
Scout and NegaScout

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1



Abstract

It looks like alpha-beta pruning is the best we can do for an
exact generic searching procedure.

• What else can be done generically?
• Alpha-beta pruning follows basically the “intelligent” searching behav-
iors used by human when domain knowledge is not involved.

• Can we find some other “intelligent” behaviors used by human during
searching?

Intuition: MAX node.
• Suppose we know currently we have a way to gain at least 300 points
at the first branch.

• If there is an efficient way to know the second branch is at most
gaining 300 points, then there is no need to search the second branch
in detail.

▷ Alpha-beta cut algorithm is one way to make sure of this by returning
an exact value.

▷ Is there a way to search a tree by only returning a bound?
▷ Is searching with a bound faster than searching exactly?

Similar intuition holds for a MIN node.

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 2



SCOUT procedure

It may be possible to verify whether the value of a branch
is greater than a value v or not in a way that is faster than
knowing its exact value [Judea Pearl 1980].
High level idea:

• While searching a branch Ti of a MAX node, if we have already
obtained a lower bound vℓ.

▷ First TEST whether it is possible for Ti to return something greater
than vℓ.

▷ If FALSE, then there is no need to search Ti.
⇒ This is called fails the test.

▷ If TRUE, then search Ti.
⇒ This is called passes the test.

• While searching a branch Tj of a MIN node, if we have already obtained
an upper bound vu

▷ First TEST whether it is possible for Tj to return something smaller
than vu.

▷ If FALSE, then there is no need to search Tj.
⇒ This is called fails the test.

▷ If TRUE, then search Tj.
⇒ This is called passes the test.

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 3



How to TEST > v

procedure TEST>(position p, value v)
// test whether the value of the branch at p is > v

determine the successor positions p1, . . . , pb of p
if b = 0, then // terminal

▷ if f(p) > v then // f(): evaluation function
▷ return TRUE
▷ else return FALSE

if p is a MAX node, then
• for i := 1 to b do

▷ if TEST>(pi, v) is TRUE, then
return TRUE // succeed if a branch is > v

• return FALSE // fail only if all branches ≤ v
if p is a MIN node, then

• for i := 1 to b do
▷ if TEST>(pi, v) is FALSE, then

return FALSE // fail if a branch is ≤ v

• return TRUE // succeed only if all branches are > v

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 4



How to TEST < v

procedure TEST<(position p, value v)
// test whether the value of the branch at p is < v

determine the successor positions p1, . . . , pb of p
if b = 0, then // terminal

▷ if f(p) < v then // f(): evaluation function
▷ return TRUE
▷ else return FALSE

if p is a MAX node, then
• for i := 1 to b do

▷ if TEST<(pi, v) is FALSE, then
return FALSE // fail if a branch is ≥ v

• return TRUE // succeed only if all branches < v
if p is a MIN node, then

• for i := 1 to b do
▷ if TEST<(pi, v) is TRUE, then

return TRUE // succeed if a branch is < v

• return FALSE // fail only if all branches are ≥ v

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 5



Illustration of TEST>

max

min

max

min

max

false true

true
false true true true

true

false false falsetrue

true true true
false

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 6



Short circuit operations for TEST>

For a MAX node:
• if a branch is TRUE, then there is no need to do further testing;
• if a branch is FALSE, then we need to do more testing on other
branches.

• It is better to test branches with better probabilities of being TRUE
first.

For a MIN node:
• if a branch is FALSE, then there is no need to do further testing;
• if a branch is TRUE, then we need to do more testing on other
branches.

• It is better to test branches with better probabilities of being FALSE
first.

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 7



How to TEST — Discussions

Sometimes it may be needed to test for “≥ v”, or “≤ v”.

• TEST>(p,v) is TRUE ≡ TEST≤(p,v) is FALSE

• TEST>(p,v) is FALSE ≡ TEST≤(p,v) is TRUE

• TEST<(p,v) is TRUE ≡ TEST≥(p,v) is FALSE

• TEST<(p,v) is FALSE ≡ TEST≥(p,v) is TRUE

Practical consideration:
• Set a depth limit and evaluate the position’s value when the limit is
reached.

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 8



Main SCOUT procedure

Algorithm SCOUT(position p)

determine the successor positions p1, . . . , pb
if b = 0, then return f(p)

else v = SCOUT (p1) // SCOUT the first branch
if p is a MAX node

• for i := 2 to b do
▷ if TEST>(pi, v) is TRUE, // TEST first for the rest of the branches

then v = SCOUT (pi) // find the value of this branch if it can be > v

if p is a MIN node
• for i := 2 to b do

▷ if TEST<(pi, v) is TRUE, // TEST first for the rest of the branches
then v = SCOUT (pi) // find the value of this branch if it can be < v

return v

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 9



Discussions for SCOUT (1/3)

Initially, we use recursive call to find the value v of the first
branch.
From now on, v is the current best value at any moment.
MAX node:

• For any i > 1, if TEST>(pi, v) is TRUE,
▷ then the value returned by SCOUT (pi) must be greater than v;
▷ and make this the new v.

• We say that pi passes the test if TEST>(pi, v) is TRUE.
MIN node:

• For any i > 1, if TEST<(pi, v) is TRUE,
▷ then the value returned by SCOUT (pi) must be smaller than v;
▷ and make this the new v.

• We say that pi passes the test if TEST<(pi, v) is TRUE.

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 10



Discussions for SCOUT (2/3)

TEST which is called by SCOUT may visit less nodes than that
of alpha-beta.

max

min

max

min

5

8

15

10

0

5

8

15

10

0

KK

SCOUT ALPHA−BETA

p p

• Assume TEST>(p,5) is called by the root after the first branch of the
root is evaluated.

▷ It calls TEST>(K,5) which skips K’s second branch.
▷ TEST>(p,5) is FALSE, i.e., fails the test, after returning from the 3rd

branch.
▷ No need to do SCOUT for the branch rooted p.

• Alpha-beta needs to visit K’s second branch.

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 11



Discussions for SCOUT (3/3)

SCOUT may pay many visits to a node that is cut off by
alpha-beta.

max

min

max

min

max

ALPHA−BETASCOUT

5

10

0

25

20

8

A

B

C

D

5

10

0

25

20

8

(10, infinity)

(10,25)

(10,25)

(10,25)

TEST>(A,10): true

TEST<(B,25): true

TEST>(C,0): true

TEST<(D,8): true

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 12



Number of nodes visited (1/4)

For TEST to return TRUE for a subtree T , it needs to evaluate
at least

▷ one child for a MAX node in T , and
▷ and all of the children for a MIN node in T .
▷ If T has a fixed branching factor b and uniform depth b, the number of nodes

evaluated is Ω(bℓ/2) where ℓ is the depth of the tree.

For TEST to return FALSE for a subtree T , it needs to evaluate
at least

▷ one child for a MIN node in T , and
▷ and all of the children for a MAX node in T .
▷ If T has a fixed branching factor b and uniform depth b, the number of nodes

evaluated is Ω(bℓ/2).

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 13



Number of nodes visited (2/4)

max

min

max

min

max

OR

AND

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 14



Number of nodes visited (3/4)

Assumptions:
• Assume a full complete b-ary tree with depth ℓ.
• The depth of the root, which is a MAX node, is 0.
• Assume ℓ is even in the analysis.

The total number of nodes in the tree is bℓ+1−1
b−1 .

H1: the minimum number of nodes visited by TEST when it
returns TRUE.

H1 = 1 + 1 + b + b + b2 + b2 + b3 + b3 + · · · + bℓ/2−1 + bℓ/2−1 + bℓ/2

= 2 · (b0 + b1 + · · · + bℓ/2) − bℓ/2

= 2 · bℓ/2+1−1
b−1 − bℓ/2

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 15



Number of nodes visited (4/4)

Assumptions:
• Assume a full complete b-ary tree with depth ℓ.
• The depth of the root, which is a MAX node, is 0.
• Assume ℓ is even in the analysis.

H2: the minimum number of nodes visited by alpha-beta.
H2 =

∑ℓ
i=0(b

⌈i/2⌉ + b⌊i/2⌋ − 1)

=
∑ℓ

i=0 b
⌈i/2⌉ +

∑ℓ
i=0 b

⌊i/2⌋ − (ℓ + 1)

=
∑ℓ

i=0 b
⌈i/2⌉ + H1 − (ℓ + 1)

= (1 + b + b + · · · + bℓ/2−1 + bℓ/2 + bℓ/2) + H1 − (ℓ + 1)

= (H1 − 1 + bℓ/2) + H1 − (ℓ + 1)

= 2 · H1 + bℓ/2 − (ℓ + 2)

≥ 2 · H1 if b > 3

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 16



Comparisons

When the first branch of a node has the best value, then TEST
scans the tree fast.

• The best value of the first i − 1 branches is used to test whether the
ith branch needs to be searched exactly.

• If the value of the first i − 1 branches of the root is better than the
value of ith branch, then we do not have to evaluate exactly for the
ith branch.

Compared to alpha-beta pruning whose cut off comes from
bounds of search windows.

• It is possible to have some cut-off for alpha-beta pruning as long as
some relative move orderings are “good.”

▷ The moving orders of your children and the children of your ancestor
who is odd level up “together” decide a cut-off.

• The bounds are updated during searching.
▷ Sometimes, a deep alpha-beta cut-off occurs because a bound found

from your ancestor a distance away.

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 17



Performance of SCOUT (1/3)

A node may be visited more than once.
• First visit is to TEST.
• Second visit is to SCOUT.

▷ During SCOUT, it may be TESTed with a different value.

• Q: Can information obtained in the first search be used in the second
search?

SCOUT is a recursive procedure.
• For every node v in a branch that is not the first visited child of its
parent with a depth1 of ℓ,

▷ every ancestor of v may initiate a TEST to visit v.
▷ It can be visited ℓ times by TEST.

1The depth of the root is defined to be 0.

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 18



Performance of SCOUT (2/3)

Show great improvements on depth > 3 over brute-force
methods for games with small branching factors.

• It traverses most of the nodes without evaluating them preciously.
• Few subtrees remained to be revisited to compute their exact mini-max
values.

Show good improvement over alpha-beta on game trees with
certain characteristics.
Experimental data on the game of Kalah show [UCLA Tech
Rep UCLA-ENG-80-17, A comparison of the Alpha-Beta and
SCOUT algorithms using the game of Kalah, Noe 1980]:

• SCOUT favors “skinny” game trees, that are game trees with high
depth-to-width ratios.

▷ Q: why?

• On depth = 5, it saves over 40% of time.
• May not be good for games with large branching factors.
• Move ordering is very important.

▷ The first branch, if is good, offers a great chance of pruning further
branches.

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 19



Performance of SCOUT (3/3)

Comparing alpha-beta pruning and SCOUT [Pearl 1984] on
uniform game trees:

• Alpha-beta is always better than SCOUT in the experiments using
random game trees.

▷ In theory, when both are in their best cases, SCOUT cuts out more,
but this rarely happens in practice.

• Let rb,d = Nscout
NAB

where Nscout is the nodes searched using SCOUT and
NAB is the nodes searched using alpha-beta on depth-d random-valued
game trees with a uniform branching factor of b.

▷ 1 ≤ rb,d ≤ 1.275 for any positive integers b and d.
▷ rb1,d ≥ rb2,d if b1 ≤ b2: ratio is closer when the branching factor is larger.

▷ rb,d1 ≥ rb,d2 if d1 ≤ d2: ratio is closer when the searching depth is larger.
▷ r2,20 ∼ 1.04.
▷ rb,20 ∼ 1: after depth > 20, the two are almost the same.

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 20



Comments

Q1:
• Currently, we use a “feasible” test to decide whether we need to search
this branch or not.

▷ If a new branch has a chance of larger than v, then we explore it in
details. Otherwise, we skip it.

• How about using the idea of “infeasible” test?
▷ If a new branch has no chance of larger than v, then we do not explore

it in details. Otherwise, we do.

• How about a hybrid approach?
▷ When to use one instead of the other?

Q2: What can we do with regard to the first branch?
• Can some previous values of some previous positions be used?
• When iterative deepening is used, can we use previous results?

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 21



Alpha-beta revisited

In an alpha-beta search with a window (alpha,beta):
• Failed-high means it returns a value that is larger than or equal to its
upper bound beta.

• Failed-low means it returns a value that is smaller than or equal to its
lower bound alpha.

Null or Zero window search:
• Using alpha-beta search with the window (m,m+ 1).

▷ Can never happen in a normal alpha-beta pruning when starts with
(−∞,∞).

• The result can be either failed-high or failed-low.
• Failed-high means the return value is at least m+ 1.

▷ Equivalent to TEST>(p,m) is TRUE.

• Failed-low means the return value is at most m.
▷ Equivalent to TEST>(p,m) is FALSE.

The above argument works for the shallow fail hard (F1),
general fail hard (F2) and general fail soft (F3) versions of the
alpha-beta algorithm.

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 22



Behaviors of Null window search

When F2(p,m,m+ 1,∞) returns m+ 1:
• for the MAX node p, returns immediately after the first child pi, namely
the smallest index i, returning a value ≥ m+ 1.

• for the MIN node pi, every child pi,j returns a value ≥ m+ 1
• for each MAX node pi,j, returns immediately after the first child ri,j,k,
namely the smallest index k, returning a value ≥ m+ 1.

• . . .
• Remark: F3(p,m,m+ 1,∞) returns a value ≥ m+ 1 in this case.

Exactly like the OR-AND tree shown in TEST> when TEST is
passed.
We can observe similar behaviors when F2(p,m,m + 1,∞)
returns m as if TEST is failed.

• Remark: F3(p,m,m+ 1,∞) returns a value ≤ m in this case.

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 23



Alpha-Beta + Scout

Intuition:
• Try to incooperate SCOUT and alpha-beta together.
• The searching window of alpha-beta if properly set can be used as
TEST in SCOUT.

• Using a searching window is better than using a single bound as in
SCOUT.

• Can also apply alpha-beta cut if it applies.
Modifications to the SCOUT algorithm:

• Traverse the tree with two bounds as the alpha-beta procedure does.
▷ A searching window.
▷ Use the current best bound to guide the value used in TEST.

• Use a fail soft version to get a better result when the returned value
is out of the window.

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 24



The NegaScout Algorithm – Mini-Max (1/2)

Algorithm F4′(position p, value alpha, value beta, integer depth)

• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // depth is the remaining depth to search
or time is running up // from timing control
or some other constraints are met // apply heuristic here

• then return f(p) else
begin

▷ m := −∞ // m is the current best lower bound; fail soft
m := max{m,G4′(p1, alpha, beta, depth − 1)} // the first branch
if m ≥ beta then return(m) // beta cut off

▷ for i := 2 to b do
▷ 9: t := G4′(pi,m,m + 1, depth − 1) // null window search
▷ 10: if t > m then // failed-high

11: if (depth < 3 or t ≥ beta)
12: then m := t
13: else m := G4′(pi, t, beta, depth − 1) // re-search

▷ 14: if m is max possible or m ≥ beta then return(m) // beta cut off

end
• return m

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 25



The NegaScout Algorithm – Mini-Max (2/2)

Algorithm G4′(position p, value alpha, value beta, integer depth)

• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // depth is the remaining depth to search
or time is running up // from timing control
or some other constraints are met // apply heuristic here

• then return f(p) else
begin

▷ m = ∞ // m is the current best upper bound; fail soft
m := min{m,F4′(p1, alpha, beta, depth − 1)} // the first branch
if m ≤ alpha then return(m) // alpha cut off

▷ for i := 2 to b do
▷ 9: t := F4′(pi,m − 1,m, depth − 1) // null window search
▷ 10: if t < m then // failed-low

11: if (depth < 3 or t ≤ alpha)
12: then m := t
13: else m := F4′(pi, alpha, t, depth − 1) // re-search

▷ 14: if m is min possible or m ≤ alpha then return(m)// alpha cut off

end
• return m

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 26



NegaScout – Mini-Max version (1/2)

5 4 7 4 453 4

(3,9)

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 27



NegaScout – Mini-Max version (2/2)

5 4 7 4 453

5

5

3

(re−search)

4

Assume depth >= 3 here

(3,9)

(3,9)

(3,9)

(4,5)

(4,5)

(4,5)

(3,4) (4,5)(5,6)

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 28



The NegaScout Algorithm

Use Nega-MAX format.
Algorithm F4(position p, value alpha, value beta, integer depth)

• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 //depth is the remaining depth to search
or time is running up // from timing control
or some other constraints are met // apply heuristic here

• then return h(p) else
▷ m := −∞ // the current lower bound; fail soft
▷ n := beta // the current upper bound
▷ for i := 1 to b do
▷ 9: t := −F4(pi,−n,−max{alpha,m}, depth − 1)
▷ 10: if t > m then

11: if (n = beta or depth < 3 or t ≥ beta)
12: then m := t
13: else m := −F4(pi,−beta,−t, depth − 1) // re-search

▷ 14: if m is max possible or m ≥ beta then return(m) // cut off
▷ 15: n := max{alpha,m} + 1 // set up a null window

• return m

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 29



Search behaviors (1/3)

If the depth is enough or it is a terminal position, then stop
searching further.

• Return h(p) as the value computed by an evaluation function.
• Note:

h(p) =

{
f(p) if depth of p is 0 or even
−f(p) if depth of p is odd

Fail soft version.
Search the first child p1 using the normal alpha beta window.

• line 9: normal window for the first child
▷ the initial value of m is −∞, hence −max{alpha,m} = −alpha
▷ m is the current best value
▷ that is, equivalent to

9: t := −F4(pi,−beta,−alpha, depth − 1)
searching with the normal window (alpha, beta)

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 30



Search behaviors (2/3)

For the second child and beyond pi, i > 1, first perform a null
window search for testing whether m is the answer.

• line 9: a null-window of (n − 1, n) searches for the second child and
beyond where n = max{alpha,m}+ 1.

▷ m is best value obtained so far
▷ alpha is the previous lower bound
▷ m’s value will be first set at line 12 because n = beta
▷ The value of n = max{alpha,m} + 1 is set at line 15.

• line 11:
▷ If n = beta, we are at the first iteration.
▷ If depth < 3, we are on a smaller depth subtree, i.e., depth at most 2,

NegaScout always returns the best value.
▷ If t ≥ beta, we have obtained a good enough value from the failed-soft

version to guarantee a beta cut.

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 31



Search behaviors (3/3)

For the second child and beyond pi, i > 1, first perform a null
window search for testing whether m is the answer.

• line 11: on a smaller depth subtree, i.e., depth at most 2, NegaScout
always returns the best value.

▷ Normally, no need to do alpha-beta or any enhancement on very small
subtrees.

▷ The overhead is too large on small subtrees.

• line 13: re-search when the null window search fails high.
▷ The value of this subtree is at least t.
▷ This means the best value in this subtree is more than m, the current

best value.
▷ This subtree must be re-searched with the the window (t, beta).

• line 14: the normal pruning from alpha-beta.

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 32



Example for NegaScout

−5 −4 −6 −7 −4 −4−5−9

5

5

−5

6

6

−6

5

5(4,5)

(−5,−4)

(4,5)

(5,5)
(4,5)

(6,5)

(5,5)

(−5,−4)

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 33



Refinements

When a subtree is re-searched, it is best to use information on
the previous search to speed up the current search.

• Restart from the position that the value t is returned.
Maybe want to re-search using the normal alpha-beta procedure.
F4 runs much better with a good move ordering and some form
of a transposition table which will be introduced later.

• Order the moves in a priority list.
• Reduce the number of re-searching’s.

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 34



Performances

Experiments done on a uniform random game tree [Reinefeld
1983].

• Normally superior to alpha-beta when searching game trees with
branching factors from 20 to 60.

• Shows about 10 to 20% of improvement.

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 35



Comments

Incooperating both SCOUT and alpha-beta.
Used in state-of-the-art game search engines.
The first search, though maybe unsuccessful, can provide useful
information in the second search.

• Information can be stored and then reused.
Using TEST in SCOUT to do the first search because it has a
chance to visit less nodes than that of ALPHA-BETA.

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 36



References and further readings

* J. Pearl. Asymptotic properties of minimax trees and game-
searching procedures. Artificial Intelligence, 14(2):113–138,
1980.

* A. Reinefeld. An improvement of the scout tree search
algorithm. ICCA Journal, 6(4):4–14, 1983.
Noe, T. A comparison of the Alpha-Beta and SCOUT algorithms
using the game of Kalah Technical Report UCLA-ENG-80-17,
Cognitive Systems Laboratory, University of California, Los
Angeles, 1980.
Pearl, Judea. Heuristics: intelligent search strategies for
computer problem solving. Addison-Wesley Longman Publishing
Co., Inc., 1984.

TCG: Scout and NegaScout, 20241121, Tsan-sheng Hsu © 37


