Scout and NegaScout

Tsan-sheng Hsu

徐讚昇

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

Abstract

- It looks like alpha-beta pruning is the best we can do for an exact generic searching procedure.
 - What else can be done generically?
 - Alpha-beta pruning follows basically the "intelligent" searching behaviors used by human when domain knowledge is not involved.
 - Can we find some other "intelligent" behaviors used by human during searching?

Intuition: MAX node.

- Suppose we know currently we have a way to gain at least 300 points at the first branch.
- If there is an efficient way to know the second branch is at most gaining 300 points, then there is no need to search the second branch in detail.
 - ▷ Alpha-beta cut algorithm is one way to make sure of this by returning an exact value.
 - ▶ Is there a way to search a tree by only returning a bound?
 - ▶ Is searching with a bound faster than searching exactly?

Similar intuition holds for a MIN node.

SCOUT procedure

- It may be possible to verify whether the value of a branch is greater than a value v or not in a way that is faster than knowing its exact value [Judea Pearl 1980].
- High level idea:
 - While searching a branch T_i of a MAX node, if we have already obtained a lower bound v_ℓ .
 - ▷ First TEST whether it is possible for T_i to return something greater than v_ℓ .
 - \triangleright If FALSE, then there is no need to search T_i .
 - \Rightarrow This is called fails the test.
 - $\triangleright \text{ If TRUE, then search } T_i. \\ \Rightarrow \text{ This is called passes the test.}$
 - While searching a branch T_j of a MIN node, if we have already obtained an upper bound $v_{\boldsymbol{u}}$
 - ▷ First TEST whether it is possible for T_j to return something smaller than v_u .
 - ▷ If FALSE, then there is no need to search T_j . ⇒ This is called fails the test.
 - \triangleright If TRUE, then search T_i .
 - \Rightarrow This is called passes the test.

How to $\ensuremath{\mathsf{TEST}}\xspace > v$

procedure $TEST_{>}$ (position p, value v)

// test whether the value of the branch at p is > v

- determine the successor positions p_1, \ldots, p_b of p- if b = 0, then // terminal

 $\triangleright \ \ \text{if} \ f(p) > v \ \ \text{then} \ // \ f(): \ \text{evaluation function}$

▷ return TRUE

▷ else return FALSE

if p is a MAX node, then

• for i := 1 to b do

 $\triangleright \text{ if } TEST_{>}(p_i, v) \text{ is } TRUE, \text{ then} \\ return \; TRUE // \text{ succeed if a branch is } > v$

• return FALSE // fail only if all branches $\leq v$

if p is a MIN node, then

```
• for i := 1 to b do
```

▷ if $TEST_>(p_i, v)$ is FALSE, then return FALSE // fail if a branch is $\leq v$

• return TRUE // succeed only if all branches are > v

How to TEST $< \boldsymbol{v}$

procedure $TEST_{<}$ (position p, value v)

// test whether the value of the branch at p is < v

- determine the successor positions p_1, \ldots, p_b of p- if b = 0, then // terminal

 \triangleright if f(p) < v then // f(): evaluation function

▷ return TRUE

▷ else return FALSE

if p is a MAX node, then

• for i := 1 to b do

 $\triangleright \text{ if } \textbf{TEST}_{<}(p_i, v) \text{ is FALSE, then} \\ \textbf{return FALSE // fail if a branch is} \geq v$

• return TRUE // succeed only if all branches < vif v is a MIN node, then

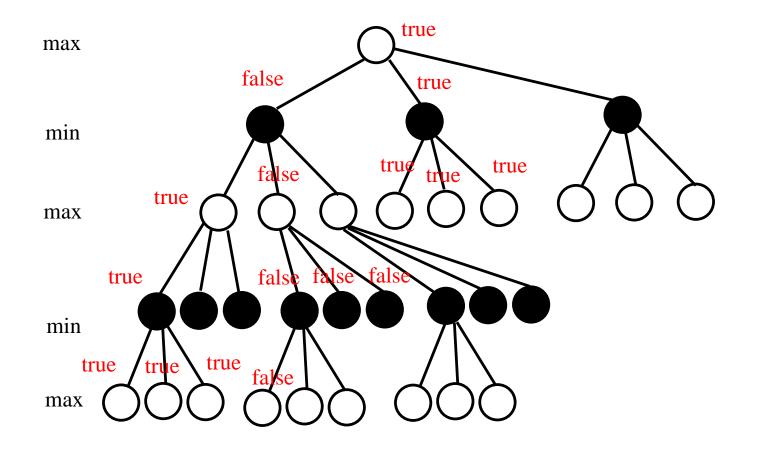
• if p is a MIN node, then

• for i := 1 to b do

▷ if $TEST_{<}(p_i, v)$ is TRUE, then return TRUE // succeed if a branch is < v

• return FALSE // fail only if all branches are $\geq v$

Illustration of $\ensuremath{\mathsf{TEST}}_{>}$



Short circuit operations for $\ensuremath{\mathsf{TEST}}_{>}$

• For a MAX node:

- if a branch is TRUE, then there is no need to do further testing;
- if a branch is FALSE, then we need to do more testing on other branches.
- It is better to test branches with better probabilities of being TRUE first.

• For a MIN node:

- if a branch is FALSE, then there is no need to do further testing;
- if a branch is TRUE, then we need to do more testing on other branches.
- It is better to test branches with better probabilities of being FALSE first.

How to TEST — Discussions

Sometimes it may be needed to test for " $\geq v$ ", or " $\leq v$ ".

- TEST_>(p,v) is TRUE \equiv TEST_≤(p,v) is FALSE • TEST_>(p,v) is FALSE \equiv TEST_≤(p,v) is TRUE • TEST_<(p,v) is TRUE \equiv TEST_≥(p,v) is FALSE • TEST_<(p,v) is FALSE \equiv TEST_≥(p,v) is TRUE
- Practical consideration:
 - Set a depth limit and evaluate the position's value when the limit is reached.

Main SCOUT procedure

Algorithm SCOUT(position *p***)**

• determine the successor positions p_1, \ldots, p_b

- if b = 0, then return f(p)
 - else $v = SCOUT(p_1)$ // SCOUT the first branch
- if p is a MAX node
 - for i := 2 to b do
 - ▷ if $TEST_>(p_i, v)$ is TRUE, // TEST first for the rest of the branches then $v = SCOUT(p_i)$ // find the value of this branch if it can be > v

• if p is a MIN node

- for i := 2 to b do
 - ▷ if $\text{TEST}_{<}(p_i, v)$ is TRUE, // TEST first for the rest of the branches then $v = SCOUT(p_i)$ // find the value of this branch if it can be < v

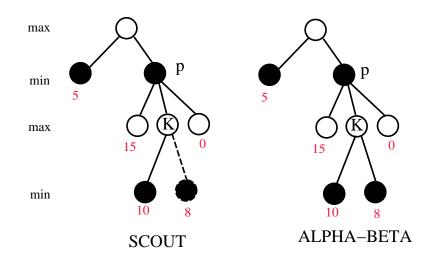
return v

Discussions for SCOUT (1/3)

- Initially, we use recursive call to find the value v of the first branch.
- From now on, v is the current best value at any moment.
- MAX node:
 - For any i > 1, if TEST_>(p_i , v) is TRUE,
 - \triangleright then the value returned by $SCOUT(p_i)$ must be greater than v;
 - \triangleright and make this the new v.
 - We say that p_i passes the test if $TEST_{>}(p_i, v)$ is TRUE.
- MIN node:
 - For any i > 1, if $TEST_{<}(p_i, v)$ is TRUE,
 - \triangleright then the value returned by $SCOUT(p_i)$ must be smaller than v;
 - \triangleright and make this the new v.
 - We say that p_i passes the test if $TEST_{<}(p_i, v)$ is TRUE.

Discussions for SCOUT (2/3)

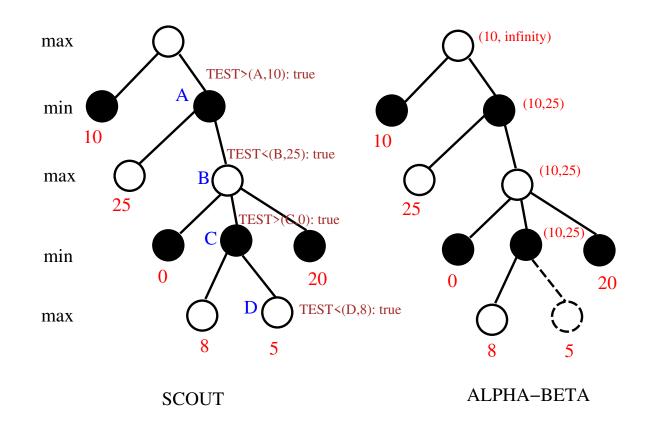
• TEST which is called by SCOUT may visit less nodes than that of alpha-beta.



- Assume TEST_>(p,5) is called by the root after the first branch of the root is evaluated.
 - ▷ It calls $TEST_>(K,5)$ which skips K's second branch.
 - ▷ TEST_>(p,5) is FALSE, i.e., fails the test, after returning from the 3rd branch.
 - \triangleright No need to do SCOUT for the branch rooted p.
- Alpha-beta needs to visit *K*'s second branch.

Discussions for SCOUT (3/3)

SCOUT may pay many visits to a node that is cut off by alpha-beta.



Number of nodes visited (1/4)

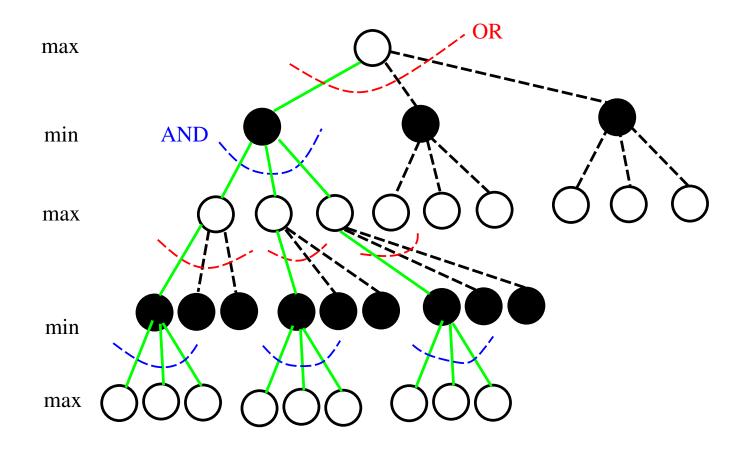
• For TEST to return TRUE for a subtree T, it needs to evaluate at least

- \triangleright one child for a MAX node in T, and
- \triangleright and all of the children for a MIN node in T.
- ▷ If T has a fixed branching factor b and uniform depth b, the number of nodes evaluated is $\Omega(b^{\ell/2})$ where ℓ is the depth of the tree.

• For TEST to return FALSE for a subtree T, it needs to evaluate at least

- \triangleright one child for a MIN node in T, and
- \triangleright and all of the children for a MAX node in T.
- ▷ If T has a fixed branching factor b and uniform depth b, the number of nodes evaluated is $\Omega(b^{\ell/2})$.

Number of nodes visited (2/4)



Number of nodes visited (3/4)

• Assumptions:

- Assume a full complete *b*-ary tree with depth ℓ .
- The depth of the root, which is a MAX node, is 0.
- Assume ℓ is even in the analysis.
- The total number of nodes in the tree is $\frac{b^{\ell+1}-1}{b-1}$.
- H_1 : the minimum number of nodes visited by TEST when it returns TRUE.

$$\begin{aligned} H_1 &= 1 + 1 + b + b + b^2 + b^2 + b^3 + b^3 + \dots + b^{\ell/2 - 1} + b^{\ell/2 - 1} + b^{\ell/2} \\ &= 2 \cdot (b^0 + b^1 + \dots + b^{\ell/2}) - b^{\ell/2} \\ &= 2 \cdot \frac{b^{\ell/2 + 1} - 1}{b - 1} - b^{\ell/2} \end{aligned}$$

Number of nodes visited (4/4)

• Assumptions:

- Assume a full complete *b*-ary tree with depth ℓ .
- The depth of the root, which is a MAX node, is 0.
- Assume ℓ is even in the analysis.
- H_2 : the minimum number of nodes visited by alpha-beta.

$$\begin{split} H_2 &= \sum_{i=0}^{\ell} (b^{\lceil i/2 \rceil} + b^{\lfloor i/2 \rfloor} - 1) \\ &= \sum_{i=0}^{\ell} b^{\lceil i/2 \rceil} + \sum_{i=0}^{\ell} b^{\lfloor i/2 \rfloor} - (\ell + 1) \\ &= \sum_{i=0}^{\ell} b^{\lceil i/2 \rceil} + H_1 - (\ell + 1) \\ &= (1 + b + b + \dots + b^{\ell/2 - 1} + b^{\ell/2} + b^{\ell/2}) + H_1 - (\ell + 1) \\ &= (H_1 - 1 + b^{\ell/2}) + H_1 - (\ell + 1) \\ &= 2 \cdot H_1 + b^{\ell/2} - (\ell + 2) \\ &\geq 2 \cdot H_1 \text{ if } b > 3 \end{split}$$

Comparisons

- When the first branch of a node has the best value, then TEST scans the tree fast.
 - The best value of the first i-1 branches is used to test whether the ith branch needs to be searched exactly.
 - If the value of the first i-1 branches of the root is better than the value of *i*th branch, then we do not have to evaluate exactly for the *i*th branch.
- Compared to alpha-beta pruning whose cut off comes from bounds of search windows.
 - It is possible to have some cut-off for alpha-beta pruning as long as some relative move orderings are "good."
 - ▶ The moving orders of your children and the children of your ancestor who is odd level up "together" decide a cut-off.
 - The bounds are updated during searching.
 - Sometimes, a deep alpha-beta cut-off occurs because a bound found from your ancestor a distance away.

Performance of SCOUT (1/3)

• A node may be visited more than once.

- First visit is to TEST.
- Second visit is to SCOUT.

▷ During SCOUT, it may be TESTed with a different value.

- Q: Can information obtained in the first search be used in the second search?
- **SCOUT** is a recursive procedure.
 - For every node v in a branch that is not the first visited child of its parent with a depth¹ of ℓ ,
 - \triangleright every ancestor of v may initiate a TEST to visit v.
 - \triangleright It can be visited ℓ times by TEST.

¹The depth of the root is defined to be 0.

Performance of SCOUT (2/3)

- Show great improvements on depth > 3 over brute-force methods for games with small branching factors.
 - It traverses most of the nodes without evaluating them preciously.
 - Few subtrees remained to be revisited to compute their exact mini-max values.
- Show good improvement over alpha-beta on game trees with certain characteristics.
- Experimental data on the game of Kalah show [UCLA Tech Rep UCLA-ENG-80-17, A comparison of the Alpha-Beta and SCOUT algorithms using the game of Kalah, Noe 1980]:
 - SCOUT favors "skinny" game trees, that are game trees with high depth-to-width ratios.
 - \triangleright Q: why?
 - On depth = 5, it saves over 40% of time.
 - May not be good for games with large branching factors.
 - Move ordering is very important.
 - ▶ The first branch, if is good, offers a great chance of pruning further branches.

Performance of SCOUT (3/3)

- Comparing alpha-beta pruning and SCOUT [Pearl 1984] on uniform game trees:
 - Alpha-beta is always better than SCOUT in the experiments using random game trees.
 - ▶ In theory, when both are in their best cases, SCOUT cuts out more, but this rarely happens in practice.
 - Let $r_{b,d} = \frac{N_{scout}}{N_{AB}}$ where N_{scout} is the nodes searched using SCOUT and N_{AB} is the nodes searched using alpha-beta on depth-d random-valued game trees with a uniform branching factor of b.
 - ▷ $1 \le r_{b,d} \le 1.275$ for any positive integers b and d.
 - ▷ $r_{b_1,d} \ge r_{b_2,d}$ if $b_1 \le b_2$: ratio is closer when the branching factor is larger.
 - $\triangleright r_{b,d_1} \ge r_{b,d_2}$ if $d_1 \le d_2$: ratio is closer when the searching depth is larger.
 - ▷ $r_{2,20} \sim 1.04$.
 - \triangleright $r_{b,20} \sim 1$: after depth > 20, the two are almost the same.

Comments

Q1:

- Currently, we use a "feasible" test to decide whether we need to search this branch or not.
 - ▶ If a new branch has a chance of larger than v, then we explore it in details. Otherwise, we skip it.
- How about using the idea of "infeasible" test?
 - ▷ If a new branch has no chance of larger than v, then we do not explore it in details. Otherwise, we do.
- How about a hybrid approach?
 - ▶ When to use one instead of the other?

• Q2: What can we do with regard to the first branch?

- Can some previous values of some previous positions be used?
- When iterative deepening is used, can we use previous results?

Alpha-beta revisited

- In an alpha-beta search with a window (*alpha,beta*):
 - Failed-high means it returns a value that is larger than or equal to its upper bound beta.
 - Failed-low means it returns a value that is smaller than or equal to its lower bound alpha.
- Null or Zero window search:
 - Using alpha-beta search with the window (m, m+1).
 - ▷ Can never happen in a normal alpha-beta pruning when starts with $(-\infty,\infty)$.
 - The result can be either failed-high or failed-low.
 - Failed-high means the return value is at least m+1.

 \triangleright Equivalent to TEST_>(p,m) is TRUE.

• Failed-low means the return value is at most *m*.

 \triangleright Equivalent to TEST_>(p,m) is FALSE.

• The above argument works for the shallow fail hard (F1), general fail hard (F2) and general fail soft (F3) versions of the alpha-beta algorithm.

Behaviors of Null window search

• When $F2(p, m, m+1, \infty)$ returns m+1:

- for the MAX node p, returns immediately after the first child p_i , namely the smallest index i, returning a value $\geq m + 1$.
- for the MIN node p_i , every child $p_{i,j}$ returns a value $\geq m+1$
- for each MAX node $p_{i,j}$, returns immediately after the first child $r_{i,j,k}$, namely the smallest index k, returning a value $\geq m + 1$.

• . . .

- Remark: $F3(p, m, m+1, \infty)$ returns a value $\geq m+1$ in this case.
- Exactly like the OR-AND tree shown in TEST_> when TEST is passed.
- We can observe similar behaviors when $F2(p,m,m+1,\infty)$ returns m as if TEST is failed.

• Remark: $F3(p, m, m+1, \infty)$ returns a value $\leq m$ in this case.

Alpha-Beta + Scout

Intuition:

- Try to incooperate SCOUT and alpha-beta together.
- The searching window of alpha-beta if properly set can be used as TEST in SCOUT.
- Using a searching window is better than using a single bound as in SCOUT.
- Can also apply alpha-beta cut if it applies.
- Modifications to the SCOUT algorithm:
 - Traverse the tree with two bounds as the alpha-beta procedure does.
 - \triangleright A searching window.
 - ▷ Use the current best bound to guide the value used in TEST.
 - Use a fail soft version to get a better result when the returned value is out of the window.

The NegaScout Algorithm – Mini-Max (1/2)

- Algorithm F4' (position p, value alpha, value beta, integer depth)
 - determine the successor positions p_1, \ldots, p_b
 - if b = 0 // a terminal node
 - or depth = 0 // depth is the remaining depth to search or time is running up // from timing control
 - or some other constraints are met // apply heuristic here
 - then return f(p) else begin
 - $> m := -\infty // m \text{ is the current best lower bound; fail soft}$ $m := \max\{m, G4'(p_1, alpha, beta, depth - 1)\} // the first branch$ $if <math>m \ge beta$ then return(m) // beta cut off

$$\triangleright$$
 for $i := 2$ to b do

- ▷ 9: $t := G4'(p_i, m, m+1, depth 1) //$ null window search
- \triangleright 10: if t > m then // failed-high
 - 11: if $(depth < 3 \text{ or } t \ge beta)$
 - **12:** then m := t
 - 13: else $m := G4'(p_i, t, beta, depth 1)$ // re-search
- ▷ 14: if m is max possible or $m \ge beta$ then return(m) // beta cut off

end

• return m

The NegaScout Algorithm – Mini-Max (2/2)

- Algorithm G4' (position p, value alpha, value beta, integer depth)
 - determine the successor positions p_1, \ldots, p_b
 - if b = 0 // a terminal node
 - or depth = 0 // depth is the remaining depth to search or time is running up // from timing control
 - or some other constraints are met // apply heuristic here
 - then return f(p) else begin
 - ▷ m = ∞ // m is the current best upper bound; fail soft m := min{m, F4'(p₁, alpha, beta, depth - 1)} // the first branch if m ≤ alpha then return(m) // alpha cut off

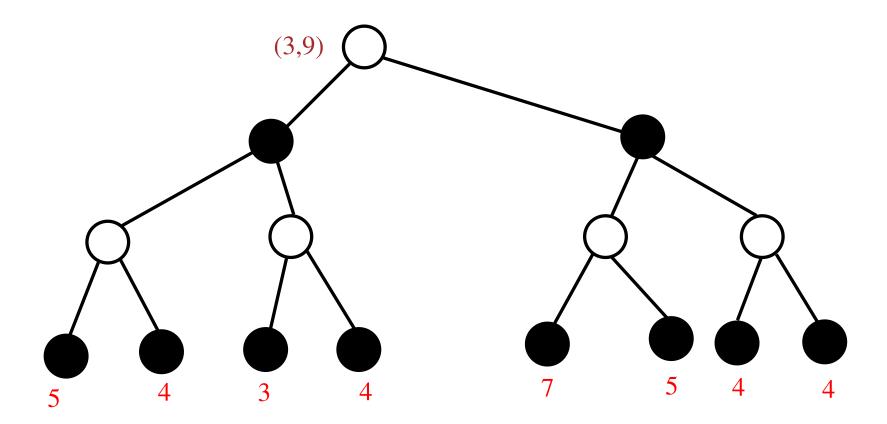
$$\triangleright$$
 for $i := 2$ to b do

- ▷ 9: $t := F4'(p_i, m 1, m, depth 1)$ // null window search
- \triangleright 10: if t < m then // failed-low
 - 11: if $(depth < 3 \text{ or } t \leq alpha)$
 - **12:** then m := t
 - 13: else $m := F4'(p_i, alpha, t, depth 1)$ // re-search
- ▷ 14: if m is min possible or $m \leq alpha$ then return(m)// alpha cut off

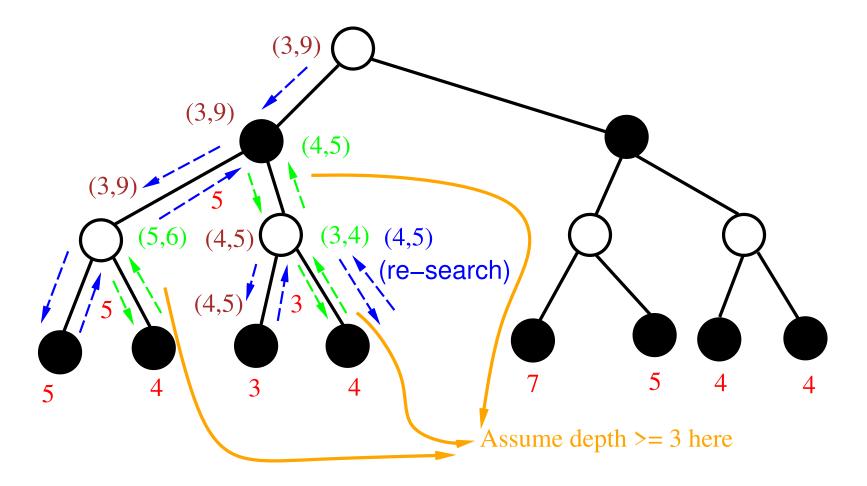
end

• return m

NegaScout – Mini-Max version (1/2)



NegaScout – Mini-Max version (2/2)



The NegaScout Algorithm

Use Nega-MAX format.

Algorithm F4(position p, value alpha, value beta, integer depth)

- determine the successor positions p_1, \ldots, p_b
- if b = 0 // a terminal node
 - or depth = 0 //depth is the remaining depth to search
 - or time is running up // from timing control
 - or some other constraints are met // apply heuristic here
- then return h(p) else
 - $\triangleright m := -\infty //$ the current lower bound; fail soft
 - $\triangleright n := beta // the current upper bound$

$$\triangleright$$
 for $i := 1$ to b do

▷ 9:
$$t := -F4(p_i, -n, -max\{alpha, m\}, depth - 1)$$

$$\triangleright$$
 10: if $t > m$ then

- 11: if $(n = beta \text{ or } depth < 3 \text{ or } t \ge beta)$
- **12:** then m := t
- 13: else $m := -F4(p_i, -beta, -t, depth 1)$ // re-search
- ▷ 14: if m is max possible or $m \ge beta$ then return(m) // cut off

▷ 15:
$$n := max\{alpha, m\} + 1 // set up a null window$$

• return m

Search behaviors (1/3)

- If the depth is enough or it is a terminal position, then stop searching further.
 - Return h(p) as the value computed by an evaluation function.
 - Note:

 $h(p) = \left\{ \begin{array}{ll} f(p) & \text{if depth of } p \text{ is 0 or even} \\ -f(p) & \text{if depth of } p \text{ is odd} \end{array} \right.$

- Fail soft version.
- Search the first child p_1 using the normal alpha beta window.
 - Ine 9: normal window for the first child
 - ▷ the initial value of m is $-\infty$, hence $-max\{alpha, m\} = -alpha$
 - \triangleright *m* is the current best value
 - ▷ that is, equivalent to

9: $t := -F4(p_i, -beta, -alpha, depth - 1)$ searching with the normal window (alpha, beta)

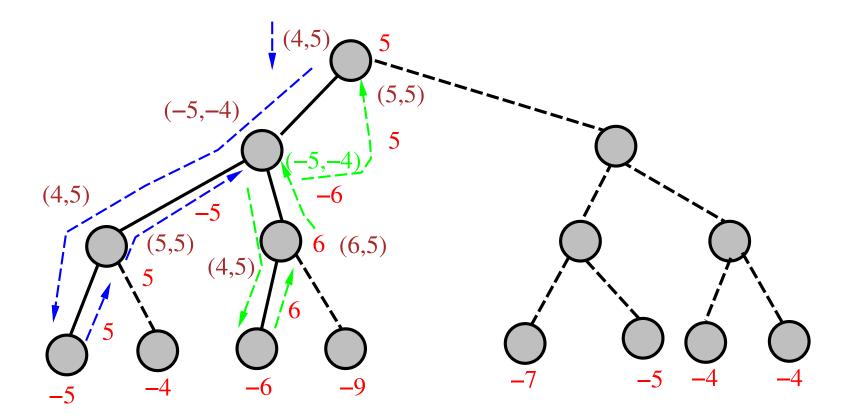
Search behaviors (2/3)

- For the second child and beyond p_i , i > 1, first perform a null window search for testing whether m is the answer.
 - line 9: a null-window of (n 1, n) searches for the second child and beyond where $n = max\{alpha, m\} + 1$.
 - \triangleright *m* is best value obtained so far
 - \triangleright alpha is the previous lower bound
 - \triangleright m's value will be first set at line 12 because n = beta
 - \triangleright The value of $n = max\{alpha, m\} + 1$ is set at line 15.
 - line 11:
 - \triangleright If n = beta, we are at the first iteration.
 - ▷ If depth < 3, we are on a smaller depth subtree, i.e., depth at most 2, NegaScout always returns the best value.
 - ▷ If $t \ge beta$, we have obtained a good enough value from the failed-soft version to guarantee a beta cut.

Search behaviors (3/3)

- For the second child and beyond p_i , i > 1, first perform a null window search for testing whether m is the answer.
 - line 11: on a smaller depth subtree, i.e., depth at most 2, NegaScout always returns the best value.
 - ▶ Normally, no need to do alpha-beta or any enhancement on very small subtrees.
 - ▶ The overhead is too large on small subtrees.
 - line 13: re-search when the null window search fails high.
 - \triangleright The value of this subtree is at least t.
 - \triangleright This means the best value in this subtree is more than m, the current best value.
 - \triangleright This subtree must be re-searched with the the window (t, beta).
 - line 14: the normal pruning from alpha-beta.

Example for NegaScout



Refinements

- When a subtree is re-searched, it is best to use information on the previous search to speed up the current search.
 - Restart from the position that the value t is returned.
- Maybe want to re-search using the normal alpha-beta procedure.
- F4 runs much better with a good move ordering and some form of a transposition table which will be introduced later.
 - Order the moves in a priority list.
 - Reduce the number of re-searching's.

Performances

- Experiments done on a uniform random game tree [Reinefeld 1983].
 - Normally superior to alpha-beta when searching game trees with branching factors from 20 to 60.
 - Shows about 10 to 20% of improvement.

Comments

- Incooperating both SCOUT and alpha-beta.
- Used in state-of-the-art game search engines.
- The first search, though maybe unsuccessful, can provide useful information in the second search.
 - Information can be stored and then reused.
- Using TEST in SCOUT to do the first search because it has a chance to visit less nodes than that of ALPHA-BETA.

References and further readings

- * J. Pearl. Asymptotic properties of minimax trees and gamesearching procedures. *Artificial Intelligence*, 14(2):113–138, 1980.
- * A. Reinefeld. An improvement of the scout tree search algorithm. *ICCA Journal*, 6(4):4–14, 1983.
- Noe, T. A comparison of the Alpha-Beta and SCOUT algorithms using the game of Kalah Technical Report UCLA-ENG-80-17, Cognitive Systems Laboratory, University of California, Los Angeles, 1980.
- Pearl, Judea. Heuristics: intelligent search strategies for computer problem solving. Addison-Wesley Longman Publishing Co., Inc., 1984.