Theory of Computer Games: Selected Advanced Topics

Tsan-sheng Hsu

徐讚昇

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

Abstract

Some advanced research issues.

- The graph history interaction (GHI) problem.
- Opponent models.
- Multi-player game tree search.
- Bit board speedup.
- Proof-number search.

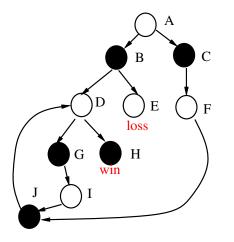
More research topics.

- The influence of rules on games.
 - ▶ Allowing long cycles in Go.
 - ▶ The scoring of a suicide ply in chess.
- Why a position is difficult to human?
- Unique features in games.

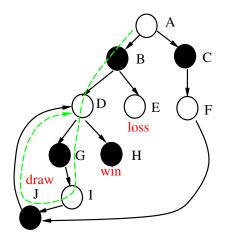
Graph history interaction problem

The graph history interaction (GHI) problem [Campbell 1985]:

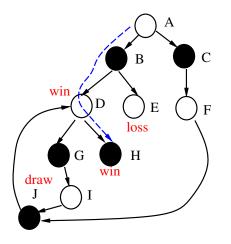
- In a game graph, a position can be visited by more than one paths from a starting position.
- The value of the position depends on the path visiting it.
 - ▷ It can be win, loss or draw for Chinese chess.
 - ▷ It can only be draw for Western chess and Chinese dark chess.
 - \triangleright It can only be loss for Go.
- In the transposition table, you record the value of a position, but not the path leading to it.
 - Values computed from rules on repetition cannot be used later on.
 - It takes a huge amount of storage to store all the paths visiting it.
- This is a very difficult problem to be solved in real time [Wu et al '05] [Kishimoto and Müller '04].



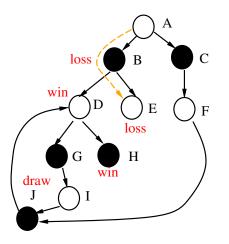
• Assume if the game falls into a loop, then it is a draw.



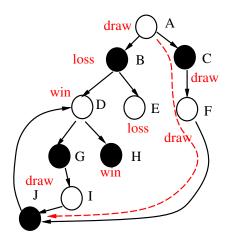
- Assume if the game falls into a loop, then it is a draw.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is draw by rules of repetition.
 - ▶ Memorized J as a draw position.



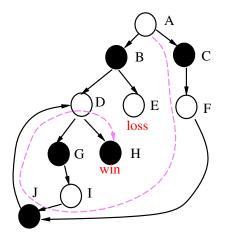
- Assume if the game falls into a loop, then it is a draw.
- A → B → D → G → I → J → D is draw by rules of repetition.
 ▶ Memorized J as a draw position.
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.



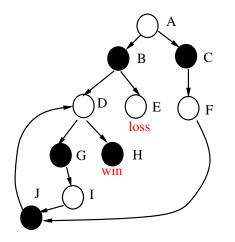
- Assume if the game falls into a loop, then it is a draw.
- A → B → D → G → I → J → D is draw by rules of repetition.
 ▶ Memorized J as a draw position.
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.
- $A \to B \to E$ is a loss. Hence B is loss.



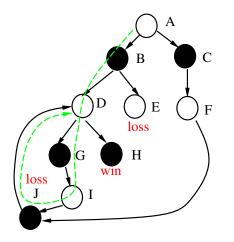
- Assume if the game falls into a loop, then it is a draw.
- A → B → D → G → I → J → D is draw by rules of repetition.
 ▶ Memorized J as a draw position.
- $A \to B \to D \to H$ is a win. Hence D is win.
- $A \rightarrow B \rightarrow E$ is a loss. Hence B is loss.
- $A \rightarrow C \rightarrow F \rightarrow J$ is draw because J is recorded as draw.
- A is draw because one child is loss and the other chile is draw.



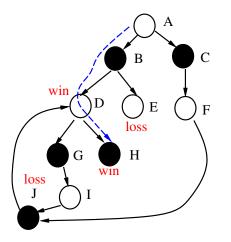
- Assume if the game falls into a loop, then it is a draw.
- A → B → D → G → I → J → D is draw by rules of repetition.
 Memorized J as a draw position.
- $A \to B \to D \to H$ is a win. Hence D is win.
- $A \to B \to E$ is a loss. Hence B is loss.
- $A \rightarrow C \rightarrow F \rightarrow J$ is draw because J is recorded as draw.
- A is draw because one child is loss and the other chile is draw.
- However, $A \to C \to F \to J \to D \to H$ is a win (for the root).



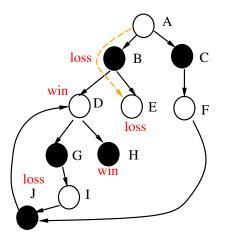
• Assume the one causes loops wins the game.



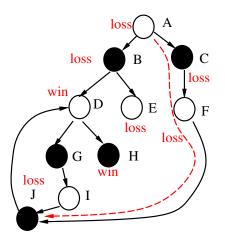
- Assume the one causes loops wins the game.
- $A \to B \to D \to G \to I \to J \to D$ is loss because of rules of repetition.
 - \triangleright Memorized J as a loss position (for the root).



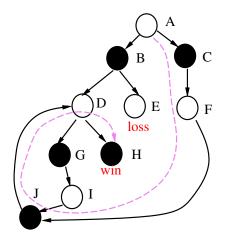
- Assume the one causes loops wins the game.
- A → B → D → G → I → J → D is loss because of rules of repetition.
 Memorized J as a loss position (for the root).
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.



- Assume the one causes loops wins the game.
- A → B → D → G → I → J → D is loss because of rules of repetition.
 Memorized J as a loss position (for the root).
- $A \to B \to D \to H$ is a win. Hence D is win.
- $A \rightarrow B \rightarrow E$ is a loss. Hence B is loss.



- Assume the one causes loops wins the game.
- A → B → D → G → I → J → D is loss because of rules of repetition.
 Memorized J as a loss position (for the root).
- $A \to B \to D \to H$ is a win. Hence D is win.
- $A \to B \to E$ is a loss. Hence B is loss.
- $A \to C \to F \to J$ is loss because J is recorded as loss.
- A is loss because both branches lead to loss.



- Assume the one causes loops wins the game.
- A → B → D → G → I → J → D is loss because of rules of repetition.
 Memorized J as a loss position (for the root).
- $A \to B \to D \to H$ is a win. Hence D is win.
- $A \to B \to E$ is a loss. Hence B is loss.
- $A \to C \to F \to J$ is loss because J is recorded as loss.
- A is loss because both branches lead to loss.
- However, $A \to C \to F \to J \to D \to H$ is a win (for the root).

Comments

- Using DFS to search the above game graph from left first or from right first produces two different results.
- Position A is actually a win position.
 - Problem: memorize J being draw is only valid when the path leading to it causes a loop.
- Storing the path leading to a position in a transposition table requires too much memory.
 - Maybe we can store some forms of hash code to verify it.
- Finding a better data structure for solving this problem remains to be a challenging research issue.
- Remark: It real settings, it is usually the case that the rule of loops is enforced after 3 repetitions. However, GHI problem holds for any times of repetition.

Opponent models

- In a normal alpha-beta search, it is assumed that you and the opponent use the same strategy.
 - What is good to you is bad to the opponent and vice versa!
 - Hence we can reduce a minimax search to a NegaMax search.
 - This is normally true when the game ends, but may not be true in the middle of the game.
- What will happen when there are two strategies or evaluation functions f_1 and f_2 so that
 - for some positions p, $f_1(p)$ is better than $f_2(p)$

 \triangleright "better" means closer to the real value f(p)

- for some positions q, $f_2(q)$ is better than $f_1(q)$
- If you are using f_1 and you know your opponent is using f_2 , what can be done to take advantage of this information.
 - This is called OM (opponent model) search [Carmel and Markovitch 1996].
 - \triangleright In a MAX node, use f_1 .
 - \triangleright In a MIN node, use f_2 .

Other usage of the opponent model

- Depend on strength of your opponent, decide whether to force an easy draw or not.
 - This is called the contempt factor.
- Example in CDC:
 - It is easy to chase the king of your opponent using your pawn.
 - Drawing a weaker opponent is a waste.
 - Drawing a stronger opponent is a gain.
- It is feasible to use a learning model to "guess" the level of your opponent as the game goes and then adapt to its model in CDC [Chang et al 2021].

Opponent models – comments

Comments:

- Need to know your opponent's model precisely or to have some knowledge about your opponent.
- How to learn the opponent model on-line or off-line?
- When there are more than 2 possible opponent strategies, use a probability model (PrOM search) to form a strategy.
- Remark: A common misconception is that if your opponent uses a worse strategy f_3 than the one, namely f_2 , used in your model, then he may get advantage.
 - This is impossible if f_2 is truly better than f_3 .
 - If f_1 can beat f_2 , then f_1 can sure beat f_3 .

Multi-player game tree search

• Games with more than 2 players.

- Mahjong: 4 players
- Contract bridge or bridge: 4 players
- Monopoly: 2 to many players
- Scrabble: 2 to 4 players
- Risk: 2 to 6 players

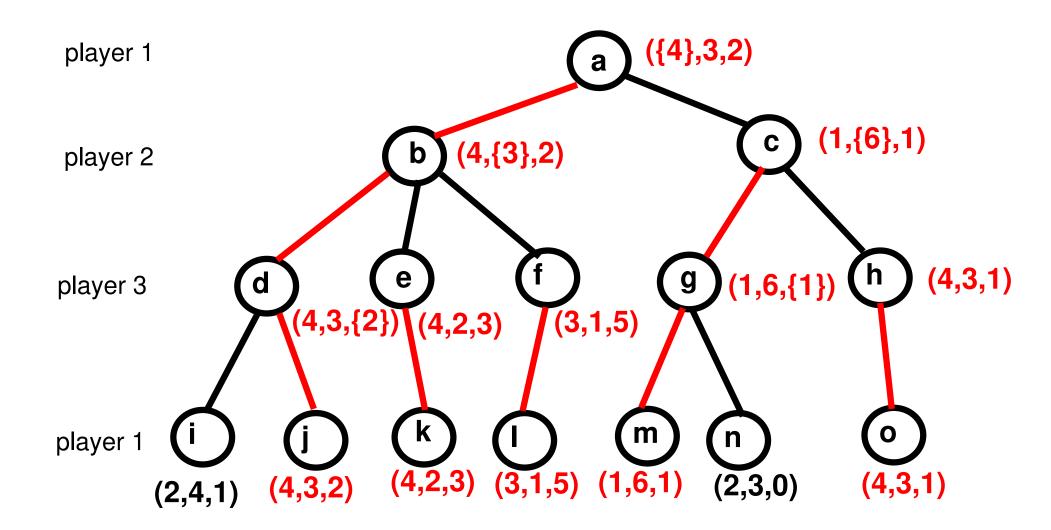
• Assume we have n players, y_1, \ldots, y_n in a game.

- We have n evaluating functions, $score_i$, one for each player.
- Given a position p with the children p_1, \ldots, p_m , let $score_i(p)$ be the score of y_i for p.
 - ▷ If p is a terminal position for y_i , then m = 0 and $score_i(p)$ is the "true" score of y_i in p.
 - ▷ Otherwise, $score_i(p) = \max_{j=1}^m score_i(p_j)$.
- The above algorithm is called MAXⁿ where stands for during each turn, each player maximizes his own score without considering scores of others.

MAX^{*n*}: algorithm

- $next_player(idx)$: the player who is next to player idx.
- Brute force algorithm for multi-player games.
- Algorithm MAXN(position p, player idx)
 - output: best which is an array with best[i] being the best value for player i so far.
 - If p is terminal, then return $best[i] = score_i(p), \forall i$;
 - initialize best to be $best[i] = -\infty, \forall i$;
 - Let p_i be the *i*th child of p;
 - for i = 1 to last child of p do
 - \triangleright current = MAXN(p_i , next_player(idx));
 - ▶ if current[idx] > best[idx], best = current; // maximized player idx
 - return *best*;

MAXⁿ: example (n = 3)



Opportunities for pruning (1/2)

- Let *p* be a position in a multi-player game.
- Alpha-beta pruning is a special case for n=2 and cannot be generalized for n>2.
 - Property used in alpha-beta pruning:
 - ▷ What is good for y_1 is definitely bad for y_2 by using the zero sum principle which is for a position p, $score_1(p) + score_2(p) = 0$.
 - The above may not be true for n > 2.
 - ▷ When n = 3, what is good for y_1 may be also good for y_2 , but very bad for y_3 .

Opportunities for pruning (2/2)

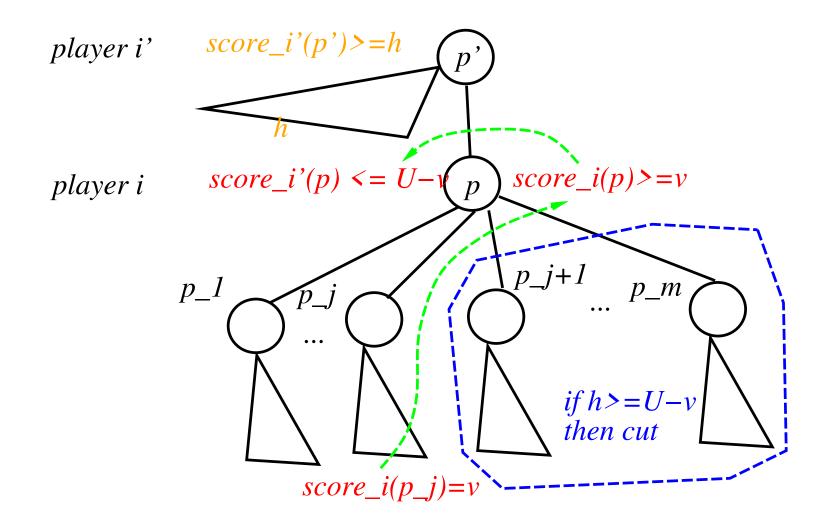
- For a position p, if there is no constraints on the n scores of p, then it is impossible to have any cut offs for MAXⁿ.
 - In applications we often have the following properties.
 - ▷ Zero sum.
 - \triangleright The sum of all *n* scores for *p* has an upper bound *U*.
 - \triangleright The score of p for any player has a lower bound L.
 - Examples:
 - ▷ Go for *n* players: each player owns pieces of a distinct color. → the sum of all points \leq the board size, and the score cannot be negative.
 - ▶ Othello for *n* players: each player owns pieces of a distinct color and flips all pieces of different colors.

 \rightarrow the sum of all points \leq the plys played so far and the score cannot be negative.

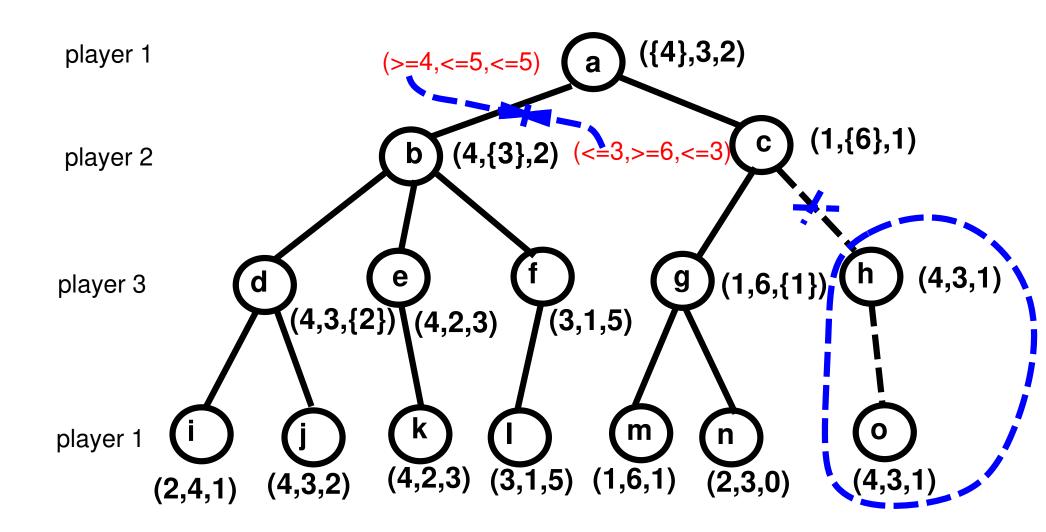
Pruning

- Recall: a position p with the children p_1, \ldots, p_m and the parent p', and $score_i(p)$ is the score of player i for p.
- Direct pruning:
 - During the turn of the *i*th player, if $score_i(p_j) = U$, then no more search is needed.
- Shallow pruning:
 - Without loss of generality, assume L = 0.
 - During the turn of the *i*th player, if $score_i(p_j) = v$ so far, then $score_i(p) \ge v$ since each player is a max player.
 - This implies $score_j(p) \le U v$ if $j \ne i$.
 - Let i' be the index of the immediate previous player.
 - We know $score_{i'}(p') \ge h$ if he has done some searching.
 - If $h \ge U v$, then we have a cut off.

MAX^{*n*}: ideas for cutoff



MAXⁿ: cutoff example (n = 3, U = 9)



Remarks about pruning in MAXⁿ

- Direct pruning is a degenerated case of the shallow pruning by the following settings.
 - If v = U, then the scores of all other players are all zero.
 - Using the lower bound *L*, you can get a cut off.
- Compared to two-player alpha-beta pruning, both direct and shallow pruning can be used in $n \ge 2$.
- Deep pruning does not work when n > 2.
 - Assume you are searching the node w, v is your parent and u is an ancestor that is not v.
 - Assume node x is the turn of player player(x).
 - Any value of $score_{player(u)}(u)$ cannot produce any cutoff on searching the tree T_w because player(v) makes the decision first in propagating the values up.
 - Any value of $score_{player(u)}(w)$ can be propagated up and be used by u.

Algorithm for shallow cut off

Functions and data structures

- $next_player(idx)$: the player who is next to player idx.
- $score_i(p)$: the score of player *i* for the position *p*.
- U: the upper bound of sum of all scores among all players on a position.
- Assume L is 0.
- best and current are both arrays of size n.

Algorithm shallow(position p, player idx, value bound)

- return value: best which is an array with best[i] being the best value for player i so far.
- If p is terminal, then return $best[i] = score_i(p), \forall i$;
- Let p_i be the *i*th child of p;
- $best = shallow(p_1, next(idx), U)$; // recursive call on the first child
- for i = 2 to last child of p do
 - 4.1: if best[idx] = U, then return best // immediate cut off
 - 4.2: if $best[idx] \ge bound$, then return best // shallow cut off
 - **4.3:** $current = shallow(p_i, next_player(idx), U best[idx]);$
 - 4.4: if current[idx] > best[idx], best = current; // maximize player idx
- return *best*;

Comments

- A generalization of alpha-beta cutoff on adjacent depths.
- Does not work on deep alpha-beta cutoff [Korf 1991].
- In the best case, the effective branching factor is $\frac{1+\sqrt{4b-3}}{2}$ where *b* is the average branching factor.
 - Comparing to alpha-beta cut off, the best effective branching factor is \sqrt{b} .
- In the average case, the effective branching factor is approaching O(b).
 - Comparing to alpha-beta cut off, the the average effective branching factor is $b^{0.75}$ [Fuller et al 1975].
 - This implies most of the cut off come from deep pruning in the average case.
- More research are needed to get more cutoff by observing additional constraints on the values from the application domain.
- MCTS can be easily extended to work on any number of players, but need to work on better properties of convergence.

Hardware Speedup

Using hardware to speed up searching is not new.

- Parallel computing.
 - ▶ The Northwestern University CHESS program series on the 1970's makes full usage of hardware advantages from supercomputers [Atkin & Slate 1977].
- Special hardware acceleration:
 - Belle: a chess machine with special micro instructions for move generation, alpha-beta pruning and transposition table operations [Condon & Thompson 1982].
 - ▷ Deep Blue: custom VLSI FPGA chips for operating chess playing expert systems [Hsu et al 1995].

The above's are very costly.

Bit board techniques

- Everyone can make use of the benefits of hardware acceleration now by smart usage of fast parallel bitwise operations provided by modern day CPU's.
 - Intel CPU's: MMX and SSE [Intel 2021]
 - AMD: 3D Now! [AMD 2000]
- Main technique
 - Using bits to represent the board and pieces on the board.
 - $\triangleright \ \ {\rm Transfer \ a \ board \ into \ an \ } n \times m \ \ {\rm picture}$
 - ▶ Transfer pieces into patterns of pixel rectangles
 - These instructions are usually in the form of SIMD (single instruction multiple data).
 - Many are for image related operations.
 - May also make use of GPU.

Special instruction sets (1/2)

- Make use of fast parallel bitwise operations provided by modern day CPU's.
- Many different types
 - Find aggregated information
 - Parallel bit deposit and extract
 - •••
- Most of the instructions can be done using AND, OR, NOT operations, but can be done much faster using special CPU instructions.

Special instruction sets (2/2)

Find aggregated information:

- population count (POPCNT): the number of 1-bits in a "word".
- leading/trailing zero count: LZCNT, TZCNT
- Parallel bit deposit and extract
 - Pack in sequence selected bits (PEXT): extract something out
 - PEXT(W, Mask) returns a word by packing to the right those bits in the word W whose corresponding bits in the word Mask are equal to 1.
 - ▶ Example: *PEXT*(010110010, 010101010) extracts the four even numbered bit and then pack it to the right. Thus it returns 01100.
 - Distribute bits in sequence to selected locations (PDEP): deposit something into.
 - \triangleright PDEP(W, Mask) returns a word by sending the *i*th bit in the word W to the location addressed by the *i*th 1.
 - ▷ Example: PEXT(01100, 010101010) deposits the four bits to the even numbered location. Thus it returns 010100000.

Example I

- In Go, how to find the number of empty intersections on the board?
 - Assume you have a long hardware word W of 19*2=38 bits.
 - \triangleright Use 19 words W_1, \ldots, W_{19} to represent the rows.
 - Encoding: bits i and i+1 in W_j represents the status of the intersection at the *i*th column and *j*th row.
 - ▶ 00 means empty.
 - ▶ 10 means a black stone.
 - \triangleright 01 means a white stone.
 - **POPCOUNT** (W_j) gives the number of stones in the *j*th row.
 - $19-POPCOUNT(W_j)$ gives the number of empty intersections in the *j*th row.

Example II

- In Chinese Dark Chess (CDC), how to find all revealed pieces of a color on the board?
 - Assume you have a long hardware word W of 32*3=96 bits.
 - Encoding: bits 3i, 3i + 1, and 3i + 2 in W_b represents the status of the *i*th cell on the board with regard to the black side. Similarly, we have W_r for the red side.
 - ▶ 000 means empty, or pieces of other color or dark.
 - ▶ xyz means the xyzth kind of piece where there are up to only 7 different kinds of pieces of a color. Thus the encodings used are from 1 to 7.

Algorithm Find_PCES(color c)

- // find all pieces of color c and put them in m[]
- i = 0
- while $W_c != 0$ do
 - ▷ $a = TZCNT(W_c)$ // count the number of tailing zeros
 - $\triangleright a = a a \mod 3 // find piece location$
 - \triangleright $W_c >>= a // right shift a bits, find next piece$
 - \triangleright $m[i + +] = W_c \& 07 // gives a piece of color c$
 - \triangleright $W_c \& = \sim (07) // \text{mask off the lowest 3 bits}$
- return m

Example III

In Othello, how to pack information of a column in a continuous sequence of cells?

- Problem:
 - ▶ The board of Othello is a 8 by 8 rectangle. Assume we use a word to represent the board and use the row-major ordering, then cells in a column are non-adjacent.
 - ▶ Example: The first (leftmost) column are numbered 0, 8, 16, 24, 32, 40, 48, and 56 in a row-major ordering.
- Encoding:
 - $\triangleright Assume you have a hardware word W of 64 bits.$
 - \triangleright W_b and W_w are words for black and white stones respectively.
 - \triangleright 0 means empty or other color.
 - \triangleright $(W_b|W_w)$ gives the word for empty spaces.

Algorithm Find_Column(color c, int idx)

- // pack information in column idx into adjacent bits
- // Loc is an array which gives the masks of bits in column idx
- Mask = Loc[idx]
- $W = PEXT(W_c, Mask)$
- return W

Comments

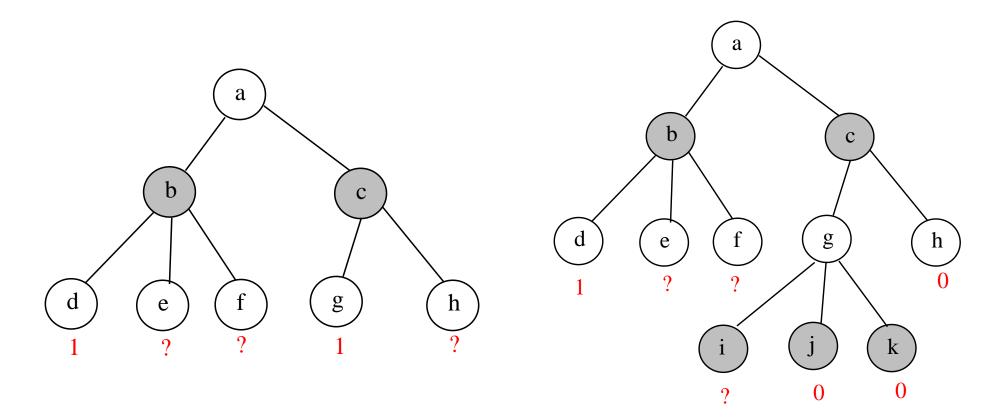
- Read carefully the instruction set of the CPU used to find out any special SIMD operations that are or aren't provided.
- The speedup is a lot, sometimes more than 50 times, if the encoding used is good [Browne 2014].

Proof number search

- Consider the case of a 2-player game tree with either 0 or 1 on the leaves.
 - win, or not win which is lose or draw;
 - lose, or not lose which is win or draw;
 - Call this a binary valued game tree.
- If the game tree is known as well as the values of some leaves are known, can you make use of this information to search this game tree faster?
 - The value of the root is either 0 or 1.
 - If a branch of the root returns 1, then we know for sure the value of the root is 1.
 - The value of the root is 0 only when all branches of the root returns 0.
 - An AND-OR game tree search.

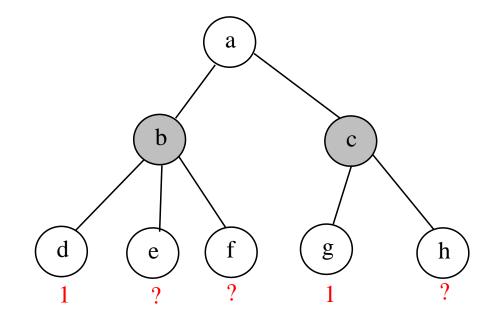
Which node to search next?

- A most proving node for a node u: a descendent node if its value is 1, then the value of u is 1.
- A most disproving node for a node u: a descendent node if its value is 0, then the value of u is 0.



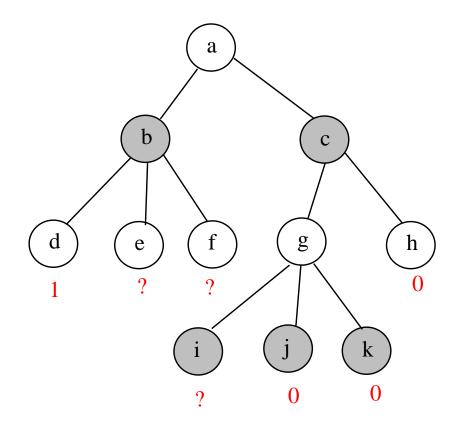
Most proving node

• Node *h* is a most proving node for *a*.



Most disproving node

• Node e or f is a most disproving node for a.



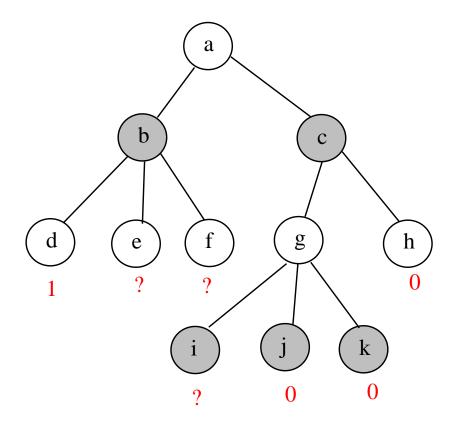
Proof or Disproof Number

- Assign a proof number and a disproof number to each node u in a binary valued game tree.
 - proof(u): the minimum number of leaves needed to visited in order for the value of u to be 1.
 - disproof(u): the minimum number of leaves needed to visited in order for the value of u to be 0.
- The definition implies a bottom-up ordering.

Proof number

Proof number for the root a is 2.

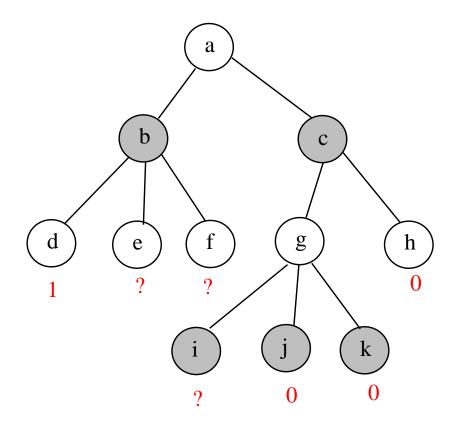
 \triangleright Need to at least prove e and f.



Disproof number

Disproof number for the root *a* **is 2**.

 \triangleright Need to at least disprove *i*, and either *e* or *f*.



Proof Number: Definition

• *u* is a leaf:

- If value(u) is unknown, then proof(u) is the cost of evaluating u.
- If value(u) is 1, then proof(u) = 0.
- If value(u) is 0, then $proof(u) = \infty$.

• u is an internal node with all of the children u_1, \ldots, u_b :

• if u is a MAX node,

$$proof(u) = \min_{i=1}^{i=b} proof(u_i);$$

• if u is a MIN node,

$$proof(u) = \sum_{i=1}^{i=b} proof(u_i).$$

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu \bigodot

Disproof Number: Definition

• *u* is a leaf:

- If value(u) is unknown, then disproof(u) is cost of evaluating u.
- If value(u) is 1, then $disproof(u) = \infty$.
- If value(u) is 0, then disproof(u) = 0.

• u is an internal node with all of the children u_1, \ldots, u_b :

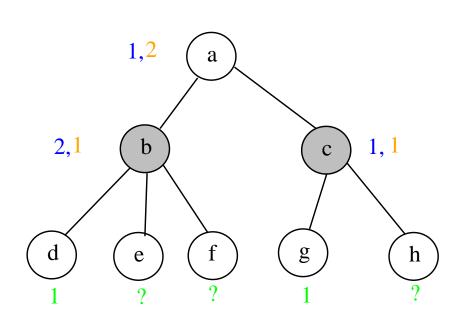
• if u is a MAX node,

$$disproof(u) = \sum_{i=1}^{i=b} disproof(u_i);$$

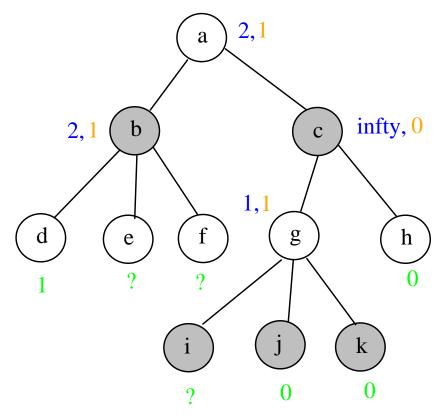
• if u is a MIN node,

$$disproof(u) = \min_{i=1}^{i=b} disproof(u_i).$$

Illustrations



proof number, disproof number



proof number, disproof number

How these numbers are used (1/2)

Scenario:

• For example, the tree T represents an open game tree or an endgame tree.

- ▶ If T is an open game tree, then maybe it is asked to prove or disprove a certain open game is win.
- ▶ If T is an endgame tree, then maybe it is asked to prove or disprove a certain endgame is win o loss.
- ▶ Each leaf takes a lot of time to evaluate.
- ▶ We need to prove or disprove the tree using as few time as possible.
- Depend on the results we have so far, pick a leaf to prove or disprove.

Goal: solve as few leaves as possible so that in the resulting tree, either proof(root) or disproof(root) becomes 0.

- If proof(root) = 0, then the tree is proved.
- If disproof(root) = 0, then the tree is disproved.

Need to be able to update these numbers on the fly.

How these numbers are used (2/2)

• Let $GV = \min\{proof(root), disproof(root)\}$.

- GT is "prove" if GV = proof(root), which means we try to prove it.
- GT is "disprove" if GV = disproof(root), which means we try to disprove it.
- In the case of proof(root) = disproof(root), we set GT to "prove" for convenience.
- From the root, we search for a leaf whose value is unknown.
 - The leaf found is a most proving node if GT is "prove", or a most disproving node if GT is "disprove".
 - To find such a leaf, we start from the root downwards recursively as follows.
 - ▶ If we have reached a leaf, then stop.
 - If GT is "prove", then pick a child with the least proof number for a MAX node, and any node that has a chance to be proved for a MIN node.
 - If GT is "disprove", then pick a child with the least disproof number for a MIN node, and any node that has a chance to be disproved for a MAX node.

PN-search: algorithm (1/2)

• {* Compute and update proof and disproof numbers of the root in a bottom up fashion until it is proved or disproved. *}

loop:

• If proof(root) = 0 or disproof(root) = 0, then we are done, otherwise

▷ $proof(root) \leq disproof(root)$: we try to prove it.

- $\triangleright \ proof(root) > disproof(root): we try to disprove it.$
- $u \leftarrow root$; {* find a leaf to prove or disprove *}
- if we try to prove, then
 - \triangleright while u is not a leaf do
 - $\triangleright \quad if \ u \ is \ a \ MAX \ node, \ then$
 - $u \leftarrow \text{leftmost child of } u \text{ with the smallest non-zero proof number;}$
 - \triangleright else if u is a MIN node, then
 - $u \leftarrow$ leftmost child of u with a non-zero proof number;
- else if we try to disprove, then
 - \triangleright while u is not a leaf do
 - $\triangleright \quad \text{if } u \text{ is a MAX node, then}$
 - $u \leftarrow$ leftmost child of u with a non-zero disproof number;
 - \triangleright else if u is a MIN node, then
 - $u \leftarrow$ leftmost child of u with the smallest non-zero disproof number;

PN-search: algorithm (2/2)

• {* Continued from the last page *}

- solve *u*;
- repeat {* bottom up updating the values *}
 - \triangleright update proof(u) and disproof(u)
 - $\triangleright u \leftarrow u's parent$

until u is the root

• go to *loop*;

Multi-Valued game Tree

The values of the leaves may not be binary.

- Assume the values are non-negative integers.
- Note: it can be in any finite countable domain.

Revision of the proof and disproof numbers.

• $proof_v(u)$: the minimum number of leaves needed to visited in order for the value of u to $\geq v$.

 \triangleright proof(u) \equiv proof₁(u).

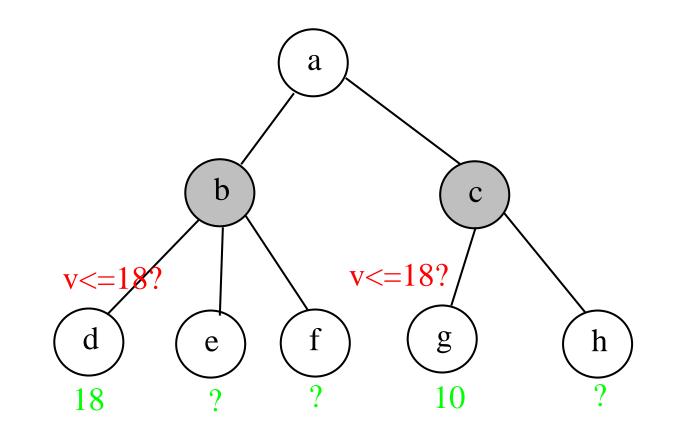
• $disproof_v(u)$: the minimum number of leaves needed to visited in order for the value of u to < v.

 $\triangleright \ disproof(u) \equiv disproof_1(u).$

Illustration



Illustration



Multi-Valued proof number

• *u* is a leaf:

- If value(u) is unknown, then $proof_v(u)$ is cost of evaluating u.
- If $value(u) \ge v$, then $proof_v(u) = 0$.
- If value(u) < v, then $proof_v(u) = \infty$.

• u is an internal node with all of the children u_1, \ldots, u_b :

• if u is a MAX node,

$$proof_v(u) = \min_{i=1}^{i=b} proof_v(u_i);$$

• if u is a MIN node,

$$proof_v(u) = \sum_{i=1}^{i=b} proof_v(u_i).$$

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu \bigodot

Multi-Valued disproof number

• *u* is a leaf:

- If value(u) is unknown, then $disproof_v(u)$ is cost of evaluating u.
- If $value(u) \ge v$, then $disproof_v(u) = \infty$.
- If value(u) < v, then $disproof_v(u) = 0$.

• u is an internal node with all of the children u_1, \ldots, u_b :

• if u is a MAX node,

$$disproof_v(u) = \sum_{i=1}^{i=b} disproof_v(u_i);$$

• if u is a MIN node,

$$disproof_v(u) = \min_{i=1}^{i=b} disproof_v(u_i).$$

Revised PN-search(v): algorithm (1/2)

- {* Compute and update proof_v and disproof_v numbers of the root in a bottom up fashion until it is proved or disproved. *}
 loop:
 - If $proof_v(root) = 0$ or $disproof_v(root) = 0$, then we are done, otherwise
 - ▷ $proof_v(root) \leq disproof_v(root)$: we try to prove it.
 - ▷ $proof_v(root) > disproof_v(root)$: we try to disprove it.
 - $u \leftarrow root$; {* find a leaf to prove or disprove *}
 - if we try to prove, then
 - \triangleright while u is not a leaf do
 - $\triangleright \quad if u is a MAX node, then$
 - $u \leftarrow \text{leftmost child of } u \text{ with the smallest non-zero proof}_v \text{ number};$
 - \triangleright else if u is a MIN node, then
 - $u \leftarrow \text{leftmost child of } u \text{ with a non-zero proof}_v \text{ number};$
 - else if we try to disprove, then
 - \triangleright while u is not a leaf do
 - $\triangleright \quad \text{if } u \text{ is a MAX node, then}$
 - $u \leftarrow \text{leftmost child of } u \text{ with a non-zero disproof}_v \text{ number};$
 - \triangleright else if u is a MIN node, then
 - $u \leftarrow \text{leftmost child of } u \text{ with the smallest non-zero disproof}_v \text{ number};$

PN-search: algorithm (2/2)

• {* Continued from the last page *}

- solve *u*;
- repeat {* bottom up updating the values *}
 - \triangleright update $proof_v(u)$ and $disproof_v(u)$
 - $\triangleright u \leftarrow u's parent$

until u is the root

• go to *loop*;

Multi-valued PN-search: algorithm

- When the values of the leaves are not binary, use an open value binary search to find an upper bound of the value.
 - Set the initial value of v to be 1.
 - loop: PN-search(v)
 - $\triangleright Prove the value of the search tree is \geq v or disprove it by showing it is < v.$
 - If it is proved, then double the value of v and go to loop again.
 - If it is disproved, then the true value of the tree is between $\lfloor v/2 \rfloor$ and v-1.
 - {* Use a binary search to find the exact returned value of the tree. *}
 - $low \leftarrow \lfloor v/2 \rfloor$; $high \leftarrow v 1$;
 - while $low \leq high$ do
 - \triangleright if low = high, then return low as the tree value
 - $\triangleright \ mid \leftarrow \lfloor (low + high)/2 \rfloor$
 - ▷ **PN-search**(mid)
 - \triangleright if it is disproved, then $high \leftarrow mid 1$
 - \triangleright else if it is proved, then $low \leftarrow mid$

Comments

- Can be used to construct opening books.
- Appear to be good for searching certain types of game trees.
 - Find the easiest way to prove or disprove a conjecture.
 - A dynamic strategy depends on work has been done so far.
- Performance has nothing to do with move ordering.
 - Performances of most previous algorithms depend heavily on whether good move orderings can be found.
- Searching the "easiest" branch may not give you the best performance.
 - Performance depends on the value of each internal node.
- Commonly used in verifying conjectures, e.g., first-player win.
 - Partition the opening moves in a tree-like fashion.
 - Try to the "easiest" way to prove or disprove the given conjecture.
- Take into consideration the fact that some nodes may need more time to process than the other nodes.

More research topics

- Does a variation of a game make it different?
 - Whether Stalemate is draw or win in chess.
 - Japanese and Chinese rules in Go.
 - Chinese and Asia rules in Chinese chess.
 - ...
- Why a position is easy or difficult to human players?
 - Can be used in tutoring or better understanding of the game.

Unique features in games

- Games are used to model real-life problems.
- Do unique properties shown in games help modeling real applications?
 - Chinese chess
 - ▷ Very complicated rules for loops: can be draw, win or loss.
 - ▷ The usage of cannons for attacking pieces that are blocked.
 - Go: the rule of Ko to avoid short cycles, and the right to pass.
 - Chinese dark chess: a chance node that makes a deterministic ply first, and then followed by a random toss.
 - EWN: a chance node that makes a random toss first, and then followed with a deterministic ply later.
 - Shogi: the ability to capture an opponent's piece and turn it into your own.
 - Chess: stalemate is draw.
 - Promotion: a piece may turn into a more/less powerful one once it satisfies some pre-conditions.
 - ▷ Chess
 - ▷ Shogi
 - ▷ Chinese chess: the mobility of a pawn is increased once it advances twice, but is decreased once it reaches the end of a column.

References and further readings (1/4)

- L. V. Allis, M. van der Meulen, and H. J. van den Herik. Proof-number search. *Artificial Intelligence*, 66(1):91–124, 1994.
- David Carmel and Shaul Markovitch. Learning and using opponent models in adversary search. Technical Report CIS9609, Technion, 1996.
- M. Campbell. The graph-history interaction: on ignoring position history. In Proceedings of the 1985 ACM annual conference on the range of computing : mid-80's perspective, pages 278–280. ACM Press, 1985.
- Akihiro Kishimoto and Martin Müller (2004). A General Solution to the Graph History Interaction Problem. AAAI, 644–648, 2004.
- Kuang-che Wu, Shun-Chin Hsu and Tsan-sheng Hsu "The Graph History Interaction Problem in Chinese Chess," Proceedings of the 11th Advances in Computer Games Conference, (ACG), Springer-Verlag LNCS# 4250, pages 165–179, 2005.

References and further readings (2/4)

- C.A. Luckhardt and K.B. Irani in "An algorithmic solution of N-person games", Proceedings of the Fifth National Conference on Artificial Intelligence (AAAI'86), p.158-162, AAAI Press.
- Nathan R. Sturtevan A Comparison of Algorithms for Multiplayer Games Computers and Games, Third International Conference, CG 2002, Edmonton, Canada, July 25-27, 2002.
- Richard Korf "Multi-player alpha-beta pruning" in Artificial Intelligence 48 (1991), p.99-111.
- Condon, J.H. and K. Thompson, "Belle Chess Hardware", In Advances in Computer Chess 3 (ed. M.R.B.Clarke), Pergamon Press, 1982.
- Hsu, Feng-hsiung; Campbell, Murray; Hoane, A. Joseph, Jr. (1995). "Deep Blue System Overview" (PDF). Proceedings of the 9th International Conference on Supercomputing. 1995 International Conference on Supercomputing. Association for Computer Machinery. pp. 240-–244

References and further readings (3/4)

- Chess Skill in Man and Machine", Chess 4.5 The Northwestern University Chess Program, L. Atkin & D. Slate, pp. 82—118, Springer-Verlag, 1977.
- Fuller, S.H, Gaschnig, J.G. and Gillogly, J.J. Analysis of the Alpha-beta Pruning Algorithm Carnegie Mellon University. Computer Science Department https://books.google.com.tw/books?id=cOTmlwEACAAJ, 1973.
- C. Browne. Bitboard methods for games ICGA Journal, vol. 37, no. 2, pp. 67–84, 2014
- Intel, Intel Architecture Instruction Set Extension and Future Features Programming Reference, 2021. https://community.intel.com/legacyfs/online/drupal_files/ managed/c5/15/ architecture-instruction-set-extensions-programming-reference.pdf
- AMD, 3D Now! Technology manual, 2000. https://www.amd.com/system/files/TechDocs/21928.pdf

References and further readings (4/4)

 Hung-Jui Chang and Cheng Yueh and Gang-Yu Fan and Ting-Yu Lin and Tsan-sheng Hsu (2021). Opponent Model Selection Using Deep Learning. Proceedings of the 2021 Advances in Computer Games (ACG).