
Chance Node Searching

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1

Abstract

Searching stochastic games
Alpha-beta based techniques

• Star0: exhaustive enumeration without cuts
• Star0.5: cuts in between choices
• Star1: cuts inside choices using bounds from a move ordering
• Star2: use a probing strategy to find a good move ordering
• Star2.5: using an even better probing strategy

MCTS based approaches
• Sparse sampling

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 2

Stochastic games

Stochastic games have nodes whose outcome or move selections
cannot be decided completely by players.

• Pure stochastic: no action can be taken by a player before or after a
random toss.

▷ A dice game.

• A priori chance node: a random toss is made first and then you make
a decision based on the toss.

▷ EinStein Würfelt Nicht (EWN) [Lorentz et al ’12]: you make a random
toss to decide what pieces that you can move, and then you make a
move.

• A posteriori chance node: you make a decision first and then followed
by a random toss.

▷ Chinese dark chess [Yen et al ’14]: you pick a dark piece to flip, and
then the piece is revealed with the result decided by a random toss

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 3

Determinacy (1/2)

Determinacy is the degree that a player can control in playing
the game.

• Usually from a fractional number to 1, where 1 means a deterministic
game.

• May be different as the game progresses.
• Roughly equal to the chance when you want to do a particular ply, the
chance that you can do it.

▷ Each ply may have a different determinacy.
▷ Expected determinacy: average over all possible plys.

In most, but not all games, having the right to move (initiative)
is beneficial. Hence having a high determinacy helps.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 4

Determinacy (2/2)

For a ply of moving a piece w in EWN, it is y+1
6 where y is the

cardinality of the set of removed pieces in the two continuous
neighboring segments adjacent to the piece numbered w.

• When a piece is removed, the determinacy of some piece(s) increase.
• Notes:

▷ When both players have only 1 piece, the game is deterministic.
▷ When one player has 1 piece and the other player has more than 1

pieces, the game is “half” stochastic which makes an interesting special
case for a stochastic game.

For a flipping ply in CDC, it is x
|D| where x is the number of

kinds of pieces you wish to have and |D| is the number of
unrevealed pieces.

• At first, the determinacy is low.
• After each flip, |D| decreases by 1.
• When |D| is 1, x = 1 and hence the determinacy is 1. However, the
determinacy may be 1 even when |D| > 1 since all unrevealed pieces
can be of the same kind.

• When determinacy = 1, CDC becomes a deterministic game.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 5

Searching stochastic games

Because of a coin toss, the search space is greatly enlarged.
• Example: In the opening phase, Chinese dark chess game tree has a
very large branching factor.

▷ After using reduction in symmetry, the first ply has 7 ∗ 8 possible out-
comes.

▷ The second ply has upto 14 ∗ 31 possible outcomes which is larger than
19x19 Go.

Maybe need to compute all possible results from the coin toss
to decide a good playing strategy.

• The expected value of all possible outcomes is needed which may make
it difficult to apply any cuts.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 6

Search with chance nodes

Example: Chinese dark chess (CDC)
• Two-player, zero sum
• Complete information
• Perfect information
• Stochastic
• There is a chance node during searching.

▷ The value of a chance node is a distribution, not a fixed value.

Previous work
• Alpha-beta based [Ballard 1983]
• Monte-Carlo based [Lancoto et al 2013] [Jouandeau and Cazenave ’14]

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 7

Example (1/4)

It’s BLACK turn and BLACK has 6 different possible legal
moves which includes the four different moving moves made by
its elephant and the two flipping moves at a1 or a8.

• It is difficult for BLACK to secure a win by moving its elephant along
any of the 3 possible directions, namely up, right or left, or by capturing
the RED pawn at the left hand side.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 8

Example (2/4)

If BLACK flips a1, then there are 2 possible cases.
• If a1 is BLACK cannon, then it is difficult for RED to win.

▷ RED guard is in danger.

• If a1 is BLACK king, then it is difficult for BLACK to lose.
▷ BLACK king can go up through the right.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 9

Example (3/4)

If BLACK flips a8, then there are 2 possible cases.
• If a8 is BLACK cannon, then it is easy for RED to win.

▷ RED cannon captures it immediately.

• If a8 is BLACK king, then it is also easy for RED to win.
▷ RED cannon captures it immediately.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 10

Example (4/4)

Conclusion:
• It is bad for BLACK to move its elephant.
• It is vary bad for BLACK to flip a8.
• It is better for BLACK to flip a1.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 11

Example: illustration

Conclusion:
• It is vary bad for BLACK to flip a8.
• It is bad for BLACK to move its elephant.
• It is better for BLACK to flip a1.

a1 a8

cannon kingcannon

king

b6−b7
b6−b5

b6−c6

b6−a6

bad bad good bad++ badbad++ bad−− good++

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 12

Basic ideas for searching chance nodes

Assume a chance node x has a score probability distribution
function Pr(∗) with the range of possible outcomes from 1 to
N where N is a positive integer.

• For each possible outcome i, we need to compute score(i).

• The expected value E =
∑N

i=1 score(i) ∗ Pr(x = i).

• The minimum value is m = minNi=1{score(i) | Pr(x = i) > 0}.
• The maximum value is M = maxNi=1{score(i) | Pr(x = i) > 0}.

Example: open game in Chinese dark chess.
• For the first ply, N = 14 ∗ 32.

▷ Using symmetry, we can reduce it to 7*8.

• We now consider the chance node of flipping the piece at the cell a1.
▷ N = 14.
▷ Assume x = 1 means a BLACK King is revealed and x = 8 means a

RED King is revealed.
▷ Then score(1) = score(8) since the first player owns the revealed king

no matter its color is.
▷ Pr(x = 1) = Pr(x = 8) = 1/14.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 13

Illustration

...

max

min

chance

expected value

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 14

The probability distribution

General case
• Assume a chance node x has c choices k1, . . . , kc.
• The ith choice happens with the probability Pri.

▷
∑c

i=1 Pri = 1

Special cases
• Special case 1, called uniform (EQU): Pri = 1/c.

▷ All choices happen with an equal chance.
▷ Example: EinStein Würfelt Nicht (EWN).

• Special case 2, called GCD: Pri = wi/D where each wi is an integer
and D is also an integer.

▷ D =
∑c

i=1 wi as in Chinese dark chess.

The above two special cases usually happen in game playing and
can be used to do some optimization in arithmetic calculations.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 15

Comments about EWN (1/4)

∑c
i=1Pri is always 1.

In EWN when there are only two pieces left, it appears that
the above claim is not true.

• Example I: 1 and 6 with both probabilities being selected may look like
5
6.

▷ Assume the winning rates in example I are 0.75 and 0.23 for 1 and 6
being picked respectively.

• Example II: 1 and 2 may look like the probability of 1 being selected is
1
6, but is 5

6 for 2 to be picked.
▷ Assume the winning rates in example II are also 0.75 and 0.23 for 1

and 2 being picked respectively.

Example I is favored over example II not because the sum of
probabilities is larger, but because the average determinacy is
larger!!!

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 16

Illustration for EWN

max

min

chance

expected value

2 3 4 5
6

direction

...

pick piece &

choice =1

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 17

Comments about EWN (2/4)

EWN always has SIX choices: uniform case.
Example I:

• For choices 1 to 5, we can choose to move piece 1.
• For choices 2 to 6, we can choose to move piece 6.
• It appears that for choices 2 to 5, we have an equal chance of choosing
either piece 1 or 6.

▷ However, due to the difference in winning rates, we always choose piece
1.

• This means 1 is chosen with a probability of 5
6 and 6 is picked with a

probability of 1
6.

▷ Hence the expected winning rate is 5 ∗ 1
6 ∗ 0.75 + 1 ∗ 1

6 ∗ 0.23 = 0.6633

Example II:
• For choice 1, we can choose to move piece 1.
• For choices 2 to 6, we can choose to move piece 2.
• This means 1 is chosen with a probability of 1

6 and 2 is picked with a
probability of 5

6.

▷ Hence the expected winning rate is 1 ∗ 1
6 ∗ 0.75 + 5 ∗ 1

6 ∗ 0.23 = 0.3167

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 18

Comments about EWN (3/4)

In example I above
• Only ONE piece can be picked when dice = 1 or 6.
• If piece i is not being captured, then choice i can only pick that piece.
• When dice is between 2 and 5, if the corresponding piece is being
removed, then it has at most TWO pieces to choose from.

Average determinacy
• Example I:

▷ Assume three legal plys for each piece.
▷ For each ply, you have a determinacy of 5

6.

▷ Average determinacy is also 5
6.

• Example II:
▷ Assume three legal plys for each piece.
▷ For a ply moving piece 1, you have a determinacy of 1

6.

▷ For a ply moving piece 2, you have a determinacy of 5
6.

▷ Average determinacy is thus 3
6.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 19

Comments about EWN (4/4)

Other possible important affecting factors considering only the
material values without positional information:

• Variance of determinacy.
• Number of pieces left.

Using transposition tables will help a lot in searching when
some pieces are removed!!!

• Example: when the pieces left are 1 and 6, then dice = 2 to 5 makes
no difference in searching.

▷ You first search the subtree T1 for dice =1, and then the subtree T6 for
dice = 6.

▷ Assume exp best(Ti) is the returned expected best value for Ti.

▷ Then the overall expected best value is 1
6(exp best(T1)+exp best(T6)+

4 · k) where k = max{exp best(T1), exp best(T6)}.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 20

Algorithm: Chance Search with Star0 (MAX)

Algorithm F3.0′(position p, value alpha, value beta, integer
depth)

• // max node
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return f(p) else begin
▷ m := −∞
▷ for i := 1 to b do
▷ begin
▷ if pi is to play a chance node x

then t := Star0 F3.0′(pi,x,max{alpha,m}, beta, depth − 1)

▷ else t := G3.0′(pi,max{alpha,m}, beta, depth − 1)
▷ if t > m then m := t
▷ if m is max or m ≥ beta then return(m) // beta cut off
▷ end

• end;
• return m

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 21

Algorithm: Chance Search with Star0 (MIN)

Algorithm G3.0′(position p, value alpha, value beta, integer
depth)

• // min node
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return f(p) else begin
▷ m := ∞
▷ for i := 1 to b do
▷ begin
▷ if pi is to play a chance node x

then t := Star0 G3.0′(pi,x,alpha, min{beta,m}, depth − 1)

▷ else t := F3.0′(pi, alpha,min{beta,m}, depth − 1)
▷ if t < m then m := t
▷ if m is min or m ≤ alpha then return(m) // alpha cut off
▷ end

• end;
• return m

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 22

Algorithm: Star0, uniform case (MAX)

version when all choices have equal probabilities
max node
Algorithm Star0 EQU F3.0′(position p, node x, value alpha,
value beta, integer depth)

• // a max chance node x with c equal probability choices k1, . . ., kc
• // exhaustive search all possibilities and return the expected value
• determine the possible values of the chance node x to be k1, . . . , kc
• vsum = 0; // initial sum of expected value
• for i = 1 to c do
• begin

▷ let pi be the position of assigning ki to x in p;
▷ vsum += G3.0′(pi,−∞, +∞,depth);

• end

return vsum/c; // return the expected score

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 23

Algorithm: Star0, uniform case (MIN)

version when all choices have equal probabilities
min node
Algorithm Star0 EQU G3.0′(position p, node x, value alpha,
value beta, integer depth)

• // a min chance node x with c equal probability choices k1, . . ., kc
• // exhaustive search all possibilities and return the expected value
• determine the possible values of the chance node x to be k1, . . . , kc
• vsum = 0; // initial sum of expected value
• for i = 1 to c do
• begin

▷ let pi be the position of assigning ki to x in p;
▷ vsum += F3.0′(pi,−∞, +∞,depth);

• end

return vsum/c; // return the expected score

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 24

Star0: note

depth stays the same in Star0 search since we are unwrapping a
chance node.
The search window from normal alpha-beta pruning cannot be
applied in a chance node searching since we are looking at the
average of the outcome.

• It is okay for one choice to have a very large or small value because it
may be evened out by values from other choices.

• Thus the search window is reset to (−∞,∞).

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 25

Algorithm: Star0, general case (MAX)

Algorithm Star0 F3.0′(position p, node x, value alpha, value
beta,integer depth)

• // a max chance node x with c choices k1, . . ., kc
• // the ith choice happens with the probability Pri
• // exhaustive search all possibilities and return the expected value
• determine the possible values of the chance node x to be k1, . . . , kc
• vexp = 0; // initial sum of expected value
• for i = 1 to c do
• begin

▷ let pi be the position of assigning ki to x in p;
▷ vexp += Pri ∗ G3.0′(pi,−∞, +∞,depth);

• end

return vexp; // return the expected score

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 26

Algorithm: Star0, general case (MIN)

Algorithm Star0 G3.0′(position p, node x, value alpha, value
beta,integer depth)

• // a min chance node x with c choices k1, . . ., kc
• // the ith choice happens with the probability Pri
• // exhaustive search all possibilities and return the expected value
• determine the possible values of the chance node x to be k1, . . . , kc
• vexp = 0; // initial sum of expected value
• for i = 1 to c do
• begin

▷ let pi be the position of assigning ki to x in p;
▷ vexp += Pri ∗ F3.0′(pi,−∞, +∞,depth);

• end

return vexp; // return the expected score

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 27

Algorithm: Star0, GCD case (MAX)

Algorithm Star0 GCD F3.0′(position p, node x, value alpha,
value beta, integer depth)

• // a max chance node x with c choices k1, . . ., kc
• // whose occurrence probability are w1/D, . . ., wc/D
• // and each wi is an integer
• // exhaustive search all possibilities and return the expected value
• determine the possible values of the chance node x to be k1, . . . , kc
• vsum = 0; // initial sum of weight values
• for i = 1 to c do
• begin

▷ let pi be the position of assigning ki to x in p;
▷ vsum += wi * G3.0′(pi,−∞, +∞,depth);

• end

return vsum/D; // return the expected score

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 28

Algorithm: Star0, GCD case (MIN)

Algorithm Star0 GCD G3.0′(position p, node x, value alpha,
value beta, integer depth)

• // a min chance node x with c choices k1, . . ., kc
• // whose occurrence probability are w1/D, . . ., wc/D
• // and each wi is an integer
• // exhaustive search all possibilities and return the expected value
• determine the possible values of the chance node x to be k1, . . . , kc
• vsum = 0; // initial sum of weight values
• for i = 1 to c do
• begin

▷ let pi be the position of assigning ki to x in p;
▷ vsum += wi * F3.0′(pi,−∞, +∞,depth);

• end

return vsum/D; // return the expected score

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 29

Ideas for improvements

During a chance search, an exhaustive search method is used
without any pruning.
Ideas for further improvements

• When some of the choices turn out very bad or good results, we know
information about lower/upper bounds of the final value.

• When you are in advantage, search for a bad choice first.
▷ If the worst choice cannot is not too bad, then you can take this chance.

• When you are in disadvantage, search for a good choice first.
▷ If the best choice cannot is not good enough, then there is no need to

take this chance.

Examples: the average of two drawings of a dice is similar to a
position with 2 choices with scores in [1..6].

• If the first drawing is 5, then bounds of the average becomes
▷ lower bound is 3
▷ upper bound is 5.5.

• If the first drawing is 1, then bounds of the average becomes
▷ lower bound is 1
▷ upper bound is 3.5.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 30

Bounds in a chance node

Assume the various possibilities of a chance node is evaluated
one by one in the order that at the end of phase i, the ith
choice is evaluated.

• Assume vmin ≤ score(i) ≤ vmax.

What are the lower and upper bounds, namely mi and Mi, of
the expected value of the chance node immediately after the
end of phase i?

• i = 0.
▷ m0 = vmin

▷ M0 = vmax

• i = 1, we first compute score(1), and then know
▷ m1 ≥ score(1) ∗ Pr(x = 1) + vmin ∗ (1 − Pr(x = 1)), and
▷ M1 ≤ score(1) ∗ Pr(x = 1) + vmax ∗ (1 − Pr(x = 1)).

• · · ·
• i = i∗, we have computed score(1), . . . , score(i∗), and then know

▷ mi∗ ≥
∑i∗

i=1 score(i) ∗ Pr(x = i) + vmin ∗ (1 −
∑i∗

i=1 Pr(x = i)), and

▷ Mi∗ ≤
∑i∗

i=1 score(i) ∗ Pr(x = i) + vmax ∗ (1 −
∑i∗

i=1 Pr(x = i)).

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 31

Star0.5: uniform case (1/3)

For simplicity, let’s assume Pr(x = i) = 1
c, that is, the uniform

case.
For all i, and the evaluated value of the ith choice is vi.
Assume the search window entering a chance node with N = c
choices is (alpha, beta).
The value of a chance node after the first i choices are explored
can be expressed as

• an expected value Ei = vsumi/c obtained so far;

▷ vsumi =
∑i

j=1 vj

▷ This value is returned only when all choices are explored.
⇒ The expected value of an un-explored child shouldn’t be

vmin+vmax
2 .

• a range of possible values [mi,Mi].

▷ mi = (
∑i

j=1 vj + vmin · (c − i))/c

▷ Mi = (
∑i

j=1 vj + vmax · (c − i))/c

• Invariants:
▷ Ei ∈ [mi,Mi]
▷ Ec = mc = Mc

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 32

Star0.5: uniform case (2/3)

Let mi and Mi be the current lower and upper bounds,
respectively, of the expected value of this chance node
immediately after the evaluation of the ith node.

• mi = (
∑i−1

j=1 vj + vi + vmin · (c− i))/c

• Mi = (
∑i−1

j=1 vj + vi + vmax · (c− i))/c

How to incrementally update mi and Mi:
• m0 = vmin
• M0 = vmax
•

mi = mi−1 + (vi − vmin)/c (1)

•
Mi = Mi−1 + (vi − vmax)/c (2)

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 33

Star0.5: uniform case (3/3)

Let mi and Mi be the current lower and upper bounds,
respectively, of the expected value of this chance node
immediately after the evaluation of the ith node.

• mi = (
∑i−1

j=1 vj + vi + vmin · (c− i))/c

• Mi = (
∑i−1

j=1 vj + vi + vmax · (c− i))/c

The current search window is (alpha, beta).
• No more searching is needed when

▷ mi ≥ beta, chance node cut off I;
⇒ The lower bound found so far is good enough.
⇒ Similar to a beta cut off.
⇒ The returned value is mi.

▷ Mi ≤ alpha, chance node cut off II.
⇒ The upper bound found so far is bad enough.
⇒ Similar to an alpha cut off.
⇒ The returned value is Mi.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 34

Example for Star0.5

Assumption:
• The range of the scores of Chinese dark chess is [−10, 10] inclusive,
alpha = −10 and beta = 10.

• N = 7.
• Pr(x = i) = 1/N = 1/7.

i = 0
• m0 = −10.
• M0 = 10.

i = 1
• if score(1) = −2, then

▷ m1 = −2 ∗ 1/7 + −10 ∗ 6/7 = −62/7 ≃ −8.86.
▷ M1 = −2 ∗ 1/7 + 10 ∗ 6/7 = 58/7 ≃ 8.26.

• if score(1) = 3, then
▷ m1 = 3 ∗ 1/7 + −10 ∗ 6/7 = −57/7 ≃ −8.14.
▷ M1 = 3 ∗ 1/7 + 10 ∗ 6/7 = 63/7 = 9.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 35

Star0.5: uniform case (MAX)

Algorithm Star0.5 EQU F3.0′(position p, node x, value alpha,
value beta, integer depth)

• // a max chance node x with c equal probability choices k1, . . ., kc
• determine the possible values of the chance node x to be k1, . . . , kc
• m0 = vmin, M0 = vmax // initial lower and upper bounds
• vsum = 0; // initial sum of expected values
• for i = 1 to c do
• begin

▷ let pi be the position of assigning ki to x in p;
▷ t := G3.0′(pi,vmin,vmax,depth)
▷ mi = mi−1 + (t − vmin)/c, Mi = Mi−1 + (t − vmax)/c; // update the

bounds
▷ if mi ≥ beta then return mi; // failed high, chance node cut off I
▷ if Mi ≤ alpha then return Mi; // failed low, chance node cut off II
▷ vsum += t;

• end

return vsum/c;

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 36

Star0.5: uniform case (MIN)

Algorithm Star0.5 EQU G3.0′(position p, node x, value alpha,
value beta, integer depth)

• // a min chance node x with c equal probability choices k1, . . ., kc
• determine the possible values of the chance node x to be k1, . . . , kc
• m0 = vmin, M0 = vmax // initial lower and upper bounds
• vsum = 0; // initial sum of expected values
• for i = 1 to c do
• begin

▷ let pi be the position of assigning ki to x in p;
▷ t := F3.0′(pi,vmin,vmax,depth)
▷ mi = mi−1 + (t − vmin)/c, Mi = Mi−1 + (t − vmax)/c; // update the

bound
▷ if mi ≥ beta then return mi; // failed high, chance node cut off I
▷ if Mi ≤ alpha then return Mi; // failed low, chance node cut off II
▷ vsum += t;

• end

return vsum/c;

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 37

Illustration: Star0.5

...

max

min

chance

...1
i−1

i c

[m[i−1],M[i−1]]

v[1] v[i−1]

? ? ?

(alpha,beta)

(Vmin,Vmax)

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 38

Ideas for further improvements (1/2)

The above two cut offs comes from each time a choice is
completely searched.

• When mi ≥ beta, chance node cut off I,
▷ which means (

∑i−1
j=1 vj + vi + vmin · (c − i))/c ≥ beta.

• When Mi ≤ alpha, chance node cut off II,
▷ which means (

∑i−1
j=1 vj + vi + vmax · (c − i))/c ≤ alpha.

Further cut off can be obtained during searching a choice.
• Assume after searching the first i− 1 choices, no chance node cut off
happens.

• Before searching the ith choice, we know that if vi is large enough,
then it will raise the lower bound of the chance node which may trigger
a chance node cut off I.

• How large should vi be for this to happen?
▷ chance node cut off I:

(
∑i−1

j=1 vj + vi + vmin · (c − i))/c ≥ beta

▷ ⇒ vi ≥ Bi−1 = c · beta − (
∑i−1

j=1 vj + vmin ∗ (c − i))

▷ Bi−1 is the threshold for cut off I to happen.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 39

Ideas for further improvements (2/2)

Similarly,
• Assume after searching the first i− 1 choices, no chance node cut off
happens.

• Before searching the ith choice, we know that if vi is small enough,
then it will lower the upper bound of the chance node which may
trigger a chance node cut off II.

• How small should vi be for this to happen?
▷ chance node cut off II:

(
∑i−1

j=1 vj + vi + vmax · (c − i))/c ≤ alpha

▷ ⇒ vi ≤ Ai−1 = c · alpha − (
∑i−1

j=1 vj + vmax ∗ (c − i))

▷ Ai−1 is the threshold for cut off II to happen.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 40

Example: Star1

Example: the average of 2 drawings of a dice is similar to a
position with 2 choices with scores in [1..6].

• [m0,M0] = [vmin, vmax] = [1, 6]
• Assume (alpha, beta) = (3.25, 3.95)

The first drawing v1 = 3. Then bounds of the average:
• lower bound is 2; upper bound is 4.5.
• [m1,M1] = [2, 4.5]

Before the second drawing, the search will
• failed-low if v2+3

2 ≤ alpha = 3.25 which means the search fails low if
v2 ≤ 3.5.

• failed-high if v2+3
2 ≥ beta = 3.95 which means the search fails high if

v2 ≥ 4.9.

Hence we can set the search window for the second search to
be (3.5, 4.9) instead of [1, 6].

▷ We only need to do a test on whether v2 is 4 or not.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 41

Formulas for the uniform case: Star1

Set the window for searching the ith choice to be (Ai−1, Bi−1)
which means no further search is needed if the result is not
within this window.

• (Ai−1, Bi−1) is the window for searching the ith choice instead of using
(alpha, beta).

How to incrementally update Ai and Bi?
•

A0 = c · (alpha− vmax) + vmax (3)

•
B0 = c · (beta− vmin) + vmin (4)

•
Ai = Ai−1 + vmax − vi (5)

•
Bi = Bi−1 + vmin − vi (6)

Comment:
• May want to use zero-window search to test first.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 42

Algorithm: Chance Search with Star1 (MAX)

Algorithm F3.1′(position p, value alpha, value beta, integer
depth)

• // max node
• determine the successor positions p1, . . . , pb;
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return f(p); else begin
▷ m := −∞;
▷ for i := 1 to b do
▷ begin
▷ if pi is to play a chance node x

then t := Star1 F3.1′(pi,x,max{alpha,m}, beta, depth − 1);

▷ else t := G3.1′(pi,max{alpha,m}, beta, depth − 1);
▷ if t > m then m := t;
▷ if m ≥ beta then return(m); // beta cut off
▷ end;

• end;
• return m;

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 43

Algorithm: Chance Search with Star1 (MIN)

Algorithm G3.1′(position p, value alpha, value beta, integer
depth)

• // min node
• determine the successor positions p1, . . . , pb;
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return f(p); else begin
▷ m := ∞;
▷ for i := 1 to b do
▷ begin
▷ if pi is to play a chance node x

then t := Star1 G3.1′(pi,x, alpha,min{beta,m}, depth − 1);

▷ else t := F3.1′(pi, alpha,min{beta,m}, depth − 1);
▷ if t < m then m := t;
▷ if m ≤ alpha then return(m); // alpha cut off
▷ end;

• end;
• return m;

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 44

Star1: uniform case (MAX)

Algorithm Star1 EQU F3.1′(position p, node x, value alpha,
value beta, integer depth)

• // a max chance node x with c equal probability choices k1, . . ., kc
• determine the possible values of the chance node x to be k1, . . . , kc
• A0 = c · (alpha− vmax) + vmax, B0 = c · (beta− vmin) + vmin;
• m0 = vmin, M0 = vmax // initial lower and upper bounds
• vsum = 0; // initial sum of expected values
• for i = 1 to c do
• begin

▷ let pi be the position of assigning ki to x in p;
▷ t := G3.1′(pi,max{Ai−1,vmin},min{Bi−1,vmax},depth)
▷ mi = mi−1 + (t − vmin)/c, Mi = Mi−1 + (t − vmax)/c;
▷ if t ≥ Bi−1 then return mi; // failed high, chance node cut off I
▷ if t ≤ Ai−1 then return Mi; // failed low, chance node cut off II
▷ vsum += t;
▷ Ai = Ai−1 + vmax − t, Bi = Bi−1 + vmin − t;

• end

return vsum/c;

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 45

Star1: uniform case (MIN)

Algorithm Star1 EQU G3.1′(position p, node x, value alpha,
value beta, integer depth)

• // a min chance node x with c equal probability choices k1, . . ., kc
• determine the possible values of the chance node x to be k1, . . . , kc
• A0 = c · (alpha− vmax) + vmax, B0 = c · (beta− vmin) + vmin;
• m0 = vmin, M0 = vmax // initial lower and upper bounds
• vsum = 0; // initial sum of expected values
• for i = 1 to c do
• begin

▷ let pi be the position of assigning ki to x in p;
▷ t := F3.1′(pi,max{Ai−1,vmin},min{Bi−1,vmax},depth)
▷ mi = mi−1 + (t − vmin)/c, Mi = Mi−1 + (t − vmax)/c;
▷ if t ≥ Bi−1 then return mi; // failed high, chance node cut off I
▷ if t ≤ Ai−1 then return Mi; // failed low, chance node cut off II
▷ vsum += t;
▷ Ai = Ai−1 + vmax − t, Bi = Bi−1 + vmin − t;

• end

return vsum/c;

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 46

Illustration: Star1

...

max

min

chance

...1
i−1

i c

[m[i−1],M[i−1]]

v[1] v[i−1]

? ? ?

(alpha,beta)

(A[i−1],B[i−1])

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 47

Star1: general case (1/3)

Assume the search window entering a chance node with N = c
choices is (alpha, beta).
The ith choice happens with the probability Pr(x = i) = Pri.
For all i, the evaluated value of the ith choice is vi.
The value of a chance node after the first i choices are explored
can be expressed as

• an expected value Ei = vexpi;
▷ vexpi =

∑i
j=1 Prj ∗ vj

▷ This value is returned only when all choices are explored.
⇒ The expected value of an un-explored child shouldn’t be

vmin+vmax
2 .

• a range of possible values [mi,Mi].
▷ mi = vexpi +

∑c
j=i+1 Prj ∗ vmin

▷ Mi = vexpi +
∑c

j=i+1 Prj ∗ vmax

• Invariants:
▷ Ei ∈ [mi,Mi]
▷ Ec = mc = Mc

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 48

Star1: general case (2/3)

Let mi and Mi be the current lower and upper bounds,
respectively, of the expected value of this chance node
immediately after the evaluation of the ith node.

• mi = vexpi−1 + Pri ∗ vi +
∑c

j=i+1Prj ∗ vmin

• Mi = vexpi−1 + Pri ∗ vi +
∑c

j=i+1Prj ∗ vmax

How to incrementally update mi and Mi:
• m0 = vmin
• M0 = vmax
•

mi = mi−1 + Pri ∗ (vi − vmin) (7)

•
Mi = Mi−1 + Pri ∗ (vi − vmax) (8)

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 49

Star1: general case (3/3)

The current search window is (alpha, beta).
No more searching is needed when

• mi ≥ beta, chance node cut off I;
⇒ The lower bound found so far is good enough.
⇒ Similar to a beta cut off.
⇒ The returned value is mi.

• Mi ≤ alpha, chance node cut off II.
⇒ The upper bound found so far is bad enough.
⇒ Similar to an alpha cut off.
⇒ The returned value is Mi.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 50

Star1 cut off: general case (1/2)

When mi ≥ beta, chance node cut off I,
• which means vexpi−1 + Pri ∗ vi +

∑c
j=i+1Prj ∗ vmin ≥ beta

• ⇒ vi ≥ Bi−1 =
1

Pri
· (beta− (vexpi−1 +

∑c
j=i+1Prj ∗ vmin))

When Mi ≤ alpha, chance node cut off II,
• which means vexpi−1 + Pri ∗ vi +

∑c
j=i+1Prj ∗ vmax ≤ alpha

• ⇒ vi ≤ Ai−1 =
1

Pri
· (alpha− (vexpi−1 +

∑c
j=i+1Prj ∗ vmax))

Hence set the window for searching the ith choice to be
(Ai−1, Bi−1) which means no further search is needed if the
result is not within this window.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 51

Star1 cut off: general case (2/2)

How to incrementally update Ai and Bi?
•

A0 =
1

Pr1
· (alpha− vmax ∗

c∑
i=1

Pri) + vmax (9)

•

B0 =
1

Pr1
· (beta− vmin ∗

c∑
i=1

Pri) + vmin (10)

•
Ai =

1

Pri+1
∗ (Pri ∗Ai−1 + Pri+1 ∗ vmax − Pri ∗ vi) (11)

•
Bi =

1

Pri+1
∗ (Pri ∗Bi−1 + Pri+1 ∗ vmin − Pri ∗ vi) (12)

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 52

Star1: general case (MAX)

Algorithm Star1 F3.1′(position p, node x, value alpha, value
beta, integer depth)

• // a max chance node x with c choices k1, . . ., kc
• // the ith choice happens with the probability Pri
• determine the possible values of the chance node x to be k1, . . . , kc
• initialize A0 and B0 using formulas (9) and (10)
• m0 = vmin, M0 = vmax // initial lower and upper bounds
• vexp = 0; // initial weighted sum of expected values
• for i = 1 to c do
• begin

▷ let Pi be the position of assigning ki to x in p;
▷ t := G3.1′(pi,max{Ai−1,vmin},min{Bi−1,vmax},depth)
▷ incrementally update mi and Mi using formulas (7) and (8)
▷ if t ≥ Bi−1 then return mi; // failed high, chance node cut off I
▷ if t ≤ Ai−1 then return Mi; // failed low, chance node cut off II
▷ vexp += Pri ∗ t;
▷ incrementally update Ai and Bi using formulas (11) and (12)

• end
return vexp;

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 53

Star1: general case (MIN)

Algorithm Star1 G3.1′(position p, node x, value alpha, value
beta, integer depth)

• // a min chance node x with c choices k1, . . ., kc
• // the ith choice happens with the probability Pri
• determine the possible values of the chance node x to be k1, . . . , kc
• initialize A0 and B0 using formulas (9) and (10)
• m0 = vmin, M0 = vmax // initial lower and upper bounds
• vexp = 0; // initial weighted sum of expected values
• for i = 1 to c do
• begin

▷ let Pi be the position of assigning ki to x in p;
▷ t := F3.1′(pi,max{Ai−1,vmin},min{Bi−1,vmax},depth)
▷ incrementally update mi and Mi using formulas (7) and (8)
▷ if t ≥ Bi−1 then return mi; // failed high, chance node cut off I
▷ if t ≤ Ai−1 then return Mi; // failed low, chance node cut off II
▷ vexp += Pri ∗ t;
▷ incrementally update Ai and Bi using formulas (11) and (12)

• end
return vexp;

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 54

Star1: GCD case (1/2)

Assume the ith choice happens with a chance wi/D where
D =

∑c
i=1wi and c is the total number of choices.

• m0 = vmin
• M0 = vmax

• mi = (
∑i−1

j=1wj · vj + wi · vi + vmin · (D −
∑i

j=1wj))/D
▷

mi = mi−1 + (wi/D) · (vi − vmin) (13)

• Mi = (
∑i−1

j=1wj · vj + wi · vi + vmax · (D −
∑i

j=1wj))/D
▷

Mi = Mi−1 + (wi/D) · (vi − vmax) (14)

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 55

Star1: GCD case (2/2)

Assume the ith choice happens with a chance wi/D where
D =

∑c
i=1wi and c is the total number of choices.

•
A0 = (D/w1) · (alpha− vmax) + vmax (15)

•
B0 = (D/w1) · (beta− vmin) + vmin (16)

• Ai−1 = (D · alpha− (
∑i−1

j=1wj · vj + vmax · (D −
∑i

j=1wj)))/wi

▷
Ai = (wi/wi+1) · (Ai−1 − vi) + vmax (17)

• Bi−1 = (D · beta− (
∑i−1

j=1wj · vj + vmin · (D −
∑i

j=1wj)))/wi

▷
Bi = (wi/wi+1) · (Bi−1 − vi) + vmin (18)

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 56

Remarks

To know what operations are simplified from the general case
to special cases, compare these formulas

general case GCD case uniform case
mi 7 13 1
Mi 8 14 2
a0 9 15 3
b0 10 16 4
Ai 11 17 5
Bi 12 18 6

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 57

Comments (1/2)

Star0.5 finishes searching a choice using the maximum window
size and then decide whether to go on searching the next
choice or not, while Star1 can use sharper window size to end
searching a choice earlier.
We illustrate the ideas using a fail soft version alpha-beta
algorithm (F3).

• Original (shallow) and fail hard version have a simpler logic in main-
taining the search interval.

• The semantic of comparing an exact return value with an expected
returning value is something that needs careful thinking.

• May want to pick a chance node with a lower expected value but
having a hope of winning, not one with a slightly higher expected value
but having no hope of winning when you are in disadvantageous.

• May want to pick a chance node with a lower expected value but
having no chance of losing, not one with a slightly higher expected
value but having a chance of losing when you are in advantage.

• Do not always pick one with a slightly larger expected value. Give the
second one some chance to be selected.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 58

Comments (2/2)

Need to revise algorithms carefully when dealing with the
original, fail hard or NegaScout version.

• What does it mean to combine bounds from a fail hard version?

The lower and upper bounds of the expected score can be used
to do alpha-beta pruning.

• Nicely fit into the alpha-beta search algorithm.
• Not only we can terminate the searching of choices earlier, but also we
can terminate the searching of a particular choice earlier.

Exist other improvements by searching choices of a chance node
“in parallel”.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 59

Implementation hints (1/2)

Fully unwrap a chance node takes more time than that of a
non-chance node.

• If you set your depth limit to d for a game without chance nodes, then
the depth limit should be lower for that game when chance node is
introduced.

• Technically speaking, a chance node adds at least one more level of
depth.

▷ Depending on the number of choices you have compared to the number
of non-chance children, you may need to reduce the search depth limit
by at least 3 or 5, and maybe 7.

▷ Estimate the complexity of a chance node by comparing the number of
choices of a chance node and the number of non-chance-node moves.

Without searching a chance node, it is easy to obtain not
enough progress by just searching a long sequence of non-chance
nodes.

• In CDC, when there are only a limited number of revealed pieces, there
is not much you can do by just moving around.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 60

Implementation hints (2/2)

Practical considerations, for example in Chinese Dark Chess
(CDC), are as follows.

• You normally do not need to consider the consequence of flipping more
than 2 dark pieces.

▷ Set a maximum number of chance node searching in any DFS search
path.

• It makes little sense to consider ending a search with exploring a chance
node.

▷ When depth limit left is less than 3 or 4, stop exploring chance nodes.

• It also makes little sense to consider the consequence of exploring 2
chance nodes back to back.

▷ Make sure two chance nodes in a DFS search path is separated by at
least 3 or 4 non-chance nodes.

• It is rarely the case that a chance node exploration is the first ply
to consider in move ordering unless it is recommended by a prior
knowledge or no other non-chance-node moves exists.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 61

More ideas for improvements

Notations
• Assume p is a chance node with the tree T .

▷ Ti is the tree of p when for the ith choice.
▷ Ti,j is the jth branch of Ti, namely, with the root pi,j.
▷ vi is the evaluated value of Ti.
▷ vi,j is the evaluated value of Ti,j.

An exact probe of a tree rooted at r is thus to fully search a
subtree rooted at a child of r.

▷ An exact probe of T is thus to fully search Ti for some i and then obtain vi.
▷ An exact probe of Ti is to fully search Ti,j for some j and then obtain vi,j.

Can do better by not searching the DFS order.
• It is not necessary to search completely T1 and then start to look at
the subtree of T2, ... etc.

▷ The approach used by Star1.

• Probe Ti gives you some information about the possible range of vi.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 62

Illustration: Probe

...

max

min

chance

...

...

Ti

Ti,1

The first child of Ti is probed.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 63

Star2: MAX node, general case

Each child pi of a MAX node p is a MIN node.
We have probed the first child of Ti and obtained vi,1.

• Since pi is a MIN node, vi,1 is an upper bound of vi which is usually
lower than the maximum possible value vmax.

• The upper bound of v1 is thus lowered.
• It is possible because of this probe, an alpha cut can be performed.

Notations
• v ∈ [mi,Mi] which are the lower and upper bounds of v after the i
probe.

• vj ∈ [Lj, Uj] which are the lower and upper bounds of vj.
Formulas for Star2

• vj ∈ [vmin, vj,1] after Tj is probed.
• After the ith probe, v ∈ [m0,Mi−1 + Pri × (vi,1 − vmax)].

▷ mi is unchanged, but Mi = Mi−1 + Pri × (vi,1 − vmax)]
▷ Ai is updated according to 11, but Bi is unchanged.

• In comparison, for Star1
▷ mi = mi−1 + Pri × (vi − vmin)]
▷ Mi = Mi−1 + Pri × (vi − vmax)]
▷ Both Ai and Bi are updated.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 64

Illustration: Star1 and Star2 probing

......

...

T

T

...

...

...

...

...

Star1: Probe the first child of T

1

...

Ti

Ti,1

T

Star2: Probe the first child of each Ti

...

...

...

...

...

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 65

Star2: MIN node, general case

p is a MIN chance node. Thus each child pi is a MAX node.
We have probed the first child of Ti and obtained vi,1.

• Since pi is a MAX node, vi,1 is a lower bound of vi which is usually
larger than the minimum possible value vmin.

• The lower bound of vi is thus raised.
• It is possible because of this probe, a beta cut can be performed.

Notations
• v ∈ [mi,Mi] which are the lower and upper bounds of v after the i
probe.

• vj ∈ [Lj, Uj] which are the lower and upper bounds of vj.
Formulas for Star2

• vj ∈ [vj,1, vmax] after Tj is probed.
• After the ith probe, v ∈ [mi−1 + Pri × (vi,1 − vmin),M0.

▷ mi = mi−1 + Pri × (vi,1 − vmax)], but Mi is unchanged.
▷ Ai is unchanged, but Bi is updated according to 12.

• In comparison, for Star1
▷ mi = mi−1 + Pri × (vi − vmin)]
▷ Mi = Mi−1 + Pri × (vi − vmax)]
▷ Both Ai and Bi are updated.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 66

Algorithm: Chance Search with Star2 (MAX)

Algorithm F3.2′(position p, value alpha, value beta, integer
depth)

• // max node
• determine the successor positions p1, . . . , pb;
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return f(p); else begin
▷ m := −∞;
▷ for i := 1 to b do
▷ begin
▷ if pi is to play a chance node x

then t := Star2 F3.2′(pi,x,max{alpha,m}, beta, depth − 1);

▷ else t := G3.2′(pi,max{alpha,m}, beta, depth − 1);
▷ if t > m then m := t;
▷ if m ≥ beta then return(m); // beta cut off
▷ end;

• end;
• return m;

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 67

Algorithm: Chance Search with Star2 (MIN)

Algorithm G3.2′(position p, value alpha, value beta, integer
depth)

• // min node
• determine the successor positions p1, . . . , pb;
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return f(p); else begin
▷ m := ∞;
▷ for i := 1 to b do
▷ begin
▷ if pi is to play a chance node x

then t := Star2 G3.2′(pi,x, alpha,min{beta,m}, depth − 1);

▷ else t := F3.2′(pi, alpha,min{beta,m}, depth − 1);
▷ if t < m then m := t;
▷ if m ≤ alpha then return(m); // alpha cut off
▷ end;

• end;
• return m;

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 68

Star2: MAX

Algorithm Star2 F3.2′(position p, node x, value alpha, value
beta, integer depth)

• // a max chance node x with c choices k1, . . ., kc
• // the ith choice happens with the probability Pri
• determine the possible values of the chance node x to be k1, . . . , kc
• initialize A0, B0, m0 and M0 as in Star1 F3.1′

• // Do an exact probing for each choice to find cut off’s.
• for each choice i from 1 to c do

▷ Let pi be the position obtained from p by making x the choice ki.
// p is MAX, pi is MIN, pi,j is MAX

▷ // do an exact probe on the first MAX child of pi

v := F3.2′(pi,1,max{Ai−1,vmin},min{Bi−1,vmax},depth)
▷ update Ai and Mi as in Star1 F3.1′

▷ If Mi ≤ alpha then return Mi; // alpha cut off

• // normal exhaustive search phase
// no cut off is found in the above, do the normal Star1 search.
// Chance node cut off I may happen.
// Chance node cut off II may happen.

• return vexp = Star1 F3.1(p, x, alpha, beta, depth);

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 69

Star2: MIN

Algorithm Star2 G3.2′(position p, node x, value alpha, value
beta, integer depth)

• // a min chance node x with c choices k1, . . ., kc
• // the ith choice happens with the probability Pri
• determine the possible values of the chance node x to be k1, . . . , kc
• initialize A0, B0, m0 and M0 as in Star1 G3.1′

• // Do an exact probing for each choice to find cut off’s.
• for each choice i from 1 to c do

▷ Let pi be the position obtained from p by making x the choice ki.
// p is MIN, pi is MAX, pi,j is MIN

▷ // do an exact probe on the first MIN child of pi

v := G3.2′(pi,1,max{Ai−1,vmin},min{Bi−1,vmax},depth)
▷ update Bi and mi as in Star1 G3.1′

▷ If mi ≥ beta then return mi; // beta cut off

• // normal exhaustive search phase
// no cut off is found in the above, do the normal Star1 search.
// Chance node cut off I may happen.
// Chance node cut off II may happen.

• return vexp = Star1 G3.1(p, x, alpha, beta, depth);

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 70

Comments for Star2

NOTE:
• In Star2 F3.2′(p, x, alpha, beta, depth), we do a probe on pi,1, 1 ≤ i ≤ c.

▷ Positions p and pi.1 are played by the same player. Hence we both use
max-node algorithms.

• Similarly for Star2 G3.2′(p, x, alpha, beta, depth), min-node algorithms
are used.

• This is different from Star0.5 and Star1.

During the exact probe phase, some bounds are known which
can be used to update the search window.
If no cut off is found in the probing phase, then we need to do
the exhaustive searching phase.

• The searched branches in the probing phase do not need to be
researched again.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 71

More ideas for probes

Move ordering in exploring the choices is critical in having a
good performance.
Picking which child to do the probe is also critical.
Can do exact probes on h children, called probing factor h > 1,
of a choice instead of just exactly one.
May decide to probe different number of children for each
choice.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 72

Probing orders

Two types of probing orders with a probing factor h
• Cyclic probing

▷ Probe one child of a choice at one time for all choices, and do this for
h rounds.

▷ for j = 1 to h do
for i = 1 to c do

probe the jth child of the ith choice

• Sequential probing
▷ Probe h children of a choice at one time and then do it for each choice

in sequence
▷ for i = 1 to c do

probe h children of the ith choice
▷ Switch lines 6 and 7 in algorithms Star2.5 F3.2.5’ and Star2.5 G3.2.5’.

Special cases
▷ When h = 0, Star2 == Star1.
▷ When h = 1, cyclic probing == sequential probing and also Star2 == Star2.5.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 73

Illustration: Star2.5 probing

......

...

Ti

Ti,1

T

...

Star2.5: Probe the first h children of each Ti

...

...

...

...

...

...

...

...

...

...

cyclic probing:

sequential probing: 1 h h*i h*(i+1)

1 2

h*ch*(c−1)

c h*ch*c−1h*(c−1)

(order of probing)

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 74

Chance Search with Star2.5 (MAX)

Algorithm F3.2.5′(position p, value alpha, value beta, integer
depth, integer h)

• // max node
• determine the successor positions p1, . . . , pb;
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return f(p); else begin
▷ m := −∞;
▷ for i := 1 to b do
▷ begin
▷ if pi is to play a chance node x

then t := Star2.5 F3.2.5′(pi,x,max{alpha,m}, beta, depth − 1,h);

▷ else t := G3.2.5′(pi,max{alpha,m}, beta, depth − 1,h);
▷ if t > m then m := t;
▷ if m ≥ beta then return(m); // beta cut off
▷ end;

• end;
• return m;

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 75

Chance Search with Star2.5 (MIN)

Algorithm G3.2.5′(position p, value alpha, value beta, integer
depth, integer h)

• // min node
• determine the successor positions p1, . . . , pb;
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return f(p); else begin
▷ m := ∞;
▷ for i := 1 to b do
▷ begin
▷ if pi is to play a chance node x

then t := Star2.5 G3.2.5′(pi,x, alpha,min{beta,m}, depth − 1,h);

▷ else t := F3.2.5′(pi, alpha,min{beta,m}, depth − 1, h);
▷ if t < m then m := t;
▷ if m ≤ alpha then return(m); // alpha cut off
▷ end;

• end;
• return m;

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 76

Star2.5: cyclic probing (MAX)

Algorithm Star2.5 F3.2.5′(position p, node x, value alpha, value
beta, integer h) // h is the probing factor

• // a MAX chance node x with c choices k1, . . ., kc
• // the ith choice happens with the probability Pri
• determine the possible values of the chance node x to be k1, . . . , kc
• initialize A0, B0, m0 and M0 as in Star1 F3.1′

• // Do a cyclic probing to decide whether some cut off can be performed.
• 6: for j from 1 to h do
7: for each choice i from 1 to c do

▷ Let pi be the position obtained from p by making x the choice ki.
// p is MAX, pi is MIN, pi,j is MAX

▷ // do an exact probe on the jth MAX child of pi.
v := F3.2.5′(pi,j,max{Ai−1,vmin},min{Bi−1,vmax},depth)

▷ update Ai and Mi as in Star1 F3.1′

▷ If Mi ≤ alpha then return Mi; // alpha cut off

• // normal exhaustive search phase
// no cut off is found in the above, do the normal Star1 search.
// Chance node cut off I may happen.
// Chance node cut off II may happen.

• return vexp = Star1 F3.1(p, x, alpha, beta, depth);

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 77

Star2.5: cyclic probing (MIN)

Algorithm Star2.5 G3.2.5′(position p, node x, value alpha, value
beta, integer h) // h is the probing factor

• // a MIN chance node x with c choices k1, . . ., kc
• // the ith choice happens with the probability Pri
• determine the possible values of the chance node x to be k1, . . . , kc
• initialize A0, B0, m0 and M0 as in Star1 G3.1′

• // Do a cyclic probing to decide whether some cut off can be performed.
• 6: for j from 1 to h do
7: for each choice i from 1 to c do

▷ Let pi be the position obtained from p by making x the choice ki.
// p is MIN, pi is MAX, pi,j is MIN

▷ // do an exact probe on the jth MIN child of pi.
v := G3.2.5′(pi,j,max{Ai−1,vmin},min{Bi−1,vmax},depth)

▷ update Bi and mi as in Star1 G3.1′

▷ If mi ≥ beta then return mi; // beta cut off

• // normal exhaustive search phase
// no cut off is found in the above, do the normal Star1 search.
// Chance node cut off I that is similar to beta cut off may happen.
// Chance node cut off II that is similar to alpha cut off may happen.

• return vexp = Star1 G3.1(p, x, alpha, beta, depth);

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 78

Comments

Experimental results provided in [Ballard ’83] on artificial game
trees.

• Star1 may not be able to cut more than 20% of the leaves.
• Star2.5 with h = 1, i.e. Star2, cuts more than 59% of the nodes and
is about twice better than Star1.

• Sequential probing is best when h = 3 which cuts more than 65% of
the nodes and roughly cut about the same nodes as Star2.5 using the
same probing factor.

• Sequential probing gets worse when h > 4. For example, it only cut
20% of the leaves when h = 20.

• Star2.5 continues to cut more nodes when h gets larger, though the
gain is not that great. At h = 3, about 70% of the nodes are cut. At
h = 20, about 72% of the nodes are cut.

Need to store the bounds and when the bounds produces cuts
in the hash table for later to resume searching if needed later
when the node is revisited.
Better move ordering is also needed to get a fast cut off.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 79

Approximated Probes

We can also have heuristics for issuing approximated probes
which returns approximated values.
Strategy I: random probing of some promising choices

• Do a move ordering heuristic to pick one or some promising choices to
expand first.

• These promising choices can improve the lower or upper bounds and
can cause beta or alpha cut off.

Strategy II: fast probing of all choices
• Possible implementations

▷ do a static evaluation on all choices
▷ do a shallow alpha-beta searching on each choice
▷ do a MCTS-like simulation on the choices

• Use these information to decide whether you have enough confidence
to do a cut off.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 80

Using MCTS with chance nodes (1/2)

Assume a chance node x has c choices k1, . . . , kc and the ith
choice happens with the probability Pri
Selection

• If x is picked in the PV during selection, then a random coin tossing
according to the probability distribution of the choices is needed to
pick which choice to descent.

▷ It is better to even the number of simulations done on each choice.
▷ Use random sampling without replacement. When every one is picked

once, then start another round of picking.

Expansion
• If the last node in the PV is x, then expand all choices and simulate
each choice some number of times.

▷ Watch out the discuss on maxing chance nodes in a searching path such
as whether it is desirable to have 2 chance nodes in sequence ... etc.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 81

Using MCTS with chance nodes (2/2)

Simulation
• When a chance node is to be simulated, then be sure to randomly,
according to the probability distribution, pick a choice.

▷ Use some techniques to make sure you are doing an effective sampling
when the number of choices is huge

▷ Watch out what are “reasonable” in a simulated plyout on the mixing
of chance nodes.

Back propagation
• The UCB score of x is wi+c

√
(lnN/Ni) where wi is the weighted winning

rate, or score, of the children, Ni is the total number of simulations
done on all choices. and N is the total number of simulations done on
the parent of x.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 82

Sparse sampling: intuition

Assume in searching the number of possible outcomes in a,
maybe chance, node is too large. A technique called sparse
sampling can be used [Kearns et al 2002] [Lanctot et al 2013].

• Can also be used in the expansion phase of MCTS.

Ideas:
• Assume the sample space A is too large.

▷ The sample space used is enlarged as the number of visits to the node
increases.

▷ Only consider a reduced sample space with kt randomly selected choices
from A called St, in the first t visits where kt = ⌈c ∗ tα⌉, and c and α
are constants chosen by experiments.

▷ Use the current choice set as an estimation of its goodness.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 83

Sparse sampling: algorithm

Note: in the first t visits, let kt = ⌈c ∗ tα⌉, and c and α are
constants chosen by experiments.
Algorithm SS for sparse sampling

• t := 1
• Initial kt to be a small constant, say 1.
• Initial the reduced candidate set St to be an empty set.
• Randomly add kt children from A into St
• loop: Performs some h samplings from St.

▷ t += h
▷ Add randomly kt+h − kt new children from A into St

• goto loop

usually h is 1.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 84

Sparse sampling: analysis

The estimated value is accurate with a high probability [Kearns
et al 2002] [Lanctot et al 2013]
Theorem:

Pr(|Ṽ − V | ≤ λ · d) ≥ 1− (2 · kt · c)dexp{
−λ2 · kt
2 · v2max

},

where
▷ kt is the number of choices considered with t samplings,

▷ Ṽ is the estimation considering only kt choices,
▷ V is the value considering all choices,
▷ c is the actual number of choices,
▷ d is the depth simulated,
▷ λ ∈ (0, 2 · vmax] is a parameter chosen, where

vmax is the maximum possible value.

Note: the proof is done by making sampling with replacement,
while the algorithm asks for sampling without replacement.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 85

Comments

Chance node introduces a large searching space that needs a
careful treatment.

• Need information in every possible branch to come out with a good
strategy.

Suppose that in each move,
• on

▷ a prior chance node: you have m possible moves followed by r different
random outcomes.

▷ a posteriori chance node: there are r different random outcomes from
the coin toss and m possible moves followed.

• Depending on r and m, good search algorithms can be designed.
▷ When m >> r, you may plainly enumerate all r alternatives.
▷ When m << r, you may need to devise some other good strategies for

estimation of goodness of a move without trying all choices.

Instead of looking for something that is sure-not-to-loss, may
want something that is have-a-chance-to-win.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 86

References and further readings (1/2)

* Bruce W. Ballard The *-minimax search procedure for trees
containing chance nodes Artificial Intelligence, Volume 21, Issue
3, September 1983, Pages 327-350
Marc Lanctot, Abdallah Saffidine, Joel Veness, Chris Archibald,
Mark H. M. Winands Monte-Carlo *-MiniMax Search Proceed-
ings IJCAI, pages 580–586, 2013.
Kearns, Michael; Mansour, Yishay; Ng, Andrew Y. A sparse
sampling algorithm for near-optimal planning in large Markov
decision processes. Machine Learning, 2002, 49.2-3: 193-208.
Lorentz, R.J. (2012). An MCTS Program to Play EinStein
Würfelt Nicht!. In: van den Herik, H.J., Plaat, A. (eds)
Advances in Computer Games. ACG 2011. Lecture Notes in
Computer Science, vol 7168. Springer, Berlin, Heidelberg.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 87

References and further readings (2/2)

Jouandeau, N., Cazenave, T. (2014). Monte-Carlo Tree
Reductions for Stochastic Games. In: Cheng, SM., Day, MY.
(eds) Technologies and Applications of Artificial Intelligence.
TAAI 2014. Lecture Notes in Computer Science(), vol 8916.
Springer, Cham.
S. Yen, C. Chou, J. Chen, I. Wu and K. Kao, ”Design and
Implementation of Chinese Dark Chess Programs,” in IEEE
Transactions on Computational Intelligence and AI in Games,
vol. 7, no. 1, pp. 66-74, 2014.

TCG: Chance Node Searching, 20241230, Tsan-sheng Hsu © 88

