
Theory of Computer Games:
Selected Advanced Topics

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1



Abstract

Some advanced research issues.
• The graph history interaction (GHI) problem.
• Opponent models.
• Multi-player game tree search.
• Bit board speedup.
• Proof-number search.

More research topics.
• The influence of rules on games.

▷ Allowing long cycles in Go.
▷ The scoring of a suicide ply in chess.

• Why a position is difficult to human?
• Unique features in games.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 2



Graph history interaction problem

The graph history interaction (GHI) problem [Campbell 1985]:
• In a game graph, a position can be visited by more than one paths
from a starting position.

• The value of the position depends on the path visiting it.
▷ It can be win, loss or draw for Chinese chess.
▷ It can only be draw for Western chess and Chinese dark chess.
▷ It can only be loss for Go.

In the transposition table, you record the value of a position,
but not the path leading to it.
• Values computed from rules on repetition cannot be used later on.
• It takes a huge amount of storage to store all the paths visiting it.

This is a very difficult problem to be solved in real time [Wu et
al ’05] [Kishimoto and Müller ’04].

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 3



GHI: when loop draws

A

B C

F
D

loss

E

G

win

H

IJ

• Assume if the game falls into a loop, then it is a draw.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 4



GHI: when loop draws

A

B C

F
D

loss

E

G

win

H

IJ

draw

• Assume if the game falls into a loop, then it is a draw.

• A→ B → D → G→ I → J → D is draw by rules of repetition.
▷ Memorized J as a draw position.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 5



GHI: when loop draws

A

B C

F
D

loss

E

G

win

H

IJ

win

draw

• Assume if the game falls into a loop, then it is a draw.

• A→ B → D → G→ I → J → D is draw by rules of repetition.
▷ Memorized J as a draw position.

• A→ B → D → H is a win. Hence D is win.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 6



GHI: when loop draws

A

B C

F
D

loss

E

G

win

H

IJ

win

loss

draw

• Assume if the game falls into a loop, then it is a draw.

• A→ B → D → G→ I → J → D is draw by rules of repetition.
▷ Memorized J as a draw position.

• A→ B → D → H is a win. Hence D is win.

• A→ B → E is a loss. Hence B is loss.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 7



GHI: when loop draws

A

B C

F
D

loss

E

G

win

H

IJ

win

loss

draw

draw

draw

draw

• Assume if the game falls into a loop, then it is a draw.

• A→ B → D → G→ I → J → D is draw by rules of repetition.
▷ Memorized J as a draw position.

• A→ B → D → H is a win. Hence D is win.

• A→ B → E is a loss. Hence B is loss.

• A→ C → F → J is draw because J is recorded as draw.

• A is draw because one child is loss and the other chile is draw.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 8



GHI: when loop draws
A

B C

F
D

loss

E

G

win

H

IJ

• Assume if the game falls into a loop, then it is a draw.

• A→ B → D → G→ I → J → D is draw by rules of repetition.
▷ Memorized J as a draw position.

• A→ B → D → H is a win. Hence D is win.

• A→ B → E is a loss. Hence B is loss.

• A→ C → F → J is draw because J is recorded as draw.

• A is draw because one child is loss and the other chile is draw.

• However, A→ C → F → J → D → H is a win (for the root).

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 9



GHI: when loop wins

A

B C

F
D

loss

E

G

win

H

IJ

• Assume the one causes loops wins the game.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 10



GHI: when loop wins

A

B C

F
D

loss

E

G

win

H

IJ

loss

• Assume the one causes loops wins the game.

• A→ B → D → G→ I → J → D is loss because of rules of repetition.
▷ Memorized J as a loss position (for the root).

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 11



GHI: when loop wins

A

B C

F
D

loss

E

G

win

H

IJ

loss

win

• Assume the one causes loops wins the game.

• A→ B → D → G→ I → J → D is loss because of rules of repetition.
▷ Memorized J as a loss position (for the root).

• A→ B → D → H is a win. Hence D is win.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 12



GHI: when loop wins

A

B C

F
D

loss

E

G

win

H

IJ

loss

win

loss

• Assume the one causes loops wins the game.

• A→ B → D → G→ I → J → D is loss because of rules of repetition.
▷ Memorized J as a loss position (for the root).

• A→ B → D → H is a win. Hence D is win.

• A→ B → E is a loss. Hence B is loss.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 13



GHI: when loop wins

A

B C

F
D

loss

E

G

win

H

IJ

loss

win

loss

loss

loss

loss

• Assume the one causes loops wins the game.

• A→ B → D → G→ I → J → D is loss because of rules of repetition.
▷ Memorized J as a loss position (for the root).

• A→ B → D → H is a win. Hence D is win.

• A→ B → E is a loss. Hence B is loss.

• A→ C → F → J is loss because J is recorded as loss.

• A is loss because both branches lead to loss.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 14



GHI: when loop wins
A

B C

F
D

loss

E

G

win

H

IJ

• Assume the one causes loops wins the game.

• A→ B → D → G→ I → J → D is loss because of rules of repetition.
▷ Memorized J as a loss position (for the root).

• A→ B → D → H is a win. Hence D is win.

• A→ B → E is a loss. Hence B is loss.

• A→ C → F → J is loss because J is recorded as loss.

• A is loss because both branches lead to loss.

• However, A→ C → F → J → D → H is a win (for the root).

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 15



Comments

Using DFS to search the above game graph from left first or
from right first produces two different results.
Position A is actually a win position.
• Problem: memorize J being draw is only valid when the path leading
to it causes a loop.

Storing the path leading to a position in a transposition table
requires too much memory.
• Maybe we can store some forms of hash code to verify it.

Finding a better data structure for solving this problem remains
to be a challenging research issue.
Remark: It real settings, it is usually the case that the rule of
loops is enforced after 3 repetitions. However, GHI problem
holds for any times of repetition.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 16



Opponent models

In a normal alpha-beta search, it is assumed that you and the
opponent use the same strategy.
• What is good to you is bad to the opponent and vice versa!
• Hence we can reduce a minimax search to a NegaMax search.
• This is normally true when the game ends, but may not be true in the
middle of the game.

What will happen when there are two strategies or evaluation
functions f1 and f2 so that
• for some positions p, f1(p) is better than f2(p)

▷ “better” means closer to the real value f(p)

• for some positions q, f2(q) is better than f1(q)

If you are using f1 and you know your opponent is using f2,
what can be done to take advantage of this information.
• This is called OM (opponent model) search [Carmel and Markovitch
1996].

▷ In a MAX node, use f1.
▷ In a MIN node, use f2.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 17



Other usage of the opponent model

Depend on strength of your opponent, decide whether to force
an easy draw or not.
• This is called the contempt factor.

Example in CDC:
• It is easy to chase the king of your opponent using your pawn.
• Drawing a weaker opponent is a waste.
• Drawing a stronger opponent is a gain.

It is feasible to use a learning model to “guess” the level of
your opponent as the game goes and then adapt to its model
in CDC [Chang et al 2021].

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 18



Opponent models – comments

Comments:
• Need to know your opponent’s model precisely or to have some
knowledge about your opponent.

• How to learn the opponent model on-line or off-line?
• When there are more than 2 possible opponent strategies, use a
probability model (PrOM search) to form a strategy.

Remark: A common misconception is that if your opponent
uses a worse strategy f3 than the one, namely f2, used in your
model, then he may get advantage.
• This is impossible if f2 is truly better than f3.
• If f1 can beat f2, then f1 can sure beat f3.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 19



Multi-player game tree search

Games with more than 2 players.
• Mahjong: 4 players
• Contract bridge or bridge: 4 players
• Monopoly: 2 to many players
• Scrabble: 2 to 4 players
• Risk: 2 to 6 players

Assume we have n players, y1, . . . , yn in a game.
• We have n evaluating functions, scorei, one for each player.
• Given a position p with the children p1, . . . , pm, let scorei(p) be the
score of yi for p.

▷ If p is a terminal position for yi, then m = 0 and scorei(p) is the “true”
score of yi in p.

▷ Otherwise, scorei(p) = maxm
j=1 scorei(pj).

• The above algorithm is called MAXn where stands for during each
turn, each player maximizes his own score without considering scores
of others.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 20



MAXn: algorithm

next player(idx): the player who is next to player idx.
Brute force algorithm for multi-player games.
Algorithm MAXN(position p, player idx)
• output: best which is an array with best[i] being the best value for
player i so far.

• If p is terminal, then return best[i] = scorei(p),∀i;
• initialize best to be best[i] = −∞,∀i;
• Let pi be the ith child of p;
• for i = 1 to last child of p do

▷ current = MAXN(pi, next player(idx));
▷ if current[idx] > best[idx], best = current; // maximized player idx

• return best;

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 21



MAXn: example (n = 3)

(4,2,3) (3,1,5) (2,3,0) (4,3,1)

(4,3,1)

(4,2,3) (3,1,5)

(1,6,1)

(1,6,{1})

(1,{6},1)

(2,4,1) (4,3,2)

(4,3,{2})

(4,{3},2)

({4},3,2)a

b c

d e f g h

i j k l m n o

player 1

player 2

player 3

player 1

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 22



Opportunities for pruning (1/2)

Let p be a position in a multi-player game.
Alpha-beta pruning is a special case for n = 2 and cannot be
generalized for n > 2.
• Property used in alpha-beta pruning:

▷ What is good for y1 is definitely bad for y2 by using the zero sum
principle which is for a position p, score1(p) + score2(p) = 0.

• The above may not be true for n > 2.
▷ When n = 3, what is good for y1 may be also good for y2, but very bad

for y3.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 23



Opportunities for pruning (2/2)

For a position p, if there is no constraints on the n scores of p,
then it is impossible to have any cut offs for MAXn.
• In applications we often have the following properties.

▷ Zero sum.
▷ The sum of all n scores for p has an upper bound U .
▷ The score of p for any player has a lower bound L.

• Examples:
▷ Go for n players: each player owns pieces of a distinct color.
→ the sum of all points ≤ the board size, and the score cannot be
negative.

▷ Othello for n players: each player owns pieces of a distinct color and
flips all pieces of different colors.
→ the sum of all points ≤ the plys played so far and the score cannot
be negative.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 24



Pruning

Recall: a position p with the children p1, . . . , pm and the parent
p′, and scorei(p) is the score of player i for p.
Direct pruning:
• During the turn of the ith player, if scorei(pj) = U , then no more
search is needed.

Shallow pruning:
• Without loss of generality, assume L = 0.
• During the turn of the ith player, if scorei(pj) = v so far, then
scorei(p) ≥ v since each player is a max player.

• This implies scorej(p) ≤ U − v if j ̸= i.
• Let i′ be the index of the immediate previous player.
• We know scorei′(p

′) ≥ h if he has done some searching.
• If h ≥ U − v, then we have a cut off.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 25



MAXn: ideas for cutoff

p

p’

player i

player i’

...
...

score_i(p)>=vscore_i’(p) <= U−v

score_i’(p’)>=h

h

p_1 p_j

score_i(p_j)=v

if h>=U−v
then cut

p_mp_j+1

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 26



MAXn: cutoff example (n = 3, U = 9)

(4,2,3) (3,1,5) (2,3,0) (4,3,1)

(4,3,1)

(4,2,3) (3,1,5)

(1,6,1)

(1,6,{1})

(1,{6},1)

(2,4,1) (4,3,2)

(4,3,{2})

(4,{3},2)

({4},3,2)a

b c

d e f g h

i j k l m n o

player 1

player 2

player 3

player 1

(<=3,>=6,<=3)

(>=4,<=5,<=5)

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 27



Remarks about pruning in MAXn

Direct pruning is a degenerated case of the shallow pruning by
the following settings.
• If v = U , then the scores of all other players are all zero.
• Using the lower bound L, you can get a cut off.

Compared to two-player alpha-beta pruning, both direct and
shallow pruning can be used in n ≥ 2.
Deep pruning does not work when n > 2.
• Assume you are searching the node w, v is your parent and u is an
ancestor that is not v.

• Assume node x is the turn of player player(x).
• Any value of scoreplayer(u)(u) cannot produce any cutoff on searching
the tree Tw because player(v) makes the decision first in propagating
the values up.

• Any value of scoreplayer(u)(w) can be propagated up and be used by u.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 28



Algorithm for shallow cut off

Functions and data structures
• next player(idx): the player who is next to player idx.
• scorei(p): the score of player i for the position p.
• U : the upper bound of sum of all scores among all players on a position.
• Assume L is 0.
• best and current are both arrays of size n.

Algorithm shallow(position p, player idx, value bound)
• return value: best which is an array with best[i] being the best value
for player i so far.

• If p is terminal, then return best[i] = scorei(p),∀i;
• Let pi be the ith child of p;
• best = shallow(p1, next(idx), U); // recursive call on the first child
• for i = 2 to last child of p do

4.1: if best[idx] = U , then return best // immediate cut off
4.2: if best[idx] ≥ bound, then return best // shallow cut off
4.3: current = shallow(pi, next player(idx), U − best[idx]);
4.4: if current[idx] > best[idx], best = current; // maximize player idx

• return best;

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 29



Comments

A generalization of alpha-beta cutoff on adjacent depths.
Does not work on deep alpha-beta cutoff [Korf 1991].

In the best case, the effective branching factor is 1+
√
4b−3
2 where

b is the average branching factor.
• Comparing to alpha-beta cut off, the best effective branching factor is√

b.

In the average case, the effective branching factor is approaching
O(b).
• Comparing to alpha-beta cut off, the the average effective branching
factor is b0.75 [Fuller et al 1975].

• This implies most of the cut off come from deep pruning in the average
case.

More research are needed to get more cutoff by observing
additional constraints on the values from the application
domain.
MCTS can be easily extended to work on any number of
players, but need to work on better properties of convergence.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 30



Hardware Speedup

Using hardware to speed up searching is not new.
• Parallel computing.

▷ The Northwestern University CHESS program series on the 1970’s
makes full usage of hardware advantages from supercomputers [Atkin
& Slate 1977].

• Special hardware acceleration:
▷ Belle: a chess machine with special micro instructions for move gener-

ation, alpha-beta pruning and transposition table operations [Condon
& Thompson 1982].

▷ Deep Blue: custom VLSI FPGA chips for operating chess playing ex-
pert systems [Hsu et al 1995].

The above’s are very costly.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 31



Bit board techniques

Everyone can make use of the benefits of hardware acceleration
now by smart usage of fast parallel bitwise operations provided
by modern day CPU’s.
• Intel CPU’s: MMX and SSE [Intel 2021]
• AMD: 3D Now! [AMD 2000]

Main technique
• Using bits to represent the board and pieces on the board.

▷ Transfer a board into an n×m picture
▷ Transfer pieces into patterns of pixel rectangles

• These instructions are usually in the form of SIMD (single instruction
multiple data).

• Many are for image related operations.
• May also make use of GPU.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 32



Special instruction sets (1/2)

Make use of fast parallel bitwise operations provided by modern
day CPU’s.
Many different types
• Find aggregated information
• Parallel bit deposit and extract
• ...

Most of the instructions can be done using AND, OR, NOT
operations, but can be done much faster using special CPU
instructions.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 33



Special instruction sets (2/2)

Find aggregated information:
• population count (POPCNT): the number of 1-bits in a “word”.
• leading/trailing zero count: LZCNT, TZCNT

Parallel bit deposit and extract
• Pack in sequence selected bits (PEXT): extract something out

▷ PEXT (W,Mask) returns a word by packing to the right those bits in
the word W whose corresponding bits in the word Mask are equal to
1.

▷ Example: PEXT (010110010, 010101010) extracts the four even num-
bered bit and then pack it to the right. Thus it returns 01100.

• Distribute bits in sequence to selected locations (PDEP): deposit
something into.

▷ PDEP (W,Mask) returns a word by sending the ith bit in the word
W to the location addressed by the ith 1.

▷ Example: PEXT (01100, 010101010) deposits the four bits to the even
numbered location. Thus it returns 010100000.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 34



Example I

In Go, how to find the number of empty intersections on the
board?
• Assume you have a long hardware word W of 19*2=38 bits.

▷ Use 19 words W1, . . . ,W19 to represent the rows.

• Encoding: bits i and i+1 in Wj represents the status of the intersection
at the ith column and jth row.

▷ 00 means empty.
▷ 10 means a black stone.
▷ 01 means a white stone.

• POPCOUNT(Wj) gives the number of stones in the jth row.
• 19−POPCOUNT(Wj) gives the number of empty intersections in the
jth row.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 35



Example II

In Chinese Dark Chess (CDC), how to find all revealed pieces
of a color on the board?
• Assume you have a long hardware word W of 32*3=96 bits.
• Encoding: bits 3i, 3i+ 1, and 3i+ 2 in Wb represents the status of the
ith cell on the board with regard to the black side. Similarly, we have
Wr for the red side.

▷ 000 means empty, or pieces of other color or dark.
▷ xyz means the xyzth kind of piece where there are up to only 7 different

kinds of pieces of a color. Thus the encodings used are from 1 to 7.

Algorithm Find PCES(color c)
• // find all pieces of color c and put them in m[]
• i = 0
• while Wc ! = 0 do

▷ a = TZCNT (Wc) // count the number of tailing zeros
▷ a = a− a mod 3 // find piece location
▷ Wc >>= a // right shift a bits, find next piece
▷ m[i + +] = Wc & 07 // gives a piece of color c
▷ Wc &= ∼(07) // mask off the lowest 3 bits

• return m

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 36



Example III

In Othello, how to pack information of a column in a continuous
sequence of cells?
• Problem:

▷ The board of Othello is a 8 by 8 rectangle. Assume we use a word
to represent the board and use the row-major ordering, then cells in a
column are non-adjacent.

▷ Example: The first (leftmost) column are numbered 0, 8, 16, 24, 32,
40, 48, and 56 in a row-major ordering.

• Encoding:
▷ Assume you have a hardware word W of 64 bits.
▷ Wb and Ww are words for black and white stones respectively.
▷ 0 means empty or other color.
▷ (Wb|Ww) gives the word for empty spaces.

Algorithm Find Column(color c, int idx)
• // pack information in column idx into adjacent bits
• // Loc is an array which gives the masks of bits in column idx
• Mask = Loc[idx]
• W = PEXT (Wc,Mask)
• return W

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 37



Comments

Read carefully the instruction set of the CPU used to find out
any special SIMD operations that are or aren’t provided.
The speedup is a lot, sometimes more than 50 times, if the
encoding used is good [Browne 2014].

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 38



Proof number search

Consider the case of a 2-player game tree with either 0 or 1 on
the leaves.
• win, or not win which is lose or draw;
• lose, or not lose which is win or draw;
• Call this a binary valued game tree.

If the game tree is known as well as the values of some leaves
are known, can you make use of this information to search this
game tree faster?
• The value of the root is either 0 or 1.
• If a branch of the root returns 1, then we know for sure the value of
the root is 1.

• The value of the root is 0 only when all branches of the root returns 0.
• An AND-OR game tree search.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 39



Which node to search next?

A most proving node for a node u: a descendent node if its
value is 1, then the value of u is 1.
A most disproving node for a node u: a descendent node if its
value is 0, then the value of u is 0.

a

b c

d e f g h

1 ?1 ? ?

a

b c

d e f g h

1 ? ?

? 00

0

i j k

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 40



Most proving node

Node h is a most proving node for a.

a

b c

d e f g h

1 ?1 ? ?

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 41



Most disproving node

Node e or f is a most disproving node for a.

a

b c

d e f g h

1 ? ?

? 00

0

i j k

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 42



Proof or Disproof Number

Assign a proof number and a disproof number to each node u
in a binary valued game tree.
• proof(u): the minimum number of leaves needed to visited in order for
the value of u to be 1.

• disproof(u): the minimum number of leaves needed to visited in order
for the value of u to be 0.

The definition implies a bottom-up ordering.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 43



Proof number

Proof number for the root a is 2.
▷ Need to at least prove e and f .

a

b c

d e f g h

1 ? ?

? 00

0

i j k

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 44



Disproof number

Disproof number for the root a is 2.
▷ Need to at least disprove i, and either e or f .

a

b c

d e f g h

1 ? ?

? 00

0

i j k

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 45



Proof Number: Definition

u is a leaf:
• If value(u) is unknown, then proof(u) is the cost of evaluating u.
• If value(u) is 1, then proof(u) = 0.
• If value(u) is 0, then proof(u) =∞.

u is an internal node with all of the children u1, . . . , ub:
• if u is a MAX node,

proof(u) =
i=b
min
i=1

proof(ui);

• if u is a MIN node,

proof(u) =

i=b∑
i=1

proof(ui).

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 46



Disproof Number: Definition

u is a leaf:
• If value(u) is unknown, then disproof(u) is cost of evaluating u.
• If value(u) is 1, then disproof(u) =∞.
• If value(u) is 0, then disproof(u) = 0.

u is an internal node with all of the children u1, . . . , ub:
• if u is a MAX node,

disproof(u) =

i=b∑
i=1

disproof(ui);

• if u is a MIN node,

disproof(u) =
i=b
min
i=1

disproof(ui).

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 47



Illustrations

a

b c

d e f g h

1 ?1 ? ?

disproof numberproof number, 

1,

2, 1, 11

2

a

b c

d e f g h

1 ? ?

? 00

0

disproof numberproof number, 

2, 1 infty, 0

1,1

2,1

i j k

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 48



How these numbers are used (1/2)

Scenario:
• For example, the tree T represents an open game tree or an endgame
tree.

▷ If T is an open game tree, then maybe it is asked to prove or disprove
a certain open game is win.

▷ If T is an endgame tree, then maybe it is asked to prove or disprove a
certain endgame is win o loss.

▷ Each leaf takes a lot of time to evaluate.
▷ We need to prove or disprove the tree using as few time as possible.

• Depend on the results we have so far, pick a leaf to prove or disprove.

Goal: solve as few leaves as possible so that in the resulting
tree, either proof(root) or disproof(root) becomes 0.
• If proof(root) = 0, then the tree is proved.
• If disproof(root) = 0, then the tree is disproved.

Need to be able to update these numbers on the fly.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 49



How these numbers are used (2/2)

Let GV = min{proof(root), disproof(root)}.
• GT is “prove” if GV = proof(root), which means we try to prove it.
• GT is “disprove” if GV = disproof(root), which means we try to
disprove it.

• In the case of proof(root) = disproof(root), we set GT to “prove” for
convenience.

From the root, we search for a leaf whose value is unknown.
• The leaf found is a most proving node if GT is “prove”, or a most
disproving node if GT is “disprove”.

• To find such a leaf, we start from the root downwards recursively as
follows.

▷ If we have reached a leaf, then stop.
▷ If GT is “prove”, then pick

a child with the least proof number for a MAX node, and
any node that has a chance to be proved for a MIN node.

▷ If GT is “disprove”, then pick
a child with the least disproof number for a MIN node, and
any node that has a chance to be disproved for a MAX node.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 50



PN-search: algorithm (1/2)

{∗ Compute and update proof and disproof numbers of the root
in a bottom up fashion until it is proved or disproved. ∗}
loop:
• If proof(root) = 0 or disproof(root) = 0, then we are done, otherwise

▷ proof(root) ≤ disproof(root): we try to prove it.
▷ proof(root) > disproof(root): we try to disprove it.

• u← root; {∗ find a leaf to prove or disprove ∗}
• if we try to prove, then

▷ while u is not a leaf do
▷ if u is a MAX node, then

u← leftmost child of u with the smallest non-zero proof number;
▷ else if u is a MIN node, then

u← leftmost child of u with a non-zero proof number;

• else if we try to disprove, then
▷ while u is not a leaf do
▷ if u is a MAX node, then

u← leftmost child of u with a non-zero disproof number;
▷ else if u is a MIN node, then

u← leftmost child of u with the smallest non-zero disproof number;

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 51



PN-search: algorithm (2/2)

{∗ Continued from the last page ∗}
• solve u;
• repeat {∗ bottom up updating the values ∗}

▷ update proof(u) and disproof(u)

▷ u← u′s parent

until u is the root
• go to loop;

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 52



Multi-Valued game Tree

The values of the leaves may not be binary.
• Assume the values are non-negative integers.
• Note: it can be in any finite countable domain.

Revision of the proof and disproof numbers.
• proofv(u): the minimum number of leaves needed to visited in order
for the value of u to ≥ v.

▷ proof(u) ≡ proof1(u).

• disproofv(u): the minimum number of leaves needed to visited in order
for the value of u to < v.

▷ disproof(u) ≡ disproof1(u).

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 53



Illustration

a

b c

d e f g h

?? ?18 10

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 54



Illustration

a

b c

d e f g h

?? ?18 10

v<=18? v<=18?

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 55



Multi-Valued proof number

u is a leaf:
• If value(u) is unknown, then proofv(u) is cost of evaluating u.
• If value(u) ≥ v, then proofv(u) = 0.
• If value(u) < v, then proofv(u) =∞.

u is an internal node with all of the children u1, . . . , ub:
• if u is a MAX node,

proofv(u) =
i=b
min
i=1

proofv(ui);

• if u is a MIN node,

proofv(u) =

i=b∑
i=1

proofv(ui).

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 56



Multi-Valued disproof number

u is a leaf:
• If value(u) is unknown, then disproofv(u) is cost of evaluating u.
• If value(u) ≥ v, then disproofv(u) =∞.
• If value(u) < v, then disproofv(u) = 0.

u is an internal node with all of the children u1, . . . , ub:
• if u is a MAX node,

disproofv(u) =

i=b∑
i=1

disproofv(ui);

• if u is a MIN node,

disproofv(u) =
i=b
min
i=1

disproofv(ui).

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 57



Revised PN-search(v): algorithm (1/2)

{∗ Compute and update proofv and disproofv numbers of the
root in a bottom up fashion until it is proved or disproved. ∗}
loop:
• If proofv(root) = 0 or disproofv(root) = 0, then we are done, otherwise

▷ proofv(root) ≤ disproofv(root): we try to prove it.
▷ proofv(root) > disproofv(root): we try to disprove it.

• u← root; {∗ find a leaf to prove or disprove ∗}
• if we try to prove, then

▷ while u is not a leaf do
▷ if u is a MAX node, then

u← leftmost child of u with the smallest non-zero proofv number;
▷ else if u is a MIN node, then

u← leftmost child of u with a non-zero proofv number;

• else if we try to disprove, then
▷ while u is not a leaf do
▷ if u is a MAX node, then

u← leftmost child of u with a non-zero disproofv number;
▷ else if u is a MIN node, then

u← leftmost child of u with the smallest non-zero disproofv number;

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 58



PN-search: algorithm (2/2)

{∗ Continued from the last page ∗}
• solve u;
• repeat {∗ bottom up updating the values ∗}

▷ update proofv(u) and disproofv(u)

▷ u← u′s parent

until u is the root
• go to loop;

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 59



Multi-valued PN-search: algorithm

When the values of the leaves are not binary, use an open value
binary search to find an upper bound of the value.
• Set the initial value of v to be 1.
• loop: PN-search(v)

▷ Prove the value of the search tree is ≥ v or
disprove it by showing it is < v.

• If it is proved, then double the value of v and go to loop again.
• If it is disproved, then the true value of the tree is between ⌊v/2⌋ and
v − 1.

• {∗ Use a binary search to find the exact returned value of the tree. ∗}
• low ← ⌊v/2⌋; high← v − 1;
• while low ≤ high do

▷ if low = high, then return low as the tree value
▷ mid← ⌊(low + high)/2⌋
▷ PN-search(mid)
▷ if it is disproved, then high← mid− 1
▷ else if it is proved, then low ← mid

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 60



Comments

Can be used to construct opening books.
Appear to be good for searching certain types of game trees.
• Find the easiest way to prove or disprove a conjecture.
• A dynamic strategy depends on work has been done so far.

Performance has nothing to do with move ordering.
• Performances of most previous algorithms depend heavily on whether
good move orderings can be found.

Searching the “easiest” branch may not give you the best
performance.
• Performance depends on the value of each internal node.

Commonly used in verifying conjectures, e.g., first-player win.
• Partition the opening moves in a tree-like fashion.
• Try to the “easiest” way to prove or disprove the given conjecture.

Take into consideration the fact that some nodes may need
more time to process than the other nodes.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 61



More research topics

Does a variation of a game make it different?
• Whether Stalemate is draw or win in chess.
• Japanese and Chinese rules in Go.
• Chinese and Asia rules in Chinese chess.
• ...

Why a position is easy or difficult to human players?
• Can be used in tutoring or better understanding of the game.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 62



Unique features in games

Games are used to model real-life problems.
Do unique properties shown in games help modeling real
applications?
• Chinese chess

▷ Very complicated rules for loops: can be draw, win or loss.
▷ The usage of cannons for attacking pieces that are blocked.

• Go: the rule of Ko to avoid short cycles, and the right to pass.
• Chinese dark chess: a chance node that makes a deterministic ply first,
and then followed by a random toss.

• EWN: a chance node that makes a random toss first, and then followed
with a deterministic ply later.

• Shogi: the ability to capture an opponent’s piece and turn it into your
own.

• Chess: stalemate is draw.
• Promotion: a piece may turn into a more/less powerful one once it
satisfies some pre-conditions.

▷ Chess
▷ Shogi
▷ Chinese chess: the mobility of a pawn is increased once it advances

twice, but is decreased once it reaches the end of a column.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 63



References and further readings (1/4)

L. V. Allis, M. van der Meulen, and H. J. van den Herik.
Proof-number search. Artificial Intelligence, 66(1):91–124,
1994.
David Carmel and Shaul Markovitch. Learning and using
opponent models in adversary search. Technical Report
CIS9609, Technion, 1996.
M. Campbell. The graph-history interaction: on ignoring
position history. In Proceedings of the 1985 ACM annual
conference on the range of computing : mid-80’s perspec-
tive, pages 278–280. ACM Press, 1985.
Akihiro Kishimoto and Martin Müller (2004). A General
Solution to the Graph History Interaction Problem. AAAI,
644–648, 2004.
Kuang-che Wu, Shun-Chin Hsu and Tsan-sheng Hsu ”The Graph
History Interaction Problem in Chinese Chess,” Proceedings of
the 11th Advances in Computer Games Conference, (ACG),
Springer-Verlag LNCS# 4250, pages 165–179, 2005.

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 64



References and further readings (2/4)

C.A. Luckhardt and K.B. Irani in ”An algorithmic solution of
N-person games”, Proceedings of the Fifth National Conference
on Artificial Intelligence (AAAI’86), p.158-162, AAAI Press.
Nathan R. Sturtevan A Comparison of Algorithms for Multi-
player Games Computers and Games, Third International
Conference, CG 2002, Edmonton, Canada, July 25-27, 2002.
Richard Korf ”Multi-player alpha-beta pruning” in Artificial
Intelligence 48 (1991), p.99-111.
Condon, J.H. and K. Thompson, ”Belle Chess Hardware”, In
Advances in Computer Chess 3 (ed. M.R.B.Clarke), Pergamon
Press, 1982.
Hsu, Feng-hsiung; Campbell, Murray; Hoane, A. Joseph, Jr.
(1995). ”Deep Blue System Overview” (PDF). Proceedings
of the 9th International Conference on Supercomputing. 1995
International Conference on Supercomputing. Association for
Computer Machinery. pp. 240-–244

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 65



References and further readings (3/4)

”Chess Skill in Man and Machine”, Chess 4.5 - The North-
western University Chess Program, L. Atkin & D. Slate, pp.
82—118, Springer-Verlag, 1977.
Fuller, S.H, Gaschnig, J.G. and Gillogly, J.J. Anal-
ysis of the Alpha-beta Pruning Algorithm Carnegie
Mellon University. Computer Science Department
https://books.google.com.tw/books?id=cOTmlwEACAAJ, 1973.
C. Browne. Bitboard methods for games ICGA Journal, vol.
37, no. 2, pp. 67–84, 2014
Intel, Intel Architecture Instruction Set Extension
and Future Features Programming Reference, 2021.
https://community.intel.com/legacyfs/online/drupal files/
managed/c5/15/
architecture-instruction-set-extensions-programming-reference.pdf
AMD, 3D Now! Technology manual, 2000.
https://www.amd.com/system/files/TechDocs/21928.pdf

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 66



References and further readings (4/4)

Hung-Jui Chang and Cheng Yueh and Gang-Yu Fan and Ting-Yu
Lin and Tsan-sheng Hsu (2021). Opponent Model Selection
Using Deep Learning. Proceedings of the 2021 Advances in
Computer Games (ACG).

TCG: Selected advanced topics, 20241219, Tsan-sheng Hsu © 67


