Monte-Carlo Game Tree Search:
Advanced Techniques

Tsan-sheng Hsu

2Nk B
TR s/ 7

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/ tshsu

Abstract

Adding new ideas to the pure Monte-Carlo approach for
computer Go.
e Domain independent knowledge during playing

> Node expansion policy

> Progressive pruning (PP)

> All moves as first (AMAF) and RAVE heuristic
> Better simulation policies

> Depth-1 tree search

Conclusion:

o Augmented with domain-independent knowledge extracted using sta-
tistical tools, Monte-Carlo approach reaches a new high for computer
Go.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 2

Domain independent refinements

Main considerations
e Avoid doing un-needed computations

e Increase the speed of convergence
e Avoid early mis-judgement
o Avoid extreme cases

Refinements obtained from on-line domain independent knowl-
edge.

» Node expansion policy.
> Grow only nodes with potential.

e Progressive pruning.
> Cut hopeless nodes early in order not to corrupt the sampling statistics.

e All moves at first and RAVE.

> Increase the speed of convergence.

o Temperature.
> Introduce randomness.

e Depth-i enhancement.

> With regard the initial phase, the one on obtaining an initial game tree,
exhaustively enumerate all possibilities instead of using only the root.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (C) 3

Warning

Many of the domain independent refinements are invented
earlier than the idea of UCT tree search.

For a better flow of introduction, UCT is introduced earlier.

These domain independent techniques can be used with or
without UCT.

These techniques speed up the convergence rate, but cannot
really replace the importance of getting more simulations.

o If the amount of simulations performed is well enough, then you can
most likely find a good answer without using those techniques. In
the worst case, you will be hurt by spending more time to do these
additional techniques.

e In the extreme case, if you can do well enough simulations, then no
UCB formula is needed at all.

Lesson: Do enough, but not over, simulations for the problem
instance under the current resource constraint.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 4

Node expansion policy (1/2)

In the selection process when tracing down the PV, an

expandable node £ is found.
o We expand the tree by growing on the part of A.

Expansion policy all ends: Expand all possible children eventually

of a found expandable node.
o all ends one-at-a-time: expand one child per simulation, namely, a
child & of h when a simulation is done from h.
> Implementation I: do only one simulation from h per selection.

> Implementation II: first do one simulation from h to find k£ and then
do several more simulations from k per selection.

o all ends at once: expand all children of A at once.
> Implementation I: do some fixed number of, say 100, simulations for
each child of h.
> Implementation II:
> Do a total of, say 500, simulations.
> First do a small number of, say 10, simulations for each child.

> For the rest, pick a child with the best UCB score to do some
numbers of, say 10, simulations. Continue to do so until the
required number of simulations are performed.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 5

Node expansion policy (2/2)

May decide to expand potentially good nodes judging from the
current statistics [Yajima et al’'11].

e Visit count: delay the expansion of a child until it is visited a certain
number of times.
> For example: more than a certain times of the number of its siblings.

> When v is to be expanded in the future, only expand the children
having been simulated a certain number of times before.

e Transition probability: delay the expansion of a child until the confi-
dence of the current “score” is high enough comparing to that of its
siblings.

> Use the current mean, variance and parent’s values to derive a good
estimation using statistical methods.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 6

Node expansion: comments

Only the statistics of an expanded child are back propagated to
its ancestors.

In a zero sum two person game, the game tree is structured in

a max-min fashion.
e For a max node h, we pick the best child.

> The statistics of bad children should not be considered as part of the
evaluation for h.

> However, it is difficult to tell which children are really bad using sam-
pling when the number of simulations are mat large. Hence we use the
average of all simulations done on children of h.

> A child needs to be expended only when it has enough confidence of
being the best or nearly the best child.

o Similar arguments work for a min node.

Expansion policy with some transition probability is much better
than the “all ends” or pure “visit count” policy.

When a node is expanded, its statistics are back propagated to
the root. Otherwise, they are kept in the node only.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 7

Progressive pruning (1/4)

A hopeless child, though being simulated less using UCB, still
contributes some statistics of its ancestors.

o If it is cut, the sampling is more accurate.
A child may be good (respectively, bad) at the beginning, but
becomes bad (respectively, good) later when more simulations
are done.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 8

Progressive pruning (2/4)

Each position has a mean value ;1 and a standard deviation o
after performing some simulations.

o Left expected outcome ;= — 174 % 0.
o Right expected outcome u, = u+rg*o.
e The value 7, is a constant fixed up empirically.

Let P, and P, be two child positions of a position P.
P, is statistically inferior to P if Pi.u,. < Py.u;, Pi.o < 0. and
Py.o < o,.

e The value o, is called standard deviation for equality.

e Its value is determined empirically.

P, and P, are statistically equal if P.c < 0., P».0 < 0., which
means no one is statistically inferior to the other.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 9

Progressive pruning (3/4)

After a minimal number of random games, say 100 per move,
a position is pruned as soon as it is statistically inferior to
another.

e For a pruned position:

> INNot considered as a legal move.
> No need to maintain its UCB information.

o This process is stopped when
> this is the only one move left for its parent, or
> the moves left are statistically equal, or

> a maximal threshold, say 10,000 multiplied by the number of legal
moves, of iterations is reached.

Two different pruning rules.
e Hard: a pruned move cannot be a candidate later on.
o Soft: a move pruned at a given time can be a candidate later on if its
value is no longer statistically inferior to a currently active move.

> The score of an active move may be decreased when more simulations
are performed.

> Periodically check whether to reactive it.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 10

Progressive pruning (4/4)

Remarks:

e Assume each trial is an independent Bernoulli trial and hence the
distribution is normal.

> This needs to be checked in your application.

o We only compare nodes that are of the same parent.
o We usually compare their raw scores not their UCB values.

> UCB and PP are similar in ideas, but using different pre-assumptions.

o If you compare UCB scores, then the mean and standard deviation of
a move are those calculated only from its un-pruned children.

Important remark
o When a node is pruned, its statistics are removed from the MCTS tree
using back propagation.
e When the punning is undo due to using a soft policy, then the statistics
of the node need to be added back and then be propagated.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 1].

PP: experiments (1/3)

Experimental setup:
9 by 9 Go.
o Difference of stones plus eyes after Komi is applied.
o The experiment is terminated if any one of the followings is true.

> There is only move left for the root.
> All moves left for the root are statistically equal.
> A given number of simulations are performed.

o The baselines of the experiments are those with scores 0.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©)

12

PP: experiments (2/3)

Selection of r,.
o The greater r, is,
> the less pruned the moves are;
> the better the algorithm performs;
> the slower the play is.

Td 1 2 4 8
o Results [Bouzy et al’'04]: score | 0 | +5.6 | + 7.3 | 4+9.0
time | 10’ | 35’ 90’ 150’

Selection of o..
e The smaller o, is,
> the fewer equalities there are;
> the better the algorithm performs;
> the slower the play is.

Oe 0.2 | 0.5 1
e Results [Bouzy et al’'04]: score | 0 | -0.7 | -6.7
time | 10" | O 7

Conclusions:
e 74 plays an important role in the move pruning process.

e 0. is less sensitive.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©)

13

PP: experiments (3/3)

Comments:
o It makes little sense to compare nodes of different depths or belonging
to different players.
e Another trick that may need consideration is progressive widening or
progressive un-pruning.

> A node is effective if enough simulations are done on it and its values
are good.

e Note that we can set a threshold for the number of simulations done
on whether to expand or grow the end of the selected PV~ path.

> This threshold can be enough simulations are done and/or the score is
good enough.

> Use this threshold to control the way the underline tree is expanded.

> If this threshold is high, then it will not expand any node and looks
like the original version.

> If this threshold is low, then we may make not enough simulations for
each node in the underline tree.

e If you want to do the above, you need to use a hash table to store the
number of simulations done a node and its win rate.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 14

Comments on using PP

Important remarks:
o ldeas for using the confidence interval on PP and the ideas for using
upper and lower confidence bounds (LCB and UCB) are similar.
o Statistical issues.

> If the result of a simulation can only be 0 or 1, then the mean of a
sampling uniquely determines its standard deviation.

> If the result of a simulation can have only very few variations, e.g., -1,
0, 1, then there are only a few possible standard deviations once the
mean of a sampling is given.

o The range of possible scores is important in using PP.

> A very narrow range makes the cutting not very flexible.
> A very wide range makes the cutting too random.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©)].5

Types of nodes during MCTS searching

A node in an MCTS tree can have the following flags marked.
o Officially grown or not.
> Being considered expanded by an expansion policy.

o Expandable or not.
> Expandable: some child is not officially grown.

e Being PP cut or not.

> Hard or soft cut.
> Only an officially grown node can be cut.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 16

All-moves-as-first heuristic (AMAF)

How to perform statistics for a completed playout?
o Basic idea: its score is used for the first move of the game only.

o All-moves-as-first AMAF: its score is used for all moves played in the
game as if they were the first to be played [Bruegmann’93].

AMAF updating rules:

o If a playout S, starting from the position following PV;-p towards
the best leaf and then appending a simulation run, passes through a
position V from W with a sibling position U, then

> the counters at the position V' leads to is updated;

> the counters at the node U leads to is also updated if S later contains
a ply from W to U.

e Note, we apply this update rule for all nodes in S regardless nodes
made by the player that is different from the root player.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 17

llustration: AMAF (1/2)

e Assume a playout P is simulated
from the child Y of the leaf L in
the PV with the sequence of plys
starting from the position Y being
y’ Uy, W, * -

> From node L to Y is the ply v.

e The winning rate of Y is first up-
dated.

> Due to the playout P.

o The winning rate of X, a child of L,
is also updated.

> Due to the added playout P’ at +
X, exchange u and v in P.

\\ ple\lyout P

e The winning rate of Y is updated
again.

> Due to the added playout P" at
Y, exchange w and y in P.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 18

llustration: AMAF (2/2)

o In this example, 3 playouts are

recorded for the position L though
only one is performed.
L
o Note: Need to also update the T
scores of affected nodes. v \ﬁx

\

+ \ ple\lyout P

-

19

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©)

AMAF: Implementation (1/2)

When a playout, say aj,a9,...,ap,...,a, Is simulated where
a; is the root position of the selected PV -5 and aj is
the expandable node and S = ay1,...,a, is the newly added
simulation, then we perform the following updating operations
bottom up:
o for ::= h+ 1 downto 1 do
> for each child position c of a; that is not equal to a;1; do

> if the ply (a; — c) is played in apy1, apy2,...,a, then

> {

> update the score and counters of c as if the playout S is also
occurred in c;

> ¥

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 20

AMAF: Implementation (2/2)

Some forms of hashing is needed to check the if condition
efficiently.

o Use a bit array PT'|pieces||fromposition][toposition]

o initialize PT|[||] to be all 0’s.
o When a ply, namely move a piece p from a location f to the destination
d, in the simulated playout is picked, PT[p]|f]|d] is set to 1.

e Hence it is O(1) time to check whether a particular ply is made in the
simulated playout later.
[
It is better to use a good data structure to record the children
of a position when it is first generated to avoid regenerating.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 21

AMAF: Pro’s and Con’s

Advantage:
o All-moves-as-first helps speeding up the convergence of the simulations.

Drawbacks:
e The evaluation of a move from a random game in which it was played
at a late stage is less reliable than when it is played at an early stage.
e Recapturing.
> Order of moves is important for certain games.

> Modification: if several moves are played at the same place because of
capturing, modify only the statistics for the player who played first.

e Some move is good only for one player.

> It does not evaluate the value of an intersection for the player to move,
but rather the difference between the values of the intersections when
it is played by one player or the other.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 22

AMAF: results

Results [Bouzy et al’04]:

e Relative scores between different heuristics.

AMAF | basic idea | PP
0 | +13.7 | +4.0

> Basic idea is very slow: 2 hours vs 5 minutes.

e Number of random games N: relative scores with different values of
N using AMAF.

N | 1000 | 10000 | 100000
score | -12.7 [0 | +3.2

> Using the value of 10000 is better.

Comments:

o The statistical natural is something very similar to the history heuristic
as used in alpha-beta based searching.
o Be aware of counter overflow.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 23

AMAF refinements

Definitions:
o Let v1(P) be the score of a position P without using AMAF.

o Let v5(P) be the score of a position P with AMAF.

> In calculating v2(P) we need to take into consideration all playouts,
actual and added ones.

> It is odd to use only added playouts to compute.

Remark: v,(P) uses both information of actual playouts and the

added playouts from AMAF, while v;(P) uses only information
from actual playouts only.

Observations:
o v1(P) is a good indicator for the goodness of P when sufficient number
of trials are performed starting with P.
o vy(P) is a good guess for the goodness of P for the true score of the
position P when
> it is approaching the end of a game;

> too few trials are performed starting with P such as when the node for
P is first expanded.

Q: How to make the best use of v;(P) and v,(P) together?

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 24

RAVE

Definitions:
o Let v1(P) be the score of a position P without using AMAF.
o Let v5(P) be the score of a position P with AMAF.

Rapid Action Value Estimate (RAVE) [Silver'09]

o Let the revised score v3(P) = o - v1(P) 4+ (1 — a) - v2(P) with a properly
chosen value of «.
> Other formulas for mixing the two scores exist.

o Can dynamically change o as the game goes.

> For example: o = min{l, 1%—130}, where Np is the number of playouts
done on P.
> This means when Np reaches 10000, no AMAF is used.

v3(P) = a- v (P)+ (1 — a) - vy P)
e When a =0, it is pure AMAF.
e When o =1, it uses no AMAF.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (C) 25

Other formulations of RAVE (1/2)

Note: v3(P) = a-v1(P) + (1 — «) - vo(P)
Example: Silver in his 2009 Ph.D. thesis [Silver’'09] originally
set the parameters as follows:

o Let Np = Np + N where Np is the number of actual simulations done

at the position P and N is the number of extra added simulations
generated from AMAF at P.

> Np is the total number of simulations (actual and added) used to gen-
erate the AMAF score vy (P).

> Np is the total number of actual simulations used to generate vi(P).

o . Np . .
o l—a == NoT ot i2 NN where b is a constant to be decided

empirically.
o Namely, v3(P) = (1 —0) - v1(P) + 8- vo(P)

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 26

Other formulations of RAVE (2/2)

Note: v3(P) = (1 —) - v, (P) + f - vs(P)

Discussion:
o o
b= NP+1+4b2NP
Np

1 1
e We know Np > Np, hence TN, < p< TN

o When Np >> 1/(4b%) is large, then 5 — 0 which means uses mostly
information in v,(P).
> When Np is small, B is larger.

o For the same Np, if Np is smaller, then 3 is larger, which means using
more information in vy(P).

Comments:

o Silver is the first one to propose RAVE, but we choose to introduce a
simpler formulation earlier for ease of description.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 27

Better simulation policies

Methods to make the sampling done by a simulation is a better

approximation of the goodness of the current position.
e Using the idea of “temperature” to control the degree of randomness
in sampling.
o Stop the simulation earlier if the result of the simulation can be
inferred: early playout termination [Hsueh et al '16]
o Assign proper scores to simulations whose results are more confident
than the others: quality based rewards [Hsueh et al '16]

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 28

Temperature

Considering all scores in MCTS are estimations with errors, try
to make decisions allowing errs, not preciously.

Do not always pick one with the best score since the second
best may be just off a bit. Give each one a chance to be picked
according to its score.

o The probability of playing the ith move is P, =

score;
> vy Score;”

Add a degree of randomness, called temperature, in picking the

plys in the random playout.
o Constant temperature
o Temperature from high to low.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 29

Constant temperature (1/2)

Constant temperature: consider all the legal moves and play

the ith move with a probability proportional to 5%, where
o v; is the current value of the position obtained by taking move 1;
> It is usually the case v; > 0.
> eFEvi) > 1,

e K > 0 is the inverse of the temperature I, a given constant, used in a
simulated annealing setting.
> Add extra randomness by setting a constant K = 1/T.
eK-’UZ'
Swge
> When K — 0, which means temperature I' — oo, and the selection is
uniformly random.
> If v; > U and K, > KQ, then PZ(Kl) — Pj(Kl) > PZ(K2) — PJ(KQ)
— When K becomes larger,
the value of v; contributes more in the calculation of P;(K).

> When K is very large, which means temperature is very low, it looks
like some form of the “greedy”, or best first, approach.

> The probability of playing the ith move is P;(K) =

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 30

Constant temperature (2/2)

Results for using a constant temperature [Bouzy et al’04]:

K | 0 [2] 5 | 10 | 20
score | -8.1 0] +2.6]-4.9-11.3
o When temperature is very high (K = 0) when means pure random,
then it looks bad.

o When there is no added randomness (K > 5), it also looks bad.
e Tradeoff between the current score and randomness.

> Currently, a greedy approach is worse than a random approach!!!

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 31

Temperature from high to low

Simulated annealing (temperature decreasing, or K increasing):

Koy .
P(K,) = > . where K is the value of K at the tth moment.
Vq
o Change the temperature, namely 1/K, over the time.

> In the beginning, allow more randomness, and decrease the amount of
randommness over the time.

o Increasing K from 0 to 5 gradually over the time does not enhance the
performance [Bouzy et al’'04].

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (C) 32

Early playout termination

When the result of an on-going simulation can be inferred,
terminate it earlier to save time.
o A sure win/loss.

> Example: In CDC, the opponent has no cannon and you have a piece
that can capture all of your opponent’s pieces.

o A draw.
> Example: In Chinese chess, both sides as no attacking pieces.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (C) 33

Quality based rewards

When a simulation is done, assign score to better reflect the

confidence of such a simulation.

o A big win/loss usually means the position where the simulation starts
is food /bad.

> Example: Assign the score according the difference of remaining mate-
rial values in Chinese chess.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 34

Depth-: enhancement

Try to do a limited exhaustive enumeration at the beginning to
beat extremely bad luck in using randomness.

Algorithm:
o Enumerate all possible positions from the root after : moves are made.
e For each position, use Monte-Carlo simulation to get an average score.

e Use a minimax formula to compute the best move from the average
scores on the leaves.

Result [Bouzy et al’04]: depth-2 is worse than depth-1 due to
oscillating behaviors normally observed in iterative deepening.
e Depth-1 overestimates the root’s value.

e Depth-2 underestimates the root’s value.

e It is computational difficult for computer Go to get depth-i; results
when i > 2.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 35

Putting everything together

Two versions [Bouzy et al’'04]:

e Depth =1, r;, =1, 0. = 0.2 with PP, and basic idea.

e K =2, no PP, and all-moves-as-first.
Still worse than GnuGo in 2004, a Go program with lots of
domain knowledge, by more than 30 points.

Note: as we said before, most of the techniques are invented
before UCT.

e The idea of UCT is not part of “everything” used in his experiments.

e This somehow shows that the idea of UCT may be critical among all
techniques.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 36

Conclusions

Add tactical search: for example, ladders.

o A ladder is a kind of string whose live-or-death is certain many plys
ahead.

Add more domain knowledge besides no filling of eyes: for

example, in Go, simulate extending plys first.
o An extending ply is one which increases the liberty of some strings that
are in danger.

As the computer goes faster, more domain knowledge can be
added.

Exploring the locality of Go using statistical methods.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 37

Ladder

White to move next at 1, then black at 2, then white at 3, and
then black at 4, ...

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 38

Ladder: comments

Ladder in Go is a perfect example to illustrate the idea of
getting the “right” sampling is important.

e In the previous shown Ladder example, it is very bad for BLACK.

e However, the WHITE only has one correct response out of a few

hundreds of bad ones.
o If you do uniform sampling, then the odds of finding the right one is

remote.

The “true” meaning of doing a “fair” random sampling is thus
o when the position is good, do sampling so that the final outcome of a
playout is more likely to be good;
e when the position is bad, do sampling so that the final outcome of a
playout is more likely to be bad.
“Fair” sampling will be a very hard, though may not be
impossible, task for a program that has no domain knowledge.

o “Fairness” has something to do with your opponent.
> If your opponent is weak, then thinking too much may not be optimal.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 39

Comments

We only describe some specific implementations of some general
Monte-Carlo techniques.
o Other implementations exist for say AMAF and others.

Depending on the amount of resources you have, you can
o decide the frequency to update the node information;
o decide the frequency to re-pick PVyop;
o decide the frequency to prune/un-prune nodes.

Most of the methods introduced have a statistical flavor.

e First the heuristic i1s “discovered” based on some clever intuitions or
observations.

o Then people try to fine tune the parameters used in the heuristic
manually.

o Finally statistical tools are found or established to formally settle it.

Over-use too many heuristics may cause bad side effects.
e A warning for using the cock tail styled method.

> Do not know where the real contribution comes from.
> Using too much resource.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 40

References and further readings (1/2)

* Sylvain Gelly and David Silver. Combining online and offline
knowledge in UCT. In Proceedings of the 24th international
conference on Machine learning, ICML '07, pages 273-280,
New York, NY, USA, 2007. ACM.

* David Silver. Reinforcement Learning and Simulation-Based
Search in Computer Go. PhD thesis, University of Alberta,
20009.

* B. Bouzy and B. Helmstetter. Monte-Carlo Go develop-
ments. In H. Jaap van den Herik, Hiroyuki lida, and
Ernst A. Heinz, editors, Advances in Computer Games,
Many Games, Many Challenges, 10th International Con-
ference, ACG 2003, Graz, Austria, November 24-27, 2003,
Revised Papers, volume 263 of IFIP, pages 159-174. Kluwer,
2004.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 41

References and further readings (2/2)

Coulom, R. (2007). Computing Elo ratings of move patterns in
the game of go. In Computer games workshop.

Takayuki Yajima, Tsuyoshi Hashimoto, Toshiki Matsui, Junichi
Hashimoto, and Kristian Spoerer. Node-expansion operators
for the UCT algorithm. In H. Jaap van den Herik, H. lida,
and A. Plaat, editors, Lecture Notes in Computer Science
6515: Proceedings of the 7th International Conference on

Computers and Games, pages 116-123. Springer-Verlag,
New York, NY, 2011.

Chu-Hsuan Hsueh, I-Chen Wu, Wen-lJie Tseng, Shi-Jim Yen,

Jr-Chang Chen, An analysis for strength improvement of an

MCTS-based program playing Chinese dark chess, Theoretical

(%%m%gter Science, Volume 644, 2016, Pages 63-75, ISSN
4-3975.

Couétoux A., Hoock JB., Sokolovska N., Teytaud O., Bonnard
N. (2011) Continuous Upper Confidence Trees. In: Coello

C.A.C. (eds) Learning and Intelligent Optimization. LION 2011.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 42

Lecture Notes in Computer Science, vol 6683. Springer, Berlin,
Heidelberg.

Chaslot, Guillaume, Winands, Mark, Herik, H., Uiterwijk, Jos,
Bouzy, Bruno. (2008). Progressive Strategies for Monte-Carlo
Tree Search. New Mathematics and Natural Computation. 04.
343-357. 10.1142/51793005708001094.

TCG: Monte-Carlo Game Tree Search: Advanced Techniques, 20251128, Tsan-sheng Hsu (©) 43

