Theory of Computer Games:
Concluding Remarks

Tsan-sheng Hsu

tshsu@jis.sinica.edu.tw

http://www.iis.sinica.edu.tw/ tshsu



Abstract

Practical issues.
o Smart usage of resources.
> Time
> Memory
> Coding efforts
> Debugging efforts

e Putting everything together.
> Software tools
> Fine tuning

e How to know one version is better than the other?
Concluding remarks

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C)



Using resources: time and others

Time is the most critical resource [Hyatt 1984] [Solak and
Vuckovi¢ 2009].

Watch out different timing rules.
o An upper bound on the total amount of time can be used.
> It is hard to predict the total number of moves in a game in advance.
However, you can have some rough ideas.

o Fixed amount of time per ply.
e An upper bound 7 on the total amount of time is given, and then you
need to play X plys every 7; amount of time.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C) 3



Timing issues

Wall clock time vs CPU time is a system and O.S. issue.

o CPU time measures the time spent on your process.
e Wall clock time is the turn around, i.e., real, time used.

e In a time-sharing system, many processes are running at the same
time.

o Wall clock time >> CPU clock time.
e For tournaments, we only care about wall clock time.

Polling: check the system timer from time to time.

Interrupting: use the system kernel routines to issue an interrupt
event after a given pre-set time.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C) 4



Sample code for polling

o Example (Unix based)
> CPU time

#include <time.h>
double start = (double) clock();
double end = (double) clock();

double cpu_time_in_seconds =
(end - start) / (double) CLOCK_PER_SEC;

> Wall clock time

#include <time.h>

struct timespec start, end;
clock_gettime (CLOCK_REALTIME, &start);

clock_gettime (CLOCK_REALTIME, &end);

double wall_clock_in_seconds =
(double) ((end.tv_sec+end.tv_nsec*1le-9) -
(double) (start.tv_sec+start.tv_nsec*xle-9));

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C)



Commonly time-using rules (1/2)

Assume you have a total of 7' time to spend.

Related terms
e Time has already spent
e Planned time to spent for this ply

> May be larger or smaller than the actual time spent due to time con-
trolling schemes used.

Estimate the total number of plys N that you need to play
during a game.

o Collect these data empirically

e Do not be over optimistic

Let h be the current number of plys played so far. If h is
approaching N. say within 90%, then enlarge N by a fraction,
say 20%.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C) 6



Commonly time-using rules (2/3)

Commonly used formulas
o Fixed

> time: Spend % time for each ply
> depth: Search up to to depth D for each ply where D is estimated using
% time before the tournament.

e Dynamic
> Let t; be the time you have spent at the ith ply, for 1 < j.
_ j_lt.

T3
> Plan to spend % time for the jth ply.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C) 7



Commonly time-using rules (3/3)

Advanced techniques:
o The amount of time spent during each phase of the game is different.

> open game: knowledge is needed more than depth; however, need some
depth, say 4.

> middle game: deeper depth is needed

> end game: depth is on demand

To avoid extreme cases
o Set a minimum/maximum time to think.

> This is critical when the number of plys N is going to exceed your prior
estimation.

o Set a minimum/maximum depth to search.

Reminders:
e Dynamically adjusting
> When there is only one possible move, do not think.
> When the score is stable, cut short the time to spend.
> When the situation is dangerous, spend more time.

o Watch the time spent by your opponent.

> When he is going to be out of time, do not let him have a chance to
use your time in doing pondering.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C) 8



When and how to set time usage

When to check the current time usage
o lterative deepening: each time entering a new depth
o Using system interrupt on a fixed time interval
e MCTS: each time a selection process begins

Estimation of time usage
o lterative deepening
> t;: average time, during the last few plys, spent in searching depth-i
> prediction: t;1, ~ (t; - t:—il)’ 1> 1
> if the remaining time for this ply is less than the predicted time, then
do not initiate a new depth
e MCTS: an almost constant amount of time is spent when a node a

expanded and simulated.
> Open game: takes some time to simulate to the end.
> End game: takes a shorter time to simulate to the end.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C)



Pondering

Pondering:
e Use the time when your opponent is thinking.

o Guessing and then pondering.
o System issues.

> How interrupt is handled?
> Polling every now and then or triggered by events?

How pondering is done:
o In your turn, keep the first 2 plys m; and m, in the PV you obtained.

> You choose to play mq, and then it’s the opponent’s turn to think.

> In pondering, you assume (guess) the opponent plays ms.
> Then you continue to think at the same time your opponent thinks as
if he has played ms.

e Guessing right: If the opponent plays ms, then you can continue the
pondering search in your turn.

o Guessing wrong: If the opponent plays a move other than ms, then
you restart a new search.

Doing pondering requires the ability to know when a move is
made by your opponent using system interrupt, or you need to
check from time to time (polling).

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C) 10



Comments about time usage

Thinking style of human players.
e Using almost no time while you are in the open book.
o More time is spent in the beginning immediately after the program is
out of the book, and then slowly decrease the searching time.
e In the endgame phase, use more time in critical positions or when you

try to initiate an attack.

Points to watch:
o Over time: lose no matter how good you are at the moment.

> When the amount of your time left is low, speed up the search.

> When the amount of your opponent’s time is low and you are more
than his, spend less time and wait for his over time.

o lterative deepening helps in time planning.

> Need to set a minimum searching depth.
> Need to set a maximum searching depth to avoid buffer overfiow.

11

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C)



Comments

Do not think at all if you have only one possible logical move
left.

Do not think more if you have found a way to win.
Search only counter-checking moves if they exist.

Does the first player really have to think for the first ply?
o Use some open books to save time during the opening.

When the results of the previous two iterations differ a lot,
consider spending more time to verify.

When you have searched to a certain depth and the results are

stable in the previous rounds, consider to stop early.

o Be sure to use some Quiescent search algorithm plus SEE.

e You have searched the minimum depth.

e The recent several depths continuously return the same best ply and

almost about the same best score.

> Need to watch the ratio of failed low or failed high in your searching.
> When your ratio of failed low is high, then you are too optimistic.
> When your ratio of failed high it low, then you are too pessimistic.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C) 12



Using other resources

Memory
o Using a large transposition table occupies a large space and thus slows
down the program.
> A large number of positions are not visited too often.

o Using no transposition table may cause searching some critical positions
too many times.

CPU/GPU

e Do not fork a process to search branches that have little hope of finding
the PV even you have more than enough hardware.

> You need to wait for its termination.
> Synchronization takes resources.

Other resources.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C) 13



Putting everything together

Game playing system
o GUI.
o Data structures.

> Using a 2-D array to store the board and find everything by scanning
the board is time consuming.

> Better strategy: have a list of pieces that are still alive and a board at
the same time with proper co-referencing.

o Use some sorts of open books.

o Middle-game searching: usage of a search engine.
> FEvaluation function: knowledge.
> Main search algorithm: iterative deepening.

> Enhancements: transposition tables, Quiescent search and possible oth-
ers.

o Use some sorts of endgame databases.

Debugging and testing

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C) 14



Board

Use a 1-D array for the board with an extra boarder around the

board.

o Example: CDC.
o Array index L means a 2-D location (z,y) where x = L%10 and

y = L/10.
> Can consider x = L&0OxF and y = L >> 4 for faster arithmetics.
o Boarders are at P[0, x|, P[x,9], P[9, x|, P[x,0].
Advanced data structure: bit boards.
e Using a binary string for the board.

Remark: avoid using auto-dynamic data structures unless you
know them really well.
o MAP/VECTOR in recent C++.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C) ].5



Sample data structures for CDC

// boards

// 11,12,13,14,15,16,17,18
// 21,22,23,24,25,26,27,28
// 31,32,33,34,35,36,37,38
// 41,42,43,44,45,46,47,48
struct n_b{

char inside; // 1 if in the board
char empty; // whether it is empty
char dark; // whether it is dark
char color; // 0 or 1

char piece;

}.g;ard[(4+2)*(8+2)];

char is_inside(int index){
return board[index] .inside;

+

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C)

16



Using pre-computed tables

Save frequently used computation in tables.

o take advantage of a larger cache in recent CPU'’s.
Examples:

o Need to check whether two pieces at L1 and L2 are adjacent.

> Slow code:

x1 =L1 Y% 10; x2 = L2 % 10;

yl = L1 / 10; y2 = L2 / 10;

if ((abs(x1,x2)==1 && yl==y2) ||
(abs(yl,y2)==1 && x1==x2))

then return 1; else return O;

> Using pre-computed tables:
return adjacent[L1] [L2];

e Need to check whether one piece can capture the other.

e Need to check whether two locations are at the same column or row.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C)

17



//
//
//
//
//
//
//
//
//

Checking legal moves (1/2)

[(14+2) *(14+2)] array: 7 types, 2 colors plus dark and empty
upper cases are red; lower cases are black

can_eat_by_move [ELEPHANT] [rook] == 1
can_eat_by_move [rook] [ELEPHANT] == 0

can_eat_by_move [ELEPHANT] [ROOK] == 0

can_eat_by_move [ELEPHANT] [dark or empty] ==

adjaent [X] [Y]: whether locations X and Y are inside and adjacent
same_row_column[X] [Y]: where X and Y are inside and

in the same row or column

char can_eat_by_move[7*2+2] [7*2+2] ;

char is_legal_by_move(int from, int to, int color){

return is_your_piece(from,color) &&

adjacent [from] [to] &&

(is_empty(to) ||
can_eat_by_move [board[from] .piece] [board[to] .piece]);

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C) 18



Checking legal moves (2/2)

// legal cannon jumps

char is_legal_to_jump(int from, int to, int color){
return is_your_cannon(from,color) &&
is_enemy_piece(to,color) &&
same_row_column[from] [to] &&
there_is_a_piece(from,to);

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C)

19



Lists of pieces

Need at least two data structures for the pieces.
o Given a piece type, report its properties.
> An array of pieces indexing on pieces’ types.
> Sample usage: find your pieces during move generation.
e Given a location, report the piece at this location.

> Board.
> Sample usage: checking high level properties such as mobility.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C)

20



Piece list

// plist[RED][0..num_pieces[COLOR]-1] is the list of
// COLOR pieces that are alive and revealed
struct pl{

int where;

int piece_type;

} plist[2] [16];
int num_pieces[2]; // number of revealed and alive pieces

// remove the ith piece of color
void remove_piece(int i, int color){
num_pieces[color]--;
if (num_pieces[color] > 0){
// swap the last piece to the ith location
plist[i] = plist[num_piecesl[color]];
+

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C)

21



How moves are done

#define LEFT -1
#define RIGHT +1
#define DOWN +10
#define UP -10

#define move(IDX,DIR) (IDX+DIR)

// location i can move move_num[i] directions
// which are in move_dir[i] [0..move_num[i]-1]
int move_dir[(4+2)*(8+2)] [4];

int move_num[ (4+2)*(8+2)];

// location i has a cannon

// it can jump jump_num[i] directions

// which are in jump_dir[i] [0..jump_num[i]-1]
int jump_dir[(4+2)*(8+2)] [4];

int jump_num[(4+2)*(8+2)];

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C) 22



Move generation

for(i=0;i<num_pieces[color];i++){
from = plist[i].where;
for(j=0; j<move_num[from]; j++){
to = from+move_dir[j];
if(is_legal_by_move(from,to,color))q{
if (is_capture(from,to,color))
generate_capture(from,to,color);
else generate_move(from,to,color);

+
by
if(is_legal_to_jump(from,to,color)){
for(j=0; j<jump_num[from];j++){
to_dir = jump_dir[j];
if(to = find_jump(from,to_dir,color))
generate_jump(from,to,color);

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C)

23



Software tools

Using make to do a better software project management.
Using svn or other version control tools to do code maintaining.

Using compiler optimization switches to speed up.
e CPU-dependent instructions
e gcc -02 main.c
e gcc -03 main.c
> Object code may not be stable using aggressive optimization flags.

Using gdb (GNU based) or other debugging tools to debug.
o gdb a.out

Using gprof (GNU based) or other profiling tools to find out
the bottleneck of your code execution.

e gCC -pg coins.c

° ./a.out

o gprof a.out gmon.out

Using an Integrated Development Environment (IDE)
e For Windows based systems, a good IDE is Dev C++.

o Cross-platform: CODE::Blocks, VS code.
e For Unix-based systems, emacs or vim can be set as an IDE.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C) 24



Makefile example

all: LezGo.c board.h gtp.h gostring.h UCT.h board.c gtp.c gostring.c UCT.c
g++ -03 -1m LezGo.c board.h gtp.h gostring.h UCT.h hash.h board.c gtp.c gostring.c UCT.c hash.c -o LezGo.exe
UCT: LezGo.c board.h gtp.h UCT.h board.c gtp.c UCT.c liberty.h liberty.c

g+t+ -03 -1m -DUCT LezGo.c board.h gtp.h UCT.h board.c gtp.c UCT.c
liberty.h liberty.c -o LezGo-UCT.exe

LX-all: LezGo.c board.h gtp.h gostring.h UCT.h board.c gtp.c gostring.c UCT.c
gcc -03 -1m LezGo.c board.h gtp.h gostring.h UCT.h hash.h board.c gtp.c
gostring.c UCT.c hash.c -o LezGo

LX-UCT: LezGo.c board.h gtp.h gostring.h UCT.h board.c gtp.c gostring.c UCT.c
gcc -03 -1m -DUCT LezGo.c board.h gtp.h gostring.h UCT.h hash.h board.c
gtp.c gostring.c UCT.c hash.c -o LezGo-UCT

prof: LezGo.c board.h gtp.h gostring.h UCT.h board.c gtp.c gostring.c UCT.c
g+t+ -03 -g -pg -1m -DUCT LezGo.c board.h gtp.h gostring.h UCT.h hash.h

board.c gtp.c gostring.c UCT.c hash.c liberty.h liberty.c -o LezGo-prof
debug: LezGo.c board.h gtp.h gostring.h UCT.h board.c gtp.c gostring.c UCT.c
g++ -g -1m -DUCT LezGo.c board.h gtp.h gostring.h UCT.h hash.h board.c

gtp.c gostring.c UCT.c hash.c liberty.h liberty.c -o LezGo-prof

clean: LezGo
rm -rf LezGo

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C) 25



gdb example

@ S emacs@austin
File Edit Options Buffers Tools Gud Complete In/Out Signals Help

. Run G Run "= Next Line = Step Line ¥ # + = UpStack = Down Stack '?‘

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from a.out...done.
(gdb) file coins
Reading symbols from coins...done.
(gdb) run
Reading symbols from coins...done.
(gdb) run
Starting program: /home/tshsu/tcg/2021/slides/slidel4/coins
[Inferior 1 (process 14836) exited normally]
gdb)

o

.998 &
.000 &
.000
.000
.000
.000
.000
.000
.000
.000
.000

.997
. 000
. 000
.000
. 000
. 000
. 000
. 000
. 000
. 000
. 000

@0

.996 &
.000 &
.000
. 000
. 000
. 000
. 000
. 000
. 000
. 000
.000
.000

.991 &
.000 &
. 000
. 000
. 000
. 000
. 000
. 000
. 000
. 000
. 000
. 000

.994 &
.000 &
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

o

. 000
. 000
. 000
. 000
. 000
. 000
. 000
. 000
. 000
. 000

@0

@0
o

;,_c-_c-
0 o
k@-;@-
o
RPRRRPRRRRRRO
0 o
o
PR RPrRPRPRPRPRPRPRPRrRPL PO

o o
2o o

0 o po

0 @0 @0

FRRPRRRPRRPPRRPE PR

Qo o po
@0

0 @0 @0

o
PFRRPRRPRPRPRPRPRPPRPO

@
=S
2o
o
=S
2o

Q}
2o
2o
oo
2o
2o

2o o
RPRRERRRRRRRRRs
o o
Qo o
RPRrRRPRPRPRPRRPRPRPRPRLRPLO
o o
o o
Qo o

PFRRPRRPRPREPRPRRERRPRE R

20

C[ 120 @0 20 (0 0 Q0 Q0 0 0 0 (0 0
o

:¥*¥- *input/output of a.out* Bot L352 (Inferior I/0:run)

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C)



Profiling

shsu@austin:~/tcg. : ; b a.out gmon.out
Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds calls ns/call ns/call name

57.71 .45 1.45 300000000 4.83 4.83 coin
32.46 .26 ©.81 150000000 5.43 15.09 pair_toss
9.62 .50 0.24 main

0.80 .52 0.02 frame_dummy

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C) 27



Call graph

Call graph (explanation follows)

Hgranularity: each sample hit covers 2 byte(s) for 0.40% of 2.52 seconds

% ti self children called name
<spontaneous>
main [1]
150000000/150000000 pair_toss

150000000/150000000 main [1]
150000000 pair_toss [2]
300000000/300000000 coin [3]

300000000/300000000 pair_toss
300000000

<spontaneous>
frame_dummy [4]

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C)



Code for the sample profile (1/4)

// find the marginal pdf of a trinomial distribution

#include <stdio.h>
#include <stdlib.h>

//#define MAX_TRIALS 1000000000 // number of trials
#define MAX_TRIALS 1000000 // number of trials

#define MIN_N 10

#define MAX_N 50

#define N_INCR 10

#define MAX_VAL (2*MAX_N+1)

int win = 1; // points for a win

int draw = 0; // points for a draw

int loss = -1; // points for a loss

// prwin: win prob, prdraw: draw prob, l1-prwin-prdraw: lose prob
double pr_win = 0.3918; // Pr of win by the first player
double pr_draw = 0.3161; // Pr of draw by the first player
long int seedval = 5431276231; // a random magic number

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C)

29



Code for the sample profile (2/4)

// toss a coin with 3 outcomes
int coin(double prwin, double prdraw)

{
double t;

if ((t = drand48()) <= prdraw) return draw; // draw
else if(t <= prdraw+prwin) return win; // win
else return loss; // loss

3

// the score of a pair of games
int pair_toss(Q)
{

int score=0;

score += coin(pr_win,pr_draw); //first player

score += coin(1.0 - pr_win - pr_draw,pr_draw); //second player

return score;

3

main()
{
int number;
int s;
int n;
int 1i,j;
int values[MAX_VAL];
int accu,val;

srand48(seedval) ;

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C)

30



Code for the sample profile (3/4)

for (n=MIN_N;n<=MAX_N;n+=N_INCR){

for(j=0; j<MAX_VAL; j++) values[j] = O;
// perform MAX_TRIALS experiments
for (number = 0; number < MAX_TRIALS;number++){

// perform n trials

val = 0;

for(i=0;i<n;i++){

val += pair_toss();

}

if(val < 0) val = -val;

values[val]++;

// print header of each line
accu = 0;
for (s=0;s<=n*2;s++){
accu += values[s];
printf ("n=%3d s=%3d Pr(|Xnl|<=s)=%10d/%d\n" ,n,s,accu,MAX_TRIALS);
}

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C)

31



Code for the sample profile (4/4)

// output distribution
{

int cc;

double f1,f2;

cc = 0;
accu = 0;
f2 = MAX_TRIALS;
for(s=0;s<=n*2;s++){
accu += values[s];
f1 = accu;
printf ("& %4.3f ",f1/£2);
cCc++;
if(cc % 7 == 0) printf("\\\\\\hline\n");
}
printf("\n");

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C)



Comments

Coding efforts.

o lterative improving.
> Build a working version using a minimum effort.

> Add features one at a time.
> Always keep a working version in the process.

o Build a testing script so that it will test all previous tested features

when a new one is added.
> A new feature may cause an old function to have new bugs.

Understand your bottleneck and find the right way to remedy
it.

Maintain a test log to know which tricks are good and which
are not.

33

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C)



Testing

You have two versions P; and P-.

You make the 2 programs play against each other using the
same resource constraints.

o Self-play.
To make it fair, during a round of testing, the numbers of a
program playing first and second are equal.

After a few rounds of testing, how do you know P, is better or
worse than P»?
e How many rounds are needed to verify it?

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C) 34



How to know you are successful

Assume during a self-play experiment, two copies of the same
program are playing against each other.

o Since two copies of the same program are playing against each other,
the outcome of each game is an independent random trial and can be
modeled as a trinomial random variable.

o Assume for a copy playing first,

P if win
Pr(gamefirst) =< q if draw
1—p—q if lose

e Hence for a copy playing second,

1—p—gq if win
Pr(game,st) = ¢ if draw
D if lose

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C) 35



Outcome of self-play games

Assume 2n games, g1, g2, ..., gy, are played.

o In order to offset the initiative, namely first player’s advantage, each
copy plays first for n games.

> We also assume each copy alternatives in playing first.
o Let g9;,_1 and gy; be the ith pair of games.

Let the outcome of the ith pair of games be a random variable
X, from the prospective of the copy who plays g5;_;.
o Assume we assign a score of w for a game won, a score of 0 for a game
drawn and a score of —w for a game lost.

The outcome of X; and its occurrence probability is thus

( p(1—p—q) if X; = 2w
pg+(1—p-— 6]) if X; =w
PriX;))=< pP+(1—-p—q*+q¢ ifX;=0
pq+ (1 —p—q)q if X, =—w
1 =p—q)p if X; =—2w

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C) 36



How good we are against the baseline?

Properties of X,.

e The mean FE(X;) = 0.
o The standard deviation of X, is

 E(X?) = w/2pq + (2 +8p)(1 —p — q),

and it is a multi-nominally distributed random variable.

When you have played n pairs of games, what is the probability
of getting a score of s, s > 07
o Let X[n] =", X..
> The mean of X[n], E(X[n]), is O.
> The standard deviation of X [n], o, is wy/n\/2pq + (2q + 8p)(1 — p — q),

o If s > 0, we can calculate the probability of Pr(|X[n]| < s) using well
known techniques from calculating multi-nominal distributions.

> When n is large, it is very close to a normal distribution.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C) 37



Practical setup

Chinese chess
o w=1, p~0.3918, q ~0.3161, and 1 — p — g ~ 0.2920.

> Data source: 63,548 games played among masters recorded at
www.dpxq.com.

> This means the first player has a better chance of winning.

e The mean of X|[n|, E(X|[n]), is 0.
o The standard deviation of X[n|, o, is

wvn\/2pg + (2¢ +8p)(1 —p — q) = V1.16n.

e When n = 100, 0100 ~~ 10.8.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C) 38



Results (Chinese chess) (1/3)

Pr(|X[n]|<s) | s=0]| s=1|s=2|s=3|s=4|s=5|s=
n = 10, 019 = 3.67 | 0.108 | 0.315 | 0.502 | 0.658 | 0.779 | 0.866 | 0.924
n = 20, o990 = 5.19 | 0.076 | 0.227 | 0.369 | 0.499 | 0.613 | 0.710 | 0.789
n =30, 030 = 6.36 | 0.063 | 0.186 | 0.305 | 0.417 | 0.520 | 0.612 | 0.693
n =40, o490 = 7.34 | 0.054 | 0.162 | 0.266 | 0.366 | 0.460 | 0.546 | 0.624
n = 50, o590 = 8.21 | 0.049 | 0.145 | 0.239 | 0.330 | 0.416 | 0.497 | 0.571

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C)

39



Results (Chinese chess) (2/3)

Pr(|X[n]| <s) | s= s = s = s=10 | s=11 | s=12 | s =13
n =10, o010 = 3.67 | 0.960 | 0.981 | 0.991 | 0.997 | 0.999 | 1.000 | 1.000
n =20, o990 =5.19 | 0.851 | 0.899 | 0.933 | 0.958 | 0.974 | 0.985 | 0.991
n =30, o030 =6.36 | 0.761 | 0.819 | 0.865 | 0.902 | 0.930 | 0.951 | 0.967
n =40, 040 =7.34 | 0.693 | 0.753 | 0.804 | 0.847 | 0.883 | 0.912 | 0.934
n =050, o50 =8.21 | 0.639 | 0.699 | 0.753 | 0.799 | 0.839 | 0.872 | 0.900

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C)

40



Results (Chinese chess) (3/3)

Pr(|X[n]|<s)|s=14 | s=15|s=16 | s=17 | s=18 | s =19 | s =20

n =10, o019 = 3.67 | 1.000 | 1.000 | 1.000 { 1.000 | 1.000 | 1.000 | 1.000

n =20, o090 =15.19 | 0.995 | 0.997 | 0999 | 0.999 | 1.000 | 1.000 | 1.000

n=230,03=636 | 0978 | 0.98 | 0.991 | 0994 | 0.997 | 0.998 | 0.999

n=40,040 =734 | 0952 | 0.966 | 0.976 | 0.983 | 0.989 | 0.992 | 0.995

n =950, 05 =821 0923 | 0941 | 0.956 | 0.967 | 0.976 | 0.983 | 0.988

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C) 41



Statistical behaviors

Hence assume you have two programs that are playing against
each other and have obtained a score of s+ 1, s > 0, after
trying n pairs of games.

o Assume Pr(|X|[n]| <s) is say 0.95.

> Then this result is statistically meaningful, that is a program is better
than the other, because the chance of | X [n]| > s only happens with a
low probability of 0.05.

o Assume Pr(|X[n]| < s) is say 0.22.

> Then this result is not statistically meaningful,
because | X [n]| > s only happens with a a high probability of 0.78.

In general, it is a rare case in a normal distribution , e.g., less
than 4.55% of chance that it will happen, that your score is

more than 20,,.
o For our setting, if you perform n pairs of games, and your net score

is more than 2 % +/1.16 x \/n ~ 2.154,/n, then it means something
statistically.

You can also decide your “definition” of “a rare case”.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C) 42



Practical setup for self-play with no draws

For self play experiments with no draws
e The mean of X|[n|, £(X|n]), is 0.
e There is no draw, so ¢ = 0.
o The standard deviation of X|n|, o, is

wy/ny/2pq + (2 + 8p)(1 — p — q)

= wy/n/8p(1 — p)

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C) 43



Examples (1/2)

For self play experiments with no draw.
Example I: w =1, p=0.5and ¢ =0. Then o, = v2n.

o A fair game.
e When n = 10, o10 ~~ 4.47.

> max score = 20, min score = 0.
> if score > 8.94 which means at least 15 wins at 15 : 5, a win rate of
15 — (.75, then the two tested programs may be different in quality.

20

e When n = 100, 0100 ~~ 14.1.

> max score = 200, min score = 0.

> if score > 28.2 which means at least 115 wins at 115 : 85, a win rate

Of% = 0.575, a win rate of% = 0.575, then the two tested programs

may be different in quality.

44

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C)



Examples (2/2)

Example ll: w=1, p=0.75and ¢ = 0. Then o, = v1.5n.
o A game favors the first player.
e When n = 10, o109 ~~ 3.0.

> max score = 20, min score = 0.

> if score > 7.2 which means at least 14 wins at 14 : 6, a win rate of

% = 0.7, then the two tested programs may be different in quality.

o When n = 100, g100 " 12.25.

> max score = 200, min score = 0.

> if score > 24.5 which means at least 145 wins at 113 : 87, a win rate of

% = 0.565, then the two tested programs may be different in quality.

For a small n, you need to have a win rate much more than
0.5 to have a confidence of the winning program is better
statistically.

For a large n, you only need to have a win rate slightly more 0.5
to have the same confidence of the winning program is better
statistically.

When p is much more than 0.5, then you do not need as many
wins to reach a conclusion.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C) 45



Concluding remarks

Consider your purpose of studying a game:
e It is good to solve a game completely.
> You can only solve a game once!

o It is better to acquire the knowledge about why the game wins, draws
or loses.

> You can learn lots of knowledge.

e It is even better to discover knowledge in the game and then use it to
make the world a better place.

> Understand the fundamental properties such as how rules and boundary
affect the game behavior and use that to improve our life.

> How fun is a game and why?

Try to use the techniques learned from this course in other
areas!

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C) 46



References and further readings

R. M. Hyatt. Using time wisely. International Computer
Game Association (ICGA) Journal, pages 4-9, 1984.

R. Solak and R. Vutkovié. Time management during a chess
game, ICGA Journal, no. 4, vol. 32, pp. 206-220, 2009.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu (C) 47



