Theory of Computer Games： Concluding Remarks

Tsan－sheng Hsu

徐讚昇

tshsu＠iis．sinica．edu．tw
http：／／www．iis．sinica．edu．tw／～tshsu

Abstract

- Practical issues.
- Smart usage of resources.
\triangleright Time
\triangleright Memory
- Coding efforts
\triangleright Debugging efforts
- Putting everything together.
\triangleright Software tools
\triangleright Fine tuning
- How to know one version is better than the other?
- Concluding remarks

Using resources: time and others

- Time is the most critical resource [Hyatt 1984] [Šolak and Vučković 2009].
- Watch out different timing rules.
- An upper bound on the total amount of time can be used.
\triangleright It is hard to predict the total number of moves in a game in advance. However, you can have some rough ideas.
- Fixed amount of time per ply.
- An upper bound T_{1} on the total amount of time is given, and then you need to play X plys every T_{2} amount of time.

Wall clock time vs CPU time

- A system and O.S. issue.
- CPU time measures the time spent on your process.
- Wall clock time is the turn around, i.e., real, time used.
- In a time-sharing system, many processes are running at the same time.
- Wall clock time >> CPU clock time.
- For tournaments, we only care about wall clock time.

Sample code

- Example (Unix based)
\triangleright CPU time

```
#include <time.h>
double start = (double) clock();
double end = (double) clock();
double cpu_time_in_seconds =
    (end - start) / (double) CLOCK_PER_SEC;
```

\triangleright Wall clock time

```
#include <time.h>
    struct timespec start, end;
clock_gettime(CLOCK_REALTIME, &start);
clock_gettime(CLOCK_REALTIME, &end);
double wall_clock_in_seconds =
    (double)((end.tv_sec+end.tv_nsec*1e-9) -
    (double)(start.tv_sec+start.tv_nsec*1e-9));
```


Commonly time-using rules (1/2)

- Assume you have a total of T time to spend.
- Related terms
- Time has already spent
- Planned time to spent for this ply
\triangleright May be larger or smaller than the actual time spent due to time controlling schemes used.
- Estimate the total number of plys N that you need to play during a game.
- Collect these data empirically
- Do not be over optimistic
- Commonly used formulas
- Fixed
\triangleright time: Spend $\frac{T}{N}$ time for each ply
\triangleright depth: Search up to to depth D for each ply where D is estimated using $\frac{T}{N}$ time before the tournament.
- Dynamic
\triangleright Let t_{i} be the time you have spent at the i th ply, for $i<j$.
\triangleright Plan to spend $\frac{T-\sum_{i=1}^{j-1} t_{i}}{N-j+1}$ time for the j th ply.

Commonly time-using rules (2/2)

- Advanced techniques:
- The amount of time spent during each phase of the game is different.
\triangleright open game: knowledge is needed more than depth; however, need some depth, say 4.
\triangleright middle game: deeper depth is needed
\triangleright end game: depth is on demand
- To avoid extreme cases
- Set a minimum/maximum time to think.
\triangleright This is critical when the number of plys N is going to exceed your prior estimation.
- Set a minimum/maximum depth to search.

Reminders:

- Dynamically adjusting
\triangleright When there is only one possible move, do not think.
\triangleright When the score is stable, cut short the time to spend.
\triangleright When the situation is dangerous, spend more time.
- Watch the time spent by your opponent.
\triangleright When he is going to be out of time, do not let him have a chance to use your time in doing pondering.

When and how to set time usage

- When to check the current time usage
- Iterative deepening: each time entering a new depth
- Using system interrupt on a fixed time interval
- MCTS: each time a selection process begins
- Estimation of time usage
- Iterative deepening
$\triangleright t_{i}$: average time, during the last few plys, spent in searching depth- i
\triangleright prediction: $t_{i+1} \sim\left(t_{i} \cdot \frac{t_{i}}{t_{i-1}}\right), i>1$
\triangleright if the remaining time for this ply is less than the predicted time, then do not initiate a new depth
- MCTS: an almost constant amount of time is spent when a node a expanded and simulated.
\triangleright Open game: takes some time to simulate to the end.
\triangleright End game: takes a shorter time to simulate to the end.

Pondering

- Pondering:
- Use the time when your opponent is thinking.
- Guessing and then pondering.
- System issues.
\triangleright How interrupt is handled?
\triangleright Polling every now and then or triggered by events?
- How pondering is done:
- In your turn, keep the first 2 plys m_{1} and m_{2} in the PV you obtained.
\triangleright You choose to play m_{1}, and then it's the opponent's turn to think.
\triangleright In pondering, you assume (guess) the opponent plays m_{2}.
\triangleright Then you continue to think at the same time your opponent thinks as if he has played m_{2}.
- Guessing right: If the opponent plays m_{2}, then you can continue the pondering search in your turn.
- Guessing wrong: If the opponent plays a move other than m_{2}, then you restart a new search.
- Doing pondering requires the ability to know when a move is made by your opponent using system interrupt, or you need to check from time to time (polling).

Comments about time usage

- Thinking style of human players.
- Using almost no time while you are in the open book.
- More time is spent in the beginning immediately after the program is out of the book, and then slowly decrease the searching time.
- In the endgame phase, use more time in critical positions or when you try to initiate an attack.
- Points to watch:
- Over time: lose no matter how good you are at the moment.
\triangleright When the amount of your time left is low, speed up the search.
\triangleright When the amount of your opponent's time is low and you are more than his, spend less time and wait for his over time.
- Iterative deepening helps in time planning.
\triangleright Need to set a minimum searching depth.
\triangleright Need to set a maximum searching depth to avoid buffer overflow.

Comments

- Do not think at all if you have only one possible logical move left.
- Do not think more if you have found a way to win.
- Search only counter-checking moves if they exist.
- Does the first player really have to think for the first ply?
- Use some open books to save time during the opening.
- When the results of the previous two iterations differ a lot, consider spending more time to verify.
- When you have searched to a certain depth and the results are stable in the previous rounds, consider to stop early.
- Be sure to use some Quiescent search algorithm plus SEE.
- You have searched the minimum depth.
- The recent several depths continuously return the same best ply and almost about the same best score.
\triangleright Need to watch the ratio of failed low or failed high in your searching.
\triangleright When your ratio of failed low is high, then you are too optimistic.
\triangleright When your ratio of failed high it low, then you are too pessimistic.

Using other resources

- Memory
- Using a large transposition table occupies a large space and thus slows down the program.
\triangleright A large number of positions are not visited too often.
- Using no transposition table may cause searching some critical positions too many times.
- CPU/GPU
- Do not fork a process to search branches that have little hope of finding the PV even you have more than enough hardware.
\triangleright You need to wait for its termination.
\triangleright Synchronization takes resources.
- Other resources.

Putting everything together

- Game playing system
- GUI.
- Data structures.
\triangleright Using a 2-D array to store the board and find everything by scanning the board is time consuming.
\triangleright Better strategy: have a list of pieces that are still alive and a board at the same time with proper co-referencing.
- Use some sorts of open books.
- Middle-game searching: usage of a search engine.
\triangleright Evaluation function: knowledge.
\triangleright Main search algorithm: iterative deepening.
\triangleright Enhancements: transposition tables, Quiescent search and possible others.
- Use some sorts of endgame databases.

Debugging and testing

Board

- Use a 1-D array for the board with an extra boarder around the board.
- Example: CDC.
- Array index L means a 2-D location (x, y) where $x=L \% 10$ and $y=L / 10$.
\triangleright Can consider $x=L \& 0 x F$ and $y=L \gg 4$ for faster arithmetics.
- Boarders are at $P[0, *], P[*, 9], P[9, *], P[*, 0]$.
- Advanced data structure: bit boards.
- Using a binary string for the board.
- Remark: avoid using auto-dynamic data structures unless you know them really well.
- MAP/VECTOR in recent C++.

Sample data structures for CDC

```
// boards
// 11,12,13,14,15,16,17,18
// 21,22,23,24,25,26,27,28
// 31,32,33,34,35,36,37,38
// 41,42,43,44,45,46,47,48
struct n_b{
        char inside; // 1 if in the board
        char empty; // whether it is empty
        char dark; // whether it is dark
        char color; // 0 or 1
        char piece;
    } board[(4+2)*(8+2)];
char is_inside(int index){
    return board[index].inside;
}
```


Using pre-computed tables

- Save frequently used computation in tables.
- take advantage of a larger cache in recent CPU's.
- Examples:
- Need to check whether two pieces at L1 and L2 are adjacent.
\triangleright Slow code:

```
x1 = L1 % 10; x2 = L2 % 10;
y1 = L1 / 10; y2 = L2 / 10;
if((abs(x1,x2)==1 && y1==y2) ||
    (abs(y1,y2)==1 && x1==x2))
then return 1; else return 0;
\(\triangleright\) Using pre-computed tables:
    return adjacent[L1][L2];
```

- Need to check whether one piece can capture the other.
- Need to check whether two locations are at the same column or row.
- ...

Checking legal moves (1/2)

```
// [(14+2)*(14+2)] array: 7 types, 2 colors plus dark and empty
// upper cases are red; lower cases are black
// can_eat_by_move[ELEPHANT] [rook] == 1
// can_eat_by_move[rook][ELEPHANT] == 0
// can_eat_by_move[ELEPHANT] [ROOK] == 0
// can_eat_by_move[ELEPHANT] [dark or empty] == 0
// adjaent[X][Y]: whether locations X and Y are inside and adjacent
// same_row_column[X][Y]: where X and Y are inside and
// in the same row or column
char can_eat_by_move[7*2+2][7*2+2];
char is_legal_by_move(int from, int to, int color){
    return is_your_piece(from,color) &&
    adjacent[from][to] &&
    (is_empty(to) ||
    can_eat_by_move[board[from].piece] [board[to].piece]);
}
```


Checking legal moves (2/2)

```
// legal cannon jumps
char is_legal_to_jump(int from, int to, int color){
    return is_your_cannon(from,color) &&
    is_enemy_piece(to,color) &&
    same_row_column[from][to] &&
    there_is_a_piece(from,to);
}
```


Lists of pieces

- Need at least two data structures for the pieces.
- Given a piece type, report its properties.
\triangleright An array of pieces indexing on pieces' types.
\triangleright Sample usage: find your pieces during move generation.
- Given a location, report the piece at this location.
\triangleright Board.
\triangleright Sample usage: checking high level properties such as mobility.

Piece list

```
// plist[RED][0..num_pieces[COLOR]-1] is the list of
// COLOR pieces that are alive and revealed
struct pl{
        int where;
        int piece_type;
        } plist[2][16];
int num_pieces[2]; // number of revealed and alive pieces
// remove the ith piece of color
void remove_piece(int i, int color){
    num_pieces[color]--;
    if(num_pieces[color] > 0){
        // swap the last piece to the ith location
        plist[i] = plist[num_pieces[color]];
    }
}
```


How moves are done

```
#define LEFT -1
#define RIGHT +1
#define DOWN +10
#define UP -10
#define move(IDX,DIR) (IDX+DIR)
// location i can move move_num[i] directions
// which are in move_dir[i][0..move_num[i]-1]
int move_dir[(4+2)*(8+2)][4];
int move_num[(4+2)*(8+2)];
// location i has a cannon
// it can jump jump_num[i] directions
// which are in jump_dir[i][0..jump_num[i]-1]
int jump_dir[(4+2)*(8+2)][4];
int jump_num[(4+2)*(8+2)];
```


Move generation

```
for(i=0;i<num_pieces[color];i++){
    from = plist[i].where;
    for(j=0;j<move_num[from];j++){
        to = from+move_dir[j];
        if(is_legal_by_move(from,to,color)){
            if(is_capture(from,to,color))
                generate_capture(from,to,color);
        else generate_move(from,to,color);
    }
    }
    if(is_legal_to_jump(from,to,color)){
        for(j=0;j<jump_num[from];j++){
            to_dir = jump_dir[j];
            if(to = find_jump(from,to_dir,color))
                generate_jump(from,to,color);
    }
    }
}
```


Software tools

- Using make to do a better software project management.
- Using svn or other version control tools to do code maintaining.
- Using compiler optimization switches to speed up.
- CPU-dependent instructions
- gcc -O2 main.c
- gcc -03 main.c
\triangleright Object code may not be stable using aggressive optimization flags.
- Using gdb (GNU based) or other debugging tools to debug.
- gdb a.out
- Using gprof (GNU based) or other profiling tools to find out the bottleneck of your code execution.
- gcc -pg coins.c
- ./a.out
- gprof a.out gmon.out
- Using an Integrated Development Environment (IDE)
- For Windows based systems, a good IDE is Dev C++.
- Cross-platform: CODE::Blocks, VS code.
- For Unix-based systems, emacs or vim can be set as an IDE.

Makefile example

all: LezGo.c board.h gtp.h gostring.h UCT.h board.c gtp.c gostring.c UCT.c g++ -03 -lm LezGo.c board.h gtp.h gostring.h UCT.h hash.h board.c gtp.c gostring.c UCT.c hash.c -o LezGo.exe UCT: LezGo.c board.h gtp.h UCT.h board.c gtp.c UCT.c liberty.h liberty.c g++ -03 -lm -DUCT LezGo.c board.h gtp.h UCT.h board.c gtp.c UCT.c
liberty.h liberty.c -o LezGo-UCT.exe
LX-all: LezGo.c board.h gtp.h gostring.h UCT.h board.c gtp.c gostring.c UCT.c gcc -O3 -lm LezGo.c board.h gtp.h gostring.h UCT.h hash.h board.c gtp.c gostring.c UCT.c hash.c -o LezGo

LX-UCT: LezGo.c board.h gtp.h gostring.h UCT.h board.c gtp.c gostring.c UCT.c gcc -O3 -lm -DUCT LezGo.c board.h gtp.h gostring.h UCT.h hash.h board.c gtp.c gostring.c UCT.c hash.c -o LezGo-UCT
prof: LezGo.c board.h gtp.h gostring.h UCT.h board.c gtp.c gostring.c UCT.c g++ -O3 -g -pg -lm -DUCT LezGo.c board.h gtp.h gostring.h UCT.h hash.h
board.c gtp.c gostring.c UCT.c hash.c liberty.h liberty.c -o LezGo-prof
debug: LezGo.c board.h gtp.h gostring.h UCT.h board.c gtp.c gostring.c UCT.c g++ -g -lm -DUCT LezGo.c board.h gtp.h gostring.h UCT.h hash.h board.c gtp.c gostring.c UCT.c hash.c liberty.h liberty.c -o LezGo-prof
clean: LezGo
rm -rf LezGo

gdb example

Profiling

tshsu@austin:~/tcg/2016/sLides/sLide13\$ gprof a.out gmon.out
Flat profile:
Each sample counts as 0.01 seconds.
\% cumulative self
\% self
time seconds
57.71

Call graph

Code for the sample profile (1/4)

```
// find the marginal pdf of a trinomial distribution
#include <stdio.h>
#include <stdlib.h>
//#define MAX_TRIALS 1000000000 // number of trials
#define MAX_TRIALS 1000000 // number of trials
#define MIN_N 10
#define MAX_N 50
#define N_INCR 10
#define MAX_VAL (2*MAX_N+1)
int win = 1; // points for a win
int draw = 0; // points for a draw
int loss = -1; // points for a loss
// prwin: win prob, prdraw: draw prob, 1-prwin-prdraw: lose prob
double pr_win = 0.3918; // Pr of win by the first player
double pr_draw = 0.3161; // Pr of draw by the first player
long int seedval = 5431276231; // a random magic number
```


Code for the sample profile (2/4)

```
// toss a coin with 3 outcomes
int coin(double prwin, double prdraw)
{
    double t;
    if((t = drand48()) <= prdraw) return draw; // draw
    else if(t <= prdraw+prwin) return win; // win
    else return loss; // loss
}
// the score of a pair of games
int pair_toss()
{
    int score=0;
    score += coin(pr_win,pr_draw); //first player
    score += coin(1.0 - pr_win - pr_draw,pr_draw); //second player
    return score;
}
main()
{
    int number;
    int s;
    int n;
    int i,j;
    int values[MAX_VAL];
    int accu,val;
    srand48(seedval);
```


Code for the sample profile (3/4)

```
for(n=MIN_N;n<=MAX_N;n+=N_INCR){
    for(j=0;j<MAX_VAL;j++) values[j] = 0;
    // perform MAX_TRIALS experiments
    for(number = 0; number < MAX_TRIALS; number++){
        // perform n trials
        val = 0;
        for(i=0;i<n;i++){
            val += pair_toss();
        }
        if(val < 0) val = -val;
        values[val]++;
    }
    // print header of each line
    accu = 0;
    for(s=0;s<=n*2;s++){
        accu += values[s];
        printf("n=%3d s=%3d Pr (|Xn|<=s)=%10d/%d\n",n,s,accu,MAX_TRIALS);
    }
```


Code for the sample profile (4/4)

```
        // output distribution
        {
            int cc;
            double f1,f2;
            cc = 0;
            accu = 0;
            f2 = MAX_TRIALS;
            for(s=0;s<=n*2;s++){
                accu += values[s];
                f1 = accu;
                printf("& %4.3f ",f1/f2);
                cc++;
                if(cc % 7 == 0) printf("\\\\\\\hline\n");
            }
            printf("\n");
        }
    }
}
```


Comments

- Coding efforts.
- Iterative improving.
\triangleright Build a working version using a minimum effort.
\triangleright Add features one at a time.
\triangleright Always keep a working version in the process.
- Build a testing script so that it will test all previous tested features when a new one is added.
$\triangleright A$ new feature may cause an old function to have new bugs.
- Understand your bottleneck and find the right way to remedy it.
- Maintain a test log to know which tricks are good and which are not.

Testing

- You have two versions P_{1} and P_{2}.
- You make the 2 programs play against each other using the same resource constraints.
- Self-play.
- To make it fair, during a round of testing, the numbers of a program playing first and second are equal.
- After a few rounds of testing, how do you know P_{1} is better or worse than P_{2} ?
- How many rounds are needed to verify it?

How to know you are successful

- Assume during a self-play experiment, two copies of the same program are playing against each other.
- Since two copies of the same program are playing against each other, the outcome of each game is an independent random trial and can be modeled as a trinomial random variable.
- Assume for a copy playing first,

$$
\operatorname{Pr}\left(\text { game }_{\text {first }}\right)= \begin{cases}p & \text { if win } \\ q & \text { if draw } \\ 1-p-q & \text { if lose }\end{cases}
$$

- Hence for a copy playing second,

$$
\operatorname{Pr}\left(\text { game }_{\text {last }}\right)= \begin{cases}1-p-q & \text { if } \mathbf{w i n} \\ q & \text { if draw } \\ p & \text { if lose }\end{cases}
$$

Outcome of self-play games

- Assume $2 n$ games, $g_{1}, g_{2}, \ldots, g_{2 n}$ are played.
- In order to offset the initiative, namely first player's advantage, each copy plays first for n games.
\triangleright We also assume each copy alternatives in playing first.
- Let $g_{2 i-1}$ and $g_{2 i}$ be the i th pair of games.
- Let the outcome of the i th pair of games be a random variable X_{i} from the prospective of the copy who plays $g_{2 i-1}$.
- Assume we assign a score of w for a game won, a score of 0 for a game drawn and a score of $-w$ for a game lost.
- The outcome of X_{i} and its occurrence probability is thus

$$
\operatorname{Pr}\left(X_{i}\right)= \begin{cases}p(1-p-q) & \text { if } X_{i}=2 w \\ p q+(1-p-q) q & \text { if } X_{i}=w \\ p^{2}+(1-p-q)^{2}+q^{2} & \text { if } X_{i}=0 \\ p q+(1-p-q) q & \text { if } X_{i}=-w \\ (1-p-q) p & \text { if } X_{i}=-2 w\end{cases}
$$

How good we are against the baseline?

- Properties of X_{i}.
- The mean $E\left(X_{i}\right)=0$.
- The standard deviation of X_{i} is

$$
\sqrt{E\left(X_{i}^{2}\right)}=w \sqrt{2 p q+(2 q+8 p)(1-p-q)}
$$

and it is a multi-nominally distributed random variable.

- When you have played n pairs of games, what is the probability of getting a score of $s, s>0$?
- Let $X[n]=\sum_{i=1}^{n} X_{i}$.
\triangleright The mean of $X[n], E(X[n])$, is 0 .
\triangleright The standard deviation of $X[n], \sigma_{n}$, is $w \sqrt{n} \sqrt{2 p q+(2 q+8 p)(1-p-q)}$,
- If $s>0$, we can calculate the probability of $\operatorname{Pr}(|X[n]| \leq s)$ using well known techniques from calculating multi-nominal distributions.
\triangleright When n is large, it is very close to a normal distribution.

Practical setup

- Chinese chess
- $w=1, p \sim 0.3918, q \sim 0.3161$, and $1-p-q \sim 0.2920$.
\triangleright Data source: 63,548 games played among masters recorded at www.dpxq.com.
\triangleright This means the first player has a better chance of winning.
- The mean of $X[n], E(X[n])$, is 0 .
- The standard deviation of $X[n], \sigma_{n}$, is

$$
w \sqrt{n} \sqrt{2 p q+(2 q+8 p)(1-p-q)}=\sqrt{1.16 n}
$$

- When $n=100, \sigma_{100} \sim 10.8$.

Results (Chinese chess) (1/3)

$\operatorname{Pr}(\|X[n]\| \leq s)$	$s=0$	$s=1$	$s=2$	$s=3$	$s=4$	$s=5$	$s=6$
$n=10, \sigma_{10}=3.67$	0.108	0.315	0.502	0.658	0.779	0.866	0.924
$n=20, \sigma_{20}=5.19$	0.076	0.227	0.369	0.499	0.613	0.710	0.789
$n=30, \sigma_{30}=6.36$	0.063	0.186	0.305	0.417	0.520	0.612	0.693
$n=40, \sigma_{40}=7.34$	0.054	0.162	0.266	0.366	0.460	0.546	0.624
$n=50, \sigma_{50}=8.21$	0.049	0.145	0.239	0.330	0.416	0.497	0.571

Results (Chinese chess) (2/3)

$\operatorname{Pr}(\|X[n]\| \leq s)$	$s=7$	$s=8$	$s=9$	$s=10$	$s=11$	$s=12$	$s=13$
$n=10, \sigma_{10}=3.67$	0.960	0.981	0.991	0.997	0.999	1.000	1.000
$n=20, \sigma_{20}=5.19$	0.851	0.899	0.933	0.958	0.974	0.985	0.991
$n=30, \sigma_{30}=6.36$	0.761	0.819	0.865	0.902	0.930	0.951	0.967
$n=40, \sigma_{40}=7.34$	0.693	0.753	0.804	0.847	0.883	0.912	0.934
$n=50, \sigma_{50}=8.21$	0.639	0.699	0.753	0.799	0.839	0.872	0.900

Results (Chinese chess) (3/3)

$\operatorname{Pr}(\|X[n]\| \leq s)$	$s=14$	$s=15$	$s=16$	$s=17$	$s=18$	$s=19$	$s=20$
$n=10, \sigma_{10}=3.67$	1.000	1.000	1.000	1.000	1.000	1.000	1.000
$n=20, \sigma_{20}=5.19$	0.995	0.997	0.999	0.999	1.000	1.000	1.000
$n=30, \sigma_{30}=6.36$	0.978	0.986	0.991	0.994	0.997	0.998	0.999
$n=40, \sigma_{40}=7.34$	0.952	0.966	0.976	0.983	0.989	0.992	0.995
$n=50, \sigma_{50}=8.21$	0.923	0.941	0.956	0.967	0.976	0.983	0.988

Statistical behaviors

- Hence assume you have two programs that are playing against each other and have obtained a score of $s+1, s>0$, after trying n pairs of games.
- Assume $\operatorname{Pr}(|X[n]| \leq s)$ is say $\mathbf{0 . 9 5}$.
\triangleright Then this result is statistically meaningful, that is a program is better than the other, because the chance of $|X[n]|>s$ only happens with a low probability of 0.05 .
- Assume $\operatorname{Pr}(|X[n]| \leq s)$ is say $\mathbf{0 . 2 2}$.
\triangleright Then this result is not statistically meaningful, because $|X[n]|>s$ only happens with a high probability of 0.78.
- In general, it is a rare case in a normal distribution, e.g., less than 4.55% of chance that it will happen, that your score is more than $2 \sigma_{n}$.
- For our setting, if you perform n pairs of games, and your net score is more than $2 * \sqrt{1.16} * \sqrt{n} \simeq 2.154 \sqrt{n}$, then it means something statistically.
- You can also decide your "definition" of "a rare case".

Practical setup for self-play with no draws

- For self play experiments with no draws
- The mean of $X[n], E(X[n])$, is 0 .
- The standard deviation of $X[n], \sigma_{n}$, is

$$
w \sqrt{n} \sqrt{2 p q+(2 q+8 p)(1-p-q)}
$$

Examples

- For self play experiments with no draws.
- Example I: $w=1, p=0.5$ and $q=0$. Then $\sigma_{n}=\sqrt{2 n}$.
- When $n=10, \sigma_{10} \sim 4.47$.
$\triangleright \max$ score $=20, \min$ score $=0$.
\triangleright if score >8.94, then the two tested programs may be different in quality.
- When $n=100, \sigma_{100} \sim 14.1$.
$\triangleright \max \operatorname{score}=200$, min score $=0$.
\triangleright if score >28.2, then the two tested programs may be different in quality.
- Example II (EWN): $w=1, \quad p=0.6$ and $q=0$. Then $\sigma_{n}=\sqrt{1.92 n}$.
- When $n=10, \sigma_{10} \sim 4.38$.
$\triangleright \max$ score $=20$, min score $=0$.
\triangleright if score >8.76, then the two tested programs may be different in quality.
- When $n=100, \sigma_{100} \sim 13.86$.
$\triangleright \max \operatorname{score}=200$, min $\operatorname{score}=0$.
\triangleright if score >27.71, then the two tested programs may be different in quality.

Concluding remarks

- Consider your purpose of studying a game:
- It is good to solve a game completely.
\triangleright You can only solve a game once!
- It is better to acquire the knowledge about why the game wins, draws or loses.
\triangleright You can learn lots of knowledge.
- It is even better to discover knowledge in the game and then use it to make the world a better place.
\triangleright Understand the fundamental properties such as how rules and boundary affect the game behavior and use that to improve our life.
\triangleright How fun is a game and why?
- Try to use the techniques learned from this course in other areas!

References and further readings

- R. M. Hyatt. Using time wisely. International Computer Game Association (ICGA) Journal, pages 4-9, 1984.
- R. Šolak and R. Vučković. Time management during a chess game, ICGA Journal, no. 4, vol. 32, pp. 206-220, 2009.

