructions for move generation, alpha-beta pruning and transposition table operations [Condon & Thompson 1982].
 - ▶ Deep Blue: custom VLSI FPGA chips for operating chess playing expert systems [Hsu et al 1995].
- The above's are very costed.

Bit board techniques

- Everyone can make use of the benefits of hardware acceleration now by smart usage of fast parallel bitwise operations provided by modern day CPU's.
 - Intel CPU's: MMX and SSE [Intel 2021]
 - AMD: 3D Now! [AMD 2000]
- Main technique
 - Using bits to represent the board and pieces on the board.
 - \triangleright Transfer a board into an $n \times m$ picture
 - ▶ Transfer pieces into patterns of pixel rectangles
 - These instructions are usually in the form of SIMD (single instruction multiple data).
 - Many are for image related operations.
 - May also make use of GPU.

Special instruction sets (1/2)

- Make use of fast parallel bitwise operations provided by modern day CPU's.
- Many different types
 - Find aggregated information
 - Parallel bit deposit and extract
 - ...
- Most of the instructions can be done using AND, OR, NOT operations, but can be done much faster using special CPU instructions.

Special instruction sets (2/2)

- Find aggregated information:
 - population count (POPCNT): the number of 1-bits in a "word".
 - leading/trailing zero count: LZCNT, TZCNT
- Parallel bit deposit and extract
 - Pack in sequence selected bits (PEXT): extract something out
 - ightharpoonup PEXT(W, Mask) returns a word by packing to the right those bits in the word W whose corresponding bits in the word Mask are equal to 1.
 - ▶ Example: PEXT(010110010, 010101010) extracts the four even numbered bit and then pack it to the right. Thus it returns 01100.
 - Distribute bits in sequence to selected locations (PDEP): deposit something into.
 - ightharpoonup PDEP(W, Mask) returns a word by sending the *i*th bit in the word W to the location addressed by the *i*th 1.
 - ▶ Example: PEXT(01100, 010101010) deposits the four bits to the even numbered location. Thus it returns 010100000.

Example I

- In Go, how to find the number of empty intersections on the board?
 - Assume you have a long hardware word W of 19*2=38 bits.
 - \triangleright Use 19 words W_1, \ldots, W_{19} to represent the rows.
 - Encoding: bits i and i+1 in W_j represents the status of the intersection at the ith column and jth row.
 - \triangleright 00 means empty.
 - ▶ 10 means a black stone.
 - ▶ 01 means a white stone.
 - POPCOUNT(W_i) gives the number of stones in the jth row.
 - 19-POPCOUNT(W_j) gives the number of empty intersections in the jth row.

Example II

- In Chinese Dark Chess (CDC), how to find all revealed pieces of a color on the board?
 - Assume you have a long hardware word W of 32*3=96 bits.
 - Encoding: bits 3i, 3i + 1, and 3i + 2 in W_b represents the status of the ith cell on the board with regard to the black side. Similarly, we have W_r for the red side.
 - ▶ 000 means empty, or pieces of other color or dark.
 - $\triangleright xyz$ means the xyzth kind of piece where there are up to only 7 different kinds of pieces of a color. Thus the encodings used are from 1 to 7.
- Algorithm Find_PCES(color c)
 - // find all pieces of color c and put them in m[]
 - i = 0
 - while $W_c != 0$ do
 - $\triangleright a = TZCNT(W_c)$ // count the number of tailing zeros
 - \triangleright $W_c >>= a$ // right shift a bits, find next piece
 - \triangleright $m[i++] = W_c \& 07 // gives a piece of color <math>c$
 - \triangleright $W_c \&= \sim (07)$ // mask off the lowest 3 bits
 - return m

Example III

- In Othello, how to pack information in a column in a continuous sequence of cells?
 - Problem:
 - ▶ The board of Othello is a 8 by 8 rectangle. Assume we use a word to represent the board and use the row-major ordering, then cells in a column are non-adjacent.
 - Example: The first (leftmost) column are numbered 0, 8, 16, 24, 32, 40, 48, and 56 in a row-major ordering.

Encoding:

- ▶ Assume you have a hardware word W of 64 bits.
- \triangleright W_b and W_w are words for black and white stones respectively.
- ▶ 0 means empty or other color.
- \triangleright $(W_b|W_w)$ gives the word for empty spaces.
- Algorithm Find_Column(color c, int idx)
 - // pack information in column idx into adjacent bits
 - // Loc is an array which gives the masks of bits in column idx
 - Mask = Loc[idx]
 - $W = PEXT(W_c, Mask)$
 - ullet return W

Comments

- Read carefully the instruction set of the CPU used to find out any special SIMD operations that are or aren't provided.
- The speedup is a lot, sometimes more than 50 times, if the encoding used is good [Browne 2014].

Proof number search

- Consider the case of a 2-player game tree with either 0 or 1 on the leaves.
 - win, or not win which is lose or draw;
 - lose, or not lose which is win or draw;
 - Call this a binary valued game tree.
- If the game tree is known as well as the values of some leaves are known, can you make use of this information to search this game tree faster?
 - The value of the root is either 0 or 1.
 - If a branch of the root returns 1, then we know for sure the value of the root is 1.
 - The value of the root is 0 only when all branches of the root returns 0.
 - An AND-OR game tree search.

Which node to search next?

- A most proving node for a node u: a descendent node if its value is 1, then the value of u is 1.
- A most disproving node for a node u: a descendent node if its value is 0, then the value of u is 0.

Most proving node

■ Node h is a most proving node for a.

Most disproving node

■ Node e or f is a most disproving node for a.

Proof or Disproof Number

- ullet Assign a proof number and a disproof number to each node u in a binary valued game tree.
 - proof(u): the minimum number of leaves needed to visited in order for the value of u to be 1.
 - disproof(u): the minimum number of leaves needed to visited in order for the value of u to be 0.
- The definition implies a bottom-up ordering.

Proof number

- Proof number for the root a is 2.
 - \triangleright Need to at least prove e and f.

Disproof number

- Disproof number for the root *a* is 2.
 - \triangleright Need to at least disprove i, and either e or f.

Proof Number: Definition

- u is a leaf:
 - If value(u) is unknown, then proof(u) is the cost of evaluating u.
 - If value(u) is 1, then proof(u) = 0.
 - If value(u) is 0, then $proof(u) = \infty$.
- u is an internal node with all of the children u_1, \ldots, u_b :
 - if u is a MAX node,

$$proof(u) = \min_{i=1}^{i=b} proof(u_i);$$

• if u is a MIN node,

$$proof(u) = \sum_{i=1}^{i=b} proof(u_i).$$

Disproof Number: Definition

- u is a leaf:
 - If value(u) is unknown, then disproof(u) is cost of evaluating u.
 - If value(u) is 1, then $disproof(u) = \infty$.
 - If value(u) is 0, then disproof(u) = 0.
- u is an internal node with all of the children u_1, \ldots, u_b :
 - if u is a MAX node,

$$disproof(u) = \sum_{i=1}^{i=b} disproof(u_i);$$

• if u is a MIN node,

$$disproof(u) = \min_{i=1}^{i=b} disproof(u_i).$$

Illustrations

proof number, disproof number

proof number, disproof number

How these numbers are used (1/2)

Scenario:

- ullet For example, the tree T represents an open game tree or an endgame tree.
 - ▶ If *T* is an open game tree, then maybe it is asked to prove or disprove a certain open game is win.
 - ▶ If T is an endgame tree, then maybe it is asked to prove or disprove a certain endgame is win o loss.
 - ▶ Each leaf takes a lot of time to evaluate.
 - ▶ We need to prove or disprove the tree using as few time as possible.
- Depend on the results we have so far, pick a leaf to prove or disprove.
- Goal: solve as few leaves as possible so that in the resulting tree, either proof(root) or disproof(root) becomes 0.
 - If proof(root) = 0, then the tree is proved.
 - If disproof(root) = 0, then the tree is disproved.
- Need to be able to update these numbers on the fly.

How these numbers are used (2/2)

- Let $GV = \min\{proof(root), disproof(root)\}$.
 - GT is "prove" if GV = proof(root), which means we try to prove it.
 - ullet GT is "disprove" if GV = disproof(root), which means we try to disprove it.
 - In the case of proof(root) = disproof(root), we set GT to "prove" for convenience.
- From the root, we search for a leaf whose value is unknown.
 - The leaf found is a most proving node if GT is "prove", or a most disproving node if GT is "disprove".
 - To find such a leaf, we start from the root downwards recursively as follows.
 - ▶ If we have reached a leaf, then stop.
 - ▶ If GT is "prove", then pick a child with the least proof number for a MAX node, and any node that has a chance to be proved for a MIN node.
 - ▶ If GT is "disprove", then pick a child with the least disproof number for a MIN node, and any node that has a chance to be disproved for a MAX node.

PN-search: algorithm (1/2)

- {* Compute and update proof and disproof numbers of the root in a bottom up fashion until it is proved or disproved. *}
- loop:
 - If proof(root) = 0 or disproof(root) = 0, then we are done, otherwise
 - $ightharpoonup proof(root) \leq disproof(root)$: we try to prove it.
 - $\triangleright proof(root) > disproof(root)$: we try to disprove it.
 - $u \leftarrow root$; {* find a leaf to prove or disprove *}
 - if we try to prove, then
 - \triangleright while u is not a leaf do

 - else if u is a MIN node, then $u \leftarrow \text{leftmost child of } u \text{ with a non-zero proof number};$
 - else if we try to disprove, then
 - \triangleright while u is not a leaf do

 - else if u is a MIN node, then $u \leftarrow \text{leftmost child of } u \text{ with the smallest non-zero disproof number;}$

PN-search: algorithm (2/2)

{* Continued from the last page *}
• solve u;
• repeat {* bottom up updating the values *}
▶ update proof(u) and disproof(u)
▶ u ← u's parent
until u is the root
• go to loop;

Multi-Valued game Tree

- The values of the leaves may not be binary.
 - Assume the values are non-negative integers.
 - Note: it can be in any finite countable domain.
- Revision of the proof and disproof numbers.
 - $proof_v(u)$: the minimum number of leaves needed to visited in order for the value of u to $\geq v$.
 - $ightharpoonup proof(u) \equiv proof_1(u).$
 - $disproof_v(u)$: the minimum number of leaves needed to visited in order for the value of u to < v.
 - $ightharpoonup disproof_1(u) \equiv disproof_1(u).$

Illustration

Illustration

Multi-Valued proof number

- u is a leaf:
 - If value(u) is unknown, then $proof_v(u)$ is cost of evaluating u.
 - If $value(u) \ge v$, then $proof_v(u) = 0$.
 - If value(u) < v, then $proof_v(u) = \infty$.
- u is an internal node with all of the children u_1, \ldots, u_b :
 - if u is a MAX node,

$$proof_v(u) = \min_{i=1}^{i=b} proof_v(u_i);$$

• if u is a MIN node,

$$proof_v(u) = \sum_{i=1}^{i=b} proof_v(u_i).$$

Multi-Valued disproof number

- u is a leaf:
 - If value(u) is unknown, then $disproof_v(u)$ is cost of evaluating u.
 - If $value(u) \geq v$, then $disproof_v(u) = \infty$.
 - If value(u) < v, then $disproof_v(u) = 0$.
- u is an internal node with all of the children u_1, \ldots, u_b :
 - if u is a MAX node,

$$disproof_v(u) = \sum_{i=1}^{i=b} disproof_v(u_i);$$

• if u is a MIN node,

$$disproof_v(u) = \min_{i=1}^{i=b} disproof_v(u_i).$$

Revised PN-search(v): algorithm (1/2)

- $\{*$ Compute and update proof $_v$ and disproof $_v$ numbers of the root in a bottom up fashion until it is proved or disproved. $*\}$
- loop:
 - If $proof_v(root) = 0$ or $disproof_v(root) = 0$, then we are done, otherwise
 - $ightharpoonup proof_v(root) \leq disproof_v(root)$: we try to prove it.
 - $ightharpoonup proof_v(root) > disproof_v(root)$: we try to disprove it.
 - $u \leftarrow root$; {* find a leaf to prove or disprove *}
 - if we try to prove, then
 - \triangleright while u is not a leaf do
 - \triangleright if u is a MAX node, then $u \leftarrow \text{leftmost child of } u$ with the smallest non-zero proof_v number;
 - else if u is a MIN node, then $u \leftarrow \text{leftmost child of } u \text{ with a non-zero proof}_v \text{ number};$
 - else if we try to disprove, then
 - \triangleright while u is not a leaf do
 - \triangleright if u is a MAX node, then $u \leftarrow$ leftmost child of u with a non-zero disproof, number;
 - else if u is a MIN node, then $u \leftarrow \text{leftmost child of } u \text{ with the smallest non-zero disproof}_v \text{ number};$

PN-search: algorithm (2/2)

{* Continued from the last page *}
solve u;
repeat {* bottom up updating the values *}
update proof_v(u) and disproof_v(u)
u ← u's parent
until u is the root
go to loop;

Multi-valued PN-search: algorithm

- When the values of the leaves are not binary, use an open value binary search to find an upper bound of the value.
 - Set the initial value of v to be 1.
 - loop: PN-search(v)
 - ▶ Prove the value of the search tree is $\geq v$ or disprove it by showing it is < v.
 - If it is proved, then double the value of v and go to loop again.
 - If it is disproved, then the true value of the tree is between $\lfloor v/2 \rfloor$ and v-1.
 - {* Use a binary search to find the exact returned value of the tree. *}
 - $low \leftarrow \lfloor v/2 \rfloor$; $high \leftarrow v-1$;
 - while $low \leq high$ do
 - ightharpoonup if low = high, then return low as the tree value
 - $ightharpoonup mid \leftarrow \lfloor (low + high)/2 \rfloor$
 - \triangleright PN-search(mid)
 - \triangleright if it is disproved, then $high \leftarrow mid 1$
 - \triangleright else if it is proved, then $low \leftarrow mid$

Comments

- Can be used to construct opening books.
- Appear to be good for searching certain types of game trees.
 - Find the easiest way to prove or disprove a conjecture.
 - A dynamic strategy depends on work has been done so far.
- Performance has nothing to do with move ordering.
 - Performances of most previous algorithms depend heavily on whether good move orderings can be found.
- Searching the "easiest" branch may not give you the best performance.
 - Performance depends on the value of each internal node.
- Commonly used in verifying conjectures, e.g., first-player win.
 - Partition the opening moves in a tree-like fashion.
 - Try to the "easiest" way to prove or disprove the given conjecture.
- Take into consideration the fact that some nodes may need more time to process than the other nodes.

More research topics

- Does a variation of a game make it different?
 - Whether Stalemate is draw or win in chess.
 - Japanese and Chinese rules in Go.
 - Chinese and Asia rules in Chinese chess.
 - ...
- Why a position is easy or difficult to human players?
 - Can be used in tutoring or better understanding of the game.

Unique features in games

- Games are used to model real-life problems.
- Do unique properties shown in games help modeling real applications?
 - Chinese chess
 - ▶ Very complicated rules for loops: can be draw, win or loss.
 - ▶ The usage of cannons for attacking pieces that are blocked.
 - Go: the rule of Ko to avoid short cycles, and the right to pass.
 - Chinese dark chess: a chance node that makes a deterministic ply first, and then followed by a random toss.
 - EWN: a chance node that makes a random toss first, and then followed with a deterministic ply later.
 - Shogi: the ability to capture an opponent's piece and turn it into your own.
 - Chess: stalemate is draw.
 - Promotion: a piece may turn into a more/less powerful one once it satisfies some pre-conditions.
 - > Chess
 - ▶ Shogi
 - ▶ Chinese chess: the mobility of a pawn is increased once it advances twice, but is decreased once it reaches the end of a column.

References and further readings (1/4)

- L. V. Allis, M. van der Meulen, and H. J. van den Herik. Proof-number search. $Artificial\ Intelligence,\ 66(1):91-124,\ 1994.$
- David Carmel and Shaul Markovitch. Learning and using opponent models in adversary search. Technical Report CIS9609, Technion, 1996.
- M. Campbell. The graph-history interaction: on ignoring position history. In Proceedings of the 1985 ACM annual conference on the range of computing: mid-80's perspective, pages 278–280. ACM Press, 1985.
- Akihiro Kishimoto and Martin Müller (2004). A General Solution to the Graph History Interaction Problem. AAAI, 644–648, 2004.
- Kuang-che Wu, Shun-Chin Hsu and Tsan-sheng Hsu "The Graph History Interaction Problem in Chinese Chess," Proceedings of the 11th Advances in Computer Games Conference, (ACG), Springer-Verlag LNCS# 4250, pages 165–179, 2005.

References and further readings (2/4)

- C.A. Luckhardt and K.B. Irani in "An algorithmic solution of N-person games", Proceedings of the Fifth National Conference on Artificial Intelligence (AAAI'86), p.158-162, AAAI Press.
- Nathan R. Sturtevan A Comparison of Algorithms for Multiplayer Games Computers and Games, Third International Conference, CG 2002, Edmonton, Canada, July 25-27, 2002.
- Richard Korf "Multi-player alpha-beta pruning" in Artificial Intelligence 48 (1991), p.99-111.
- Condon, J.H. and K. Thompson, "Belle Chess Hardware", In Advances in Computer Chess 3 (ed. M.R.B.Clarke), Pergamon Press, 1982.
- Hsu, Feng-hsiung; Campbell, Murray; Hoane, A. Joseph, Jr. (1995). "Deep Blue System Overview" (PDF). Proceedings of the 9th International Conference on Supercomputing. 1995 International Conference on Supercomputing. Association for Computer Machinery. pp. 240-–244

References and further readings (3/4)

- "Chess Skill in Man and Machine", Chess 4.5 The North-western University Chess Program, L. Atkin & D. Slate, pp. 82—118, Springer-Verlag, 1977.
- Fuller, S.H, Gaschnig, J.G. and Gillogly, J.J. Analysis of the Alpha-beta Pruning Algorithm Carnegie Mellon University. Computer Science Department https://books.google.com.tw/books?id=cOTmlwEACAAJ, 1973.
- C. Browne. Bitboard methods for games ICGA Journal, vol. 37, no. 2, pp. 67–84, 2014
- Intel, Intel Architecture Instruction Set Extension and Future Features Programming Reference, 2021. https://community.intel.com/legacyfs/online/drupal_files/ managed/c5/15/ architecture-instruction-set-extensions-programming-reference.pdf
- AMD, 3D Now! Technology manual, 2000. https://www.amd.com/system/files/TechDocs/21928.pdf

References and further readings (4/4)

 Hung-Jui Chang and Cheng Yueh and Gang-Yu Fan and Ting-Yu Lin and Tsan-sheng Hsu (2021). Opponent Model Selection Using Deep Learning. Proceedings of the 2021 Advances in Computer Games (ACG).