
Theory of Computer Games:
Concluding Remarks

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1

Abstract

Practical issues.
• Smart usage of resources.

▷ Time
▷ Memory
▷ Coding efforts
▷ Debugging efforts

• Putting everything together.
▷ Software tools
▷ Fine tuning

• How to know one version is better than the other?

Concluding remarks

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 2

Using resources: time and others

Time is the most critical resource [Hyatt 1984] [Šolak and
Vučković 2009].
Watch out different timing rules.

• An upper bound on the total amount of time can be used.
▷ It is hard to predict the total number of moves in a game in advance.

However, you can have some rough ideas.

• Fixed amount of time per ply.
• An upper bound T1 on the total amount of time is given, and then you
need to play X plys every T2 amount of time.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 3

Timing issues

Wall clock time vs CPU time is a system and O.S. issue.
• CPU time measures the time spent on your process.
• Wall clock time is the turn around, i.e., real, time used.
• In a time-sharing system, many processes are running at the same
time.

• Wall clock time >> CPU clock time.
• For tournaments, we only care about wall clock time.

Polling: check the system timer from time to time.
Interrupting: use the system kernel routines to issue an interrupt
event after a given pre-set time.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 4

Sample code for polling

• Example (Unix based)
▷ CPU time

#include <time.h>
...
double start = (double) clock();
...
double end = (double) clock();
double cpu_time_in_seconds =

(end - start) / (double) CLOCK_PER_SEC;

▷ Wall clock time

#include <time.h>
...

struct timespec start, end;
clock_gettime(CLOCK_REALTIME, &start);
...
clock_gettime(CLOCK_REALTIME, &end);
double wall_clock_in_seconds =

(double)((end.tv_sec+end.tv_nsec*1e-9) -
(double)(start.tv_sec+start.tv_nsec*1e-9));

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 5

Commonly time-using rules (1/2)

Assume you have a total of T time to spend.
Related terms

• Time has already spent
• Planned time to spent for this ply

▷ May be larger or smaller than the actual time spent due to time con-
trolling schemes used.

Estimate the total number of plys N that you need to play
during a game.

• Collect these data empirically
• Do not be over optimistic

Let h be the current number of plys played so far. If h is
approaching N . say within 90%, then enlarge N by a fraction,
say 20%.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 6

Commonly time-using rules (2/3)

Commonly used formulas
• Fixed

▷ time: Spend T
N time for each ply

▷ depth: Search up to to depth D for each ply where D is estimated using
T
N time before the tournament.

• Dynamic
▷ Let ti be the time you have spent at the ith ply, for i < j.

▷ Plan to spend
T−

∑j−1
i=1

ti
N−j+1 time for the jth ply.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 7

Commonly time-using rules (3/3)

Advanced techniques:
• The amount of time spent during each phase of the game is different.

▷ open game: knowledge is needed more than depth; however, need some
depth, say 4.

▷ middle game: deeper depth is needed
▷ end game: depth is on demand

To avoid extreme cases
• Set a minimum/maximum time to think.

▷ This is critical when the number of plys N is going to exceed your prior
estimation.

• Set a minimum/maximum depth to search.
Reminders:

• Dynamically adjusting
▷ When there is only one possible move, do not think.
▷ When the score is stable, cut short the time to spend.
▷ When the situation is dangerous, spend more time.

• Watch the time spent by your opponent.
▷ When he is going to be out of time, do not let him have a chance to

use your time in doing pondering.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 8

When and how to set time usage

When to check the current time usage
• Iterative deepening: each time entering a new depth
• Using system interrupt on a fixed time interval
• MCTS: each time a selection process begins

Estimation of time usage
• Iterative deepening

▷ ti: average time, during the last few plys, spent in searching depth-i

▷ prediction: ti+1 ∼ (ti ·
ti

ti−1
), i > 1

▷ if the remaining time for this ply is less than the predicted time, then
do not initiate a new depth

• MCTS: an almost constant amount of time is spent when a node a
expanded and simulated.

▷ Open game: takes some time to simulate to the end.
▷ End game: takes a shorter time to simulate to the end.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 9

Pondering

Pondering:
• Use the time when your opponent is thinking.
• Guessing and then pondering.
• System issues.

▷ How interrupt is handled?
▷ Polling every now and then or triggered by events?

How pondering is done:
• In your turn, keep the first 2 plys m1 and m2 in the PV you obtained.

▷ You choose to play m1, and then it’s the opponent’s turn to think.
▷ In pondering, you assume (guess) the opponent plays m2.
▷ Then you continue to think at the same time your opponent thinks as

if he has played m2.

• Guessing right: If the opponent plays m2, then you can continue the
pondering search in your turn.

• Guessing wrong: If the opponent plays a move other than m2, then
you restart a new search.

Doing pondering requires the ability to know when a move is
made by your opponent using system interrupt, or you need to
check from time to time (polling).

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 10

Comments about time usage

Thinking style of human players.
• Using almost no time while you are in the open book.
• More time is spent in the beginning immediately after the program is
out of the book, and then slowly decrease the searching time.

• In the endgame phase, use more time in critical positions or when you
try to initiate an attack.

Points to watch:
• Over time: lose no matter how good you are at the moment.

▷ When the amount of your time left is low, speed up the search.
▷ When the amount of your opponent’s time is low and you are more

than his, spend less time and wait for his over time.

• Iterative deepening helps in time planning.
▷ Need to set a minimum searching depth.
▷ Need to set a maximum searching depth to avoid buffer overflow.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 11

Comments

Do not think at all if you have only one possible logical move
left.
Do not think more if you have found a way to win.
Search only counter-checking moves if they exist.
Does the first player really have to think for the first ply?

• Use some open books to save time during the opening.

When the results of the previous two iterations differ a lot,
consider spending more time to verify.
When you have searched to a certain depth and the results are
stable in the previous rounds, consider to stop early.

• Be sure to use some Quiescent search algorithm plus SEE.
• You have searched the minimum depth.
• The recent several depths continuously return the same best ply and
almost about the same best score.

▷ Need to watch the ratio of failed low or failed high in your searching.
▷ When your ratio of failed low is high, then you are too optimistic.
▷ When your ratio of failed high it low, then you are too pessimistic.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 12

Using other resources

Memory
• Using a large transposition table occupies a large space and thus slows
down the program.

▷ A large number of positions are not visited too often.

• Using no transposition table may cause searching some critical positions
too many times.

CPU/GPU
• Do not fork a process to search branches that have little hope of finding
the PV even you have more than enough hardware.

▷ You need to wait for its termination.
▷ Synchronization takes resources.

Other resources.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 13

Putting everything together

Game playing system
• GUI.
• Data structures.

▷ Using a 2-D array to store the board and find everything by scanning
the board is time consuming.

▷ Better strategy: have a list of pieces that are still alive and a board at
the same time with proper co-referencing.

• Use some sorts of open books.
• Middle-game searching: usage of a search engine.

▷ Evaluation function: knowledge.
▷ Main search algorithm: iterative deepening.
▷ Enhancements: transposition tables, Quiescent search and possible oth-

ers.

• Use some sorts of endgame databases.

Debugging and testing

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 14

Board

Use a 1-D array for the board with an extra boarder around the
board.

• Example: CDC.
• Array index L means a 2-D location (x, y) where x = L%10 and
y = L/10.

▷ Can consider x = L&0xF and y = L >> 4 for faster arithmetics.

• Boarders are at P [0, ∗], P [∗, 9], P [9, ∗], P [∗, 0].
Advanced data structure: bit boards.

• Using a binary string for the board.

Remark: avoid using auto-dynamic data structures unless you
know them really well.

• MAP/VECTOR in recent C++.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 15

Sample data structures for CDC

// boards

// 11,12,13,14,15,16,17,18

// 21,22,23,24,25,26,27,28

// 31,32,33,34,35,36,37,38

// 41,42,43,44,45,46,47,48

struct n_b{

char inside; // 1 if in the board

char empty; // whether it is empty

char dark; // whether it is dark

char color; // 0 or 1

char piece;

...

} board[(4+2)*(8+2)];

char is_inside(int index){

return board[index].inside;

}

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 16

Using pre-computed tables

Save frequently used computation in tables.
• take advantage of a larger cache in recent CPU’s.

Examples:
• Need to check whether two pieces at L1 and L2 are adjacent.

▷ Slow code:

x1 = L1 % 10; x2 = L2 % 10;
y1 = L1 / 10; y2 = L2 / 10;
if((abs(x1,x2)==1 && y1==y2) ||

(abs(y1,y2)==1 && x1==x2))
then return 1; else return 0;

▷ Using pre-computed tables:

return adjacent[L1][L2];

• Need to check whether one piece can capture the other.
• Need to check whether two locations are at the same column or row.
• ...

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 17

Checking legal moves (1/2)

// [(14+2)*(14+2)] array: 7 types, 2 colors plus dark and empty

// upper cases are red; lower cases are black

// can_eat_by_move[ELEPHANT][rook] == 1

// can_eat_by_move[rook][ELEPHANT] == 0

// can_eat_by_move[ELEPHANT][ROOK] == 0

// can_eat_by_move[ELEPHANT][dark or empty] == 0

// adjaent[X][Y]: whether locations X and Y are inside and adjacent

// same_row_column[X][Y]: where X and Y are inside and

// in the same row or column

char can_eat_by_move[7*2+2][7*2+2];

char is_legal_by_move(int from, int to, int color){

return is_your_piece(from,color) &&

adjacent[from][to] &&

(is_empty(to) ||

can_eat_by_move[board[from].piece][board[to].piece]);

}

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 18

Checking legal moves (2/2)

// legal cannon jumps

char is_legal_to_jump(int from, int to, int color){

return is_your_cannon(from,color) &&

is_enemy_piece(to,color) &&

same_row_column[from][to] &&

there_is_a_piece(from,to);

}

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 19

Lists of pieces

Need at least two data structures for the pieces.
• Given a piece type, report its properties.

▷ An array of pieces indexing on pieces’ types.
▷ Sample usage: find your pieces during move generation.

• Given a location, report the piece at this location.
▷ Board.
▷ Sample usage: checking high level properties such as mobility.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 20

Piece list

// plist[RED][0..num_pieces[COLOR]-1] is the list of

// COLOR pieces that are alive and revealed

struct pl{

int where;

int piece_type;

...

} plist[2][16];

int num_pieces[2]; // number of revealed and alive pieces

// remove the ith piece of color

void remove_piece(int i, int color){

num_pieces[color]--;

if(num_pieces[color] > 0){

// swap the last piece to the ith location

plist[i] = plist[num_pieces[color]];

}

}

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 21

How moves are done

#define LEFT -1

#define RIGHT +1

#define DOWN +10

#define UP -10

#define move(IDX,DIR) (IDX+DIR)

// location i can move move_num[i] directions

// which are in move_dir[i][0..move_num[i]-1]

int move_dir[(4+2)*(8+2)][4];

int move_num[(4+2)*(8+2)];

// location i has a cannon

// it can jump jump_num[i] directions

// which are in jump_dir[i][0..jump_num[i]-1]

int jump_dir[(4+2)*(8+2)][4];

int jump_num[(4+2)*(8+2)];

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 22

Move generation

for(i=0;i<num_pieces[color];i++){

from = plist[i].where;

for(j=0;j<move_num[from];j++){

to = from+move_dir[j];

if(is_legal_by_move(from,to,color)){

if(is_capture(from,to,color))

generate_capture(from,to,color);

else generate_move(from,to,color);

}

}

if(is_legal_to_jump(from,to,color)){

for(j=0;j<jump_num[from];j++){

to_dir = jump_dir[j];

if(to = find_jump(from,to_dir,color))

generate_jump(from,to,color);

}

}

}

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 23

Software tools

Using make to do a better software project management.
Using svn or other version control tools to do code maintaining.
Using compiler optimization switches to speed up.

• CPU-dependent instructions
• gcc -O2 main.c
• gcc -O3 main.c

▷ Object code may not be stable using aggressive optimization flags.

Using gdb (GNU based) or other debugging tools to debug.
• gdb a.out

Using gprof (GNU based) or other profiling tools to find out
the bottleneck of your code execution.

• gcc -pg coins.c
• ./a.out
• gprof a.out gmon.out

Using an Integrated Development Environment (IDE)
• For Windows based systems, a good IDE is Dev C++.
• Cross-platform: CODE::Blocks, VS code.
• For Unix-based systems, emacs or vim can be set as an IDE.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 24

Makefile example
all: LezGo.c board.h gtp.h gostring.h UCT.h board.c gtp.c gostring.c UCT.c

g++ -O3 -lm LezGo.c board.h gtp.h gostring.h UCT.h hash.h board.c gtp.c gostring.c UCT.c hash.c -o LezGo.exe

UCT: LezGo.c board.h gtp.h UCT.h board.c gtp.c UCT.c liberty.h liberty.c

g++ -O3 -lm -DUCT LezGo.c board.h gtp.h UCT.h board.c gtp.c UCT.c

liberty.h liberty.c -o LezGo-UCT.exe

LX-all: LezGo.c board.h gtp.h gostring.h UCT.h board.c gtp.c gostring.c UCT.c

gcc -O3 -lm LezGo.c board.h gtp.h gostring.h UCT.h hash.h board.c gtp.c

gostring.c UCT.c hash.c -o LezGo

LX-UCT: LezGo.c board.h gtp.h gostring.h UCT.h board.c gtp.c gostring.c UCT.c

gcc -O3 -lm -DUCT LezGo.c board.h gtp.h gostring.h UCT.h hash.h board.c

gtp.c gostring.c UCT.c hash.c -o LezGo-UCT

prof: LezGo.c board.h gtp.h gostring.h UCT.h board.c gtp.c gostring.c UCT.c

g++ -O3 -g -pg -lm -DUCT LezGo.c board.h gtp.h gostring.h UCT.h hash.h

board.c gtp.c gostring.c UCT.c hash.c liberty.h liberty.c -o LezGo-prof

debug: LezGo.c board.h gtp.h gostring.h UCT.h board.c gtp.c gostring.c UCT.c

g++ -g -lm -DUCT LezGo.c board.h gtp.h gostring.h UCT.h hash.h board.c

gtp.c gostring.c UCT.c hash.c liberty.h liberty.c -o LezGo-prof

clean: LezGo

rm -rf LezGo

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 25

gdb example

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 26

Profiling

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 27

Call graph

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 28

Code for the sample profile (1/4)
// find the marginal pdf of a trinomial distribution

#include <stdio.h>

#include <stdlib.h>

//#define MAX_TRIALS 1000000000 // number of trials

#define MAX_TRIALS 1000000 // number of trials

#define MIN_N 10

#define MAX_N 50

#define N_INCR 10

#define MAX_VAL (2*MAX_N+1)

int win = 1; // points for a win

int draw = 0; // points for a draw

int loss = -1; // points for a loss

// prwin: win prob, prdraw: draw prob, 1-prwin-prdraw: lose prob

double pr_win = 0.3918; // Pr of win by the first player

double pr_draw = 0.3161; // Pr of draw by the first player

long int seedval = 5431276231; // a random magic number

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 29

Code for the sample profile (2/4)
// toss a coin with 3 outcomes

int coin(double prwin, double prdraw)

{

double t;

if((t = drand48()) <= prdraw) return draw; // draw

else if(t <= prdraw+prwin) return win; // win

else return loss; // loss

}

// the score of a pair of games

int pair_toss()

{

int score=0;

score += coin(pr_win,pr_draw); //first player

score += coin(1.0 - pr_win - pr_draw,pr_draw); //second player

return score;

}

main()

{

int number;

int s;

int n;

int i,j;

int values[MAX_VAL];

int accu,val;

srand48(seedval);

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 30

Code for the sample profile (3/4)

for(n=MIN_N;n<=MAX_N;n+=N_INCR){

for(j=0;j<MAX_VAL;j++) values[j] = 0;

// perform MAX_TRIALS experiments

for(number = 0; number < MAX_TRIALS;number++){

// perform n trials

val = 0;

for(i=0;i<n;i++){

val += pair_toss();

}

if(val < 0) val = -val;

values[val]++;

}

// print header of each line

accu = 0;

for(s=0;s<=n*2;s++){

accu += values[s];

printf("n=%3d s=%3d Pr(|Xn|<=s)=%10d/%d\n",n,s,accu,MAX_TRIALS);

}

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 31

Code for the sample profile (4/4)

// output distribution

{

int cc;

double f1,f2;

cc = 0;

accu = 0;

f2 = MAX_TRIALS;

for(s=0;s<=n*2;s++){

accu += values[s];

f1 = accu;

printf("& %4.3f ",f1/f2);

cc++;

if(cc % 7 == 0) printf("\\\\\\hline\n");

}

printf("\n");

}

}

}

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 32

Comments

Coding efforts.
• Iterative improving.

▷ Build a working version using a minimum effort.
▷ Add features one at a time.
▷ Always keep a working version in the process.

• Build a testing script so that it will test all previous tested features
when a new one is added.

▷ A new feature may cause an old function to have new bugs.

Understand your bottleneck and find the right way to remedy
it.
Maintain a test log to know which tricks are good and which
are not.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 33

Testing

You have two versions P1 and P2.
You make the 2 programs play against each other using the
same resource constraints.

• Self-play.

To make it fair, during a round of testing, the numbers of a
program playing first and second are equal.
After a few rounds of testing, how do you know P1 is better or
worse than P2?

• How many rounds are needed to verify it?

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 34

How to know you are successful

Assume during a self-play experiment, two copies of the same
program are playing against each other.

• Since two copies of the same program are playing against each other,
the outcome of each game is an independent random trial and can be
modeled as a trinomial random variable.

• Assume for a copy playing first,

Pr(gamefirst) =

{
p if win
q if draw
1− p− q if lose

• Hence for a copy playing second,

Pr(gamelast) =

{
1− p− q if win
q if draw
p if lose

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 35

Outcome of self-play games

Assume 2n games, g1, g2, . . . , g2n are played.
• In order to offset the initiative, namely first player’s advantage, each
copy plays first for n games.

▷ We also assume each copy alternatives in playing first.

• Let g2i−1 and g2i be the ith pair of games.

Let the outcome of the ith pair of games be a random variable
Xi from the prospective of the copy who plays g2i−1.

• Assume we assign a score of w for a game won, a score of 0 for a game
drawn and a score of −w for a game lost.

The outcome of Xi and its occurrence probability is thus

Pr(Xi) =


p(1− p− q) if Xi = 2w
pq + (1− p− q)q if Xi = w
p2 + (1− p− q)2 + q2 if Xi = 0
pq + (1− p− q)q if Xi = −w
(1− p− q)p if Xi = −2w

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 36

How good we are against the baseline?

Properties of Xi.
• The mean E(Xi) = 0.
• The standard deviation of Xi is√

E(X2
i) = w

√
2pq + (2q + 8p)(1− p− q),

and it is a multi-nominally distributed random variable.

When you have played n pairs of games, what is the probability
of getting a score of s, s > 0?

• Let X[n] =
∑n

i=1Xi.
▷ The mean of X[n], E(X[n]), is 0.

▷ The standard deviation of X[n], σn, is w
√
n
√

2pq + (2q + 8p)(1 − p − q),

• If s > 0, we can calculate the probability of Pr(|X[n]| ≤ s) using well
known techniques from calculating multi-nominal distributions.

▷ When n is large, it is very close to a normal distribution.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 37

Practical setup

Chinese chess
• w = 1, p ∼ 0.3918, q ∼ 0.3161, and 1− p− q ∼ 0.2920.

▷ Data source: 63,548 games played among masters recorded at
www.dpxq.com.

▷ This means the first player has a better chance of winning.

• The mean of X[n], E(X[n]), is 0.
• The standard deviation of X[n], σn, is

w
√
n
√
2pq + (2q + 8p)(1− p− q) =

√
1.16n.

• When n = 100, σ100 ∼ 10.8.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 38

Results (Chinese chess) (1/3)

Pr(|X[n]| ≤ s) s = 0 s = 1 s = 2 s = 3 s = 4 s = 5 s = 6

n = 10, σ10 = 3.67 0.108 0.315 0.502 0.658 0.779 0.866 0.924
n = 20, σ20 = 5.19 0.076 0.227 0.369 0.499 0.613 0.710 0.789
n = 30, σ30 = 6.36 0.063 0.186 0.305 0.417 0.520 0.612 0.693
n = 40, σ40 = 7.34 0.054 0.162 0.266 0.366 0.460 0.546 0.624
n = 50, σ50 = 8.21 0.049 0.145 0.239 0.330 0.416 0.497 0.571

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 39

Results (Chinese chess) (2/3)

Pr(|X[n]| ≤ s) s = 7 s = 8 s = 9 s = 10 s = 11 s = 12 s = 13

n = 10, σ10 = 3.67 0.960 0.981 0.991 0.997 0.999 1.000 1.000
n = 20, σ20 = 5.19 0.851 0.899 0.933 0.958 0.974 0.985 0.991
n = 30, σ30 = 6.36 0.761 0.819 0.865 0.902 0.930 0.951 0.967
n = 40, σ40 = 7.34 0.693 0.753 0.804 0.847 0.883 0.912 0.934
n = 50, σ50 = 8.21 0.639 0.699 0.753 0.799 0.839 0.872 0.900

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 40

Results (Chinese chess) (3/3)

Pr(|X[n]| ≤ s) s = 14 s = 15 s = 16 s = 17 s = 18 s = 19 s = 20

n = 10, σ10 = 3.67 1.000 1.000 1.000 1.000 1.000 1.000 1.000
n = 20, σ20 = 5.19 0.995 0.997 0.999 0.999 1.000 1.000 1.000
n = 30, σ30 = 6.36 0.978 0.986 0.991 0.994 0.997 0.998 0.999
n = 40, σ40 = 7.34 0.952 0.966 0.976 0.983 0.989 0.992 0.995
n = 50, σ50 = 8.21 0.923 0.941 0.956 0.967 0.976 0.983 0.988

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 41

Statistical behaviors

Hence assume you have two programs that are playing against
each other and have obtained a score of s + 1, s > 0, after
trying n pairs of games.

• Assume Pr(|X[n]| ≤ s) is say 0.95.
▷ Then this result is statistically meaningful, that is a program is better

than the other, because the chance of |X[n]| > s only happens with a
low probability of 0.05.

• Assume Pr(|X[n]| ≤ s) is say 0.22.
▷ Then this result is not statistically meaningful,

because |X[n]| > s only happens with a a high probability of 0.78.

In general, it is a rare case in a normal distribution , e.g., less
than 4.55% of chance that it will happen, that your score is
more than 2σn.

• For our setting, if you perform n pairs of games, and your net score
is more than 2 ∗

√
1.16 ∗

√
n ≃ 2.154

√
n, then it means something

statistically.

You can also decide your “definition” of “a rare case”.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 42

Practical setup for self-play with no draws

For self play experiments with no draws
• The mean of X[n], E(X[n]), is 0.
• There is no draw, so q = 0.
• The standard deviation of X[n], σn, is

w
√
n
√
2pq + (2q + 8p)(1− p− q)

= w
√
n
√
8p(1− p)

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 43

Examples (1/2)

For self play experiments with no draw.

Example I: w = 1, p = 0.5 and q = 0. Then σn =
√
2n.

• A fair game.
• When n = 10, σ10 ∼ 4.47.

▷ max score = 20, min score = 0.
▷ if score > 8.94 which means at least 15 wins at 15 : 5, a win rate of

15
20 = 0.75, then the two tested programs may be different in quality.

• When n = 100, σ100 ∼ 14.1.
▷ max score = 200, min score = 0.
▷ if score > 28.2 which means at least 115 wins at 115 : 85, a win rate

of 115
200 = 0.575, a win rate of 15

20 = 0.575, then the two tested programs
may be different in quality.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 44

Examples (2/2)

Example II: w = 1, p = 0.75 and q = 0. Then σn =
√
1.5n.

• A game favors the first player.
• When n = 10, σ10 ∼ 3.6.

▷ max score = 20, min score = 0.
▷ if score > 7.2 which means at least 14 wins at 14 : 6, a win rate of

14
20 = 0.7, then the two tested programs may be different in quality.

• When n = 100, σ100 ∼ 12.25.
▷ max score = 200, min score = 0.
▷ if score > 24.5 which means at least 145 wins at 113 : 87, a win rate of

113
200 = 0.565, then the two tested programs may be different in quality.

For a small n, you need to have a win rate much more than
0.5 to have a confidence of the winning program is better
statistically.
For a large n, you only need to have a win rate slightly more 0.5
to have the same confidence of the winning program is better
statistically.
When p is much more than 0.5, then you do not need as many
wins to reach a conclusion.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 45

Concluding remarks

Consider your purpose of studying a game:
• It is good to solve a game completely.

▷ You can only solve a game once!

• It is better to acquire the knowledge about why the game wins, draws
or loses.

▷ You can learn lots of knowledge.

• It is even better to discover knowledge in the game and then use it to
make the world a better place.

▷ Understand the fundamental properties such as how rules and boundary
affect the game behavior and use that to improve our life.

▷ How fun is a game and why?

Try to use the techniques learned from this course in other
areas!

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 46

References and further readings

R. M. Hyatt. Using time wisely. International Computer
Game Association (ICGA) Journal, pages 4–9, 1984.

R. Šolak and R. Vučković. Time management during a chess
game, ICGA Journal, no. 4, vol. 32, pp. 206–220, 2009.

TCG: Concluding remarks, 20241226, Tsan-sheng Hsu © 47

