
Open and End Game Databases

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1

Abstract

The open book.
The endgame database.

• Construction of an endgame database: retrograde analysis
• Consistence check of endgame knowledge

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 2

The opening

During the open game, it is frequently the case
• branching factor is huge;
• it is difficult to write a good evaluation function;
• the number of possible distinct positions up to a limited length is small
as compared to the number of possible positions encountered during
middle game search.

Difficult to search in the open and need some extra procedures
to help.

• Obtain domain knowledge.
▷ Expert generated meta rules.
▷ Expert annotated game logs.

Enumerate and then pre-compute the first few plys to save
time.

• Trade space with time.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 3

Meta rules

Build or construct meta-knowledge for the opening.
• Expert systems or databases built from human knowledge.
• Examples using CDC.

▷ Example 1: when the first player reveals a king, then try to flip its
adjacent piece for a possible pawn or to flip for a cannon attack.

▷ Example 2: Enumerate all possible combinations, including locations
and pieces revealed, of the first and the second plys and then find the
strategies with the best expected outcome.

• Machine learning or deep learning programs to mine domain knowledge
from games logs.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 4

The open book (1/2)

Acquire game logs from
• books;
• games between masters;
• games between computers;

▷ Use off-line computation to find out the value of a position for a given
depth that cannot be computed online during a game due to resource
constraints.

• · · ·

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 5

The open book (2/2)

Assume you have collected r games.
• For each position in the r games, compute the following 3 values:

▷ win: the number of games reaching this position and then wins.
▷ loss: the number of games reaching this position and then loss.
▷ draw: the number of games reaching this position and then draw.

When r is large and the games are trustful, then use the
3 values to compute an estimated level of goodness for this
position.

• win+ 0.5 ∗ draw
• win
• ...

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 6

Example: Chinese chess open book (1/3)

A total of 28,591 (Red win)+21,072 (Red lose)+55,930 (draw)
games.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 7

Example: Chinese chess open book (2/3)

Can be sorted using different criteria.
• Win-lose
• winning rates
• ...

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 8

Example: Chinese chess open book (3/3)

A tree-like structure.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 9

Illustration

W1,D1,L1

W2,D2,L2

w3,D3,L3

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 10

Comments (1/2)

Pure statistically.
• Try to have some varieties. Do not always use the best one to avoid
falling into a trap set up by opponents that have been watching your
playing records.. Let the second one have some chance to be used.

• Use ideas from UCB.
▷ First build the open game tree using existing databases.
▷ Then add computer self-playing logs or Monte-Carlo like simulations

using UCB formulations.
▷ Best first tree growing like MCTS

Need to figure out a way to handle loops.
Can build a static open book.

• It is difficult to acquire large amount of “trustful” game logs.
• Can build the open book off-line by using your program to search a
time longer than the tournament time

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 11

Comments (2/2)

Drawbacks
• You program may not be able to take over when the open book is over.
• If your opening is fixed, namely only uses the best in your book, your
opponent can use that to design a strategy to your disadvantage.

• If you do not use the best move, then you may use a very bad one.
• Some sort of Monte-Carol simulation strategy can be used.

Research opportunities
• Automatically analysis of game logs written by human experts [Chen
et. al 2006]

• Using high-level meta-knowledge to guide searching:
▷ Chinese dark chess (CDC): adjacent attack of the opponent’s Cannon

[Chen and Hsu 2013]

• Semi-auto cleaning of massive amount of data collected from online
and other resources.

▷ errors
▷ broken connections
▷ logs from creditable/non-creditable sources

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 12

Endgame

Entering the endgame, it is frequently the case
• the number of remaining pieces is small;
• special strategies or heuristics differ from the one used in other phases
of the game exist.

Solving the endgame by
• implementing heuristics;
• systematically enumeration of all possible combinations.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 13

Endgame databases

Chinese chess endgame database:
• Indexed by a sublist of pieces S, including both Kings.

K G M R N C P
King Guard Minister Rook Knight Cannon Pawn

▷ KCPGGMMKGGMM (vs.):

the database consisting of RED Cannon and Pawn, and Guards and
Ministers from both sides.

• A position in a database S: A legal arrangement of pieces in S on the
board and an indication of who the next player is.

• Perfect information of a position:
▷ What is the best possible outcome, i.e. win/loss/draw, that the player

can achieve starting from this position?
▷ What is a strategy to achieve the best possible outcome?

• Given S, to be able to give the perfect information of all legal positions
formed by placing pieces in S on the board.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 14

Usage of endgame databases

The database may only contain partial information of a
position:

• win/loss/draw; DTM, DTC; DTZ.
▷ DTM: depth to mate, i.e., the largest number of plys that your oppo-

nent can stall before you win.
▷ DTC: depth to conversion, i.e., the largest number of plys that your

opponent can stall before you can capture a piece and stay winning.
▷ DTZ: depth to zeroing, i.e., the largest number of plys that your op-

ponent can stall before you can make a progress and stay winning to
avoid a draw by rules.

Improve the “skill” of Chinese chess computer programs.

• KNPKGGMM (vs.)

Educational:
• Teach people to master endgames.

Recreational.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 15

An endgame book

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 16

Books

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 17

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 18

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 19

Definitions

State graph for an endgame H:
• Vertex: each legal placement of pieces in H and the indication of who
the current player (Red/Black) is.

▷ Each vertex is called a position.
▷ May want to remove symmetry positions.

• Edge: directed, from a position x to a position y if x can reach y in
one ply.

• Characteristics:
▷ Bipartite.
▷ Huge number of vertices and edges for non-trivial endgames.

▷ Example: KCPGGMMKGGMM has 1.5∗1010 positions and about 3.2∗
1011 edges.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 20

Overview of algorithms

Forward searching: doesn’t work for non-trivial endgames.
• AND-OR game tree search.
• Need to search to the terminal positions to reach a conclusion.
• Runs in exponential time not to mention the amount of main memory.
• Heuristics: A∗, transposition table, move ordering, iterative deepening
. . .

...

OR search

...

AND search

... ...

...

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 21

Retrograde analysis (1/2)

First systematic study by Ken Thompson in 1986 for Western
chess.

• Retrograde analysis

Algorithm:
• List all positions.
• Find all positions that are initially “stable”, i.e., solved.
• Propagate the values of stable positions backward to the positions that
can reach the stable positions in one ply.

▷ Watch out the and-or rules.

• Repeat this process until no more changes is found.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 22

Retrograde analysis (2/2)

Critical issues: time and space trade off.
• Information stored in each vertex can be compressed.
• Store only vertices, generate the edges on demand.
• Try not to propagate the same information.

...

...

...

...

terminal positions

backward propagation

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 23

Stable positions

Another critical issue: how to find stable positions?
• Checkmate, stalemate, King facing King.
• It maybe the case the best move is to capture an opponent’s piece
and then win.

▷ so called “depth-to-capture” (DTC);
▷ the traditional metric is “depth-to-mate” (DTM).

Need to access values of positions in other endgames.
For example,

• KCPKGGMM needs to access
▷ KCKGGMM
▷ KPKGGMM
▷ KCPKGMM, KCPKGGM

• A lattice structure for endgame accesses.
• Need to access lots of huge databases at the same time.

[Hsu & Liu, 2002] uses a simple graph partitioning scheme to
solve this problem with good practical results.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 24

An example of the lattice structure

KCPKGGMM

KGGMM KCP KCPKGGMMKC KP KGMM KGGM

KGGMM KCK KC KGMM KGGM

... ...

...

...

...

KGMMK KC KMM KC KGM

KMMK KC KM KC KGKGMK

KMK KC K KGK KC K

KK

...

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 25

Cycles in the state graph (1/2)

Yet another critical issue: cycles in the state graph.
• Can never be stable.
• In terms of graph theory,

▷ a stable position is a pendant in the current state graph;
▷ a propagated position is removed from the sate graph;
▷ no vertex in a cycle can be a pendant.

cycle in the
state graph

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 26

Cycles in the state graph (2/2)

For most games, a cyclic sequence of moves means draw.
• Positions in cycles are stable.
• Only need to propagate positions in cycles once.

For Chinese chess, a cyclic sequence of moves can mean
win/loss/draw.

• Special cases: only one side has attacking pieces.
▷ Threaten the opponent and fall into a repeated sequence is illegal.
▷ You can threaten the opponent only if you have attacking pieces.
▷ The stronger side does not need to threaten an opponent without at-

tacking pieces.
▷ All positions in cycles are draws.

• General cases: very complicated.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 27

Index function

Given the set of legal positions P, design a function f(p) 7→ I
where p ∈ P is a legal positions and I is a non-negative integer
with constraints that

• f(p1) ̸= f(p2) if p1 ̸= p2,

• ratio = |P|
maxI+1 ∼ 1 where maxI = max∀p∈P{f(p)}.

For performance, we need
• both the encoding function f and the decoding function f−1 to be able
computed efficiently

• Ne able to store maxI of values in the main memory.
• When ratio = 1, the scheme is perfect.

Can also make use of symmetry reduction, namely, mapping
symmetrical positions via mirroring, etc, into one.
Compression: after the database is constructed, can use some
compression tools to reduce the storage size.

• Can read a particular location in a compressed array without decom-
pression.

• Example: A block based invertible compression functions RRR. cite:
RRR: A Succinct Rank/Select Index for Bit Vectors, Alex Bowe,
https://www.alexbowe.com/rrr/

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 28

Commonly used index functions (1/2)

bucket based:
• if a piece hi can be resided in xi locations, then reserve ⌈log2(xi)⌉ bits
for its location.

• For a total of n pieces h1, . . . , hn, we use
∑n

i=1⌈log2(xi)⌉ bits for a
position.

Comments
• Very easy to encode and decode
• Have some fragmentation, namely the space without any positions can
be mapped to, if xi is not a power of 2 and if two pieces cannot be in
one location.

• Not easy to do symmetry reduction when there are more than one
piece of the same kind.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 29

Commonly used index functions (2/2)

radix based:
• if every piece hI can be resided in x locations and there are n pieces,
then use an x-based numbering system with a total of xn possible
positions.

Comments
• Easy to encode and decode
• Have fragmentation, namely the space without any positions can be
mapped to, since two pieces may be in one location.

• If each piece can have different resident locations, then use a mixed
radix number system such in the example of using hour-minute-second
to tell the time.

▷ Donald Knuth. The Art of Computer Programming, Volume 2: Half
Numerical Algorithms, Third Edition. Addison Wesley, 1997. ISBN
0-201-89684-2. 65-66 pages, 208-209 pages, 290 pages.

▷ George Cantor. On simple number systems, journal for math and
physics 14 (1869), 121-128.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 30

Combinatorial code/decode function

Combinatorial code/encode function: without any fragmenta-
tion if no pieces are of the same kind.

• Assumption: if a position can only be resided by at most one piece,
then the locations of the S pieces, assume no two pieces are the same,
forms a combination of length S.

▷ Can use the well-known combinatorial code/encode design to find an f
that is 1-1 mapping and ratio = 1.

▷ Cite: Donald Knuth, The art of computer programming, vol 4A,
pp.355–390.

Theorem L: There exists an ordering of visiting all length-t
combinations such that the combination (ct, . . . , c2, c1) with ci >
ci−1, ∀1 < i ≤ t, is visited after exactly

∑t
i=1

(
ci
i

)
alphabetically

smaller such permutations are visited.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 31

Example

Number of different positions by placing 5 black stones in a 9x9
Go board without doing any symmetry reduction.

• bucket based: need 5*⌈log2(81)⌉ = 35 bits in code.
▷ fast and easy to implement

• radix based: need ⌈log2(815)⌉ = 32 bits to code.
▷ easy to implement, but is slower than the above

• combinatorial coding:
(
81
5

)
= 25, 621, 596 which needs 25 bits.

▷ not too easy to implement, and not too slow in speed compared to the
above two

Comments: the above formulations are for the case when all
pieces are of the same kind. When pieces are not all the same,

• bucket based and radix based ones can be used without change;
• combinatorial code needs to be extended, and can be done.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 32

Overview of retrograde analysis algorithms

Forward based algorithms
Backward based algorithm
Advanced techniques

• Layer structure
• Disk based computation

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 33

Definitions

For 2-person game, assume the 2 sides are B and W .
Classifications of positions:

• loss-in-i, Bi: B to move and a sure lose in i, or more, plys, if W makes
a mistake.

▷ i = 0 means loss at once
▷ For chess, stalemate is illegal, so B0 is the set of positions that B is

in-check and remains to be in-check for all moves.
▷ For Chinese chess, B0 is stalemate.
▷ For i > 0, all plys for a position in Bi leads to a position in Wj, j ≥ i−1.

Furthermore, there is a ply leads to a position in Wi−1.

• win-in-i, Wi: W to move and a sure win in i, or less, plys, if B makes
a mistake

▷ For Chinese chess, W1 is the set of positions that can reach a position
in B0 in 1 ply and W0 is the set of positions that can capture the
opponent’s king in 1 ply.

▷ For chess, W1 is the set of positions that can reach a position in B0 in
1 ply and W0 = ∅.

▷ A position in Wi can reach a position in Bi−1 in 1 ply when i > 1.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 34

Structure of positions

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 35

Remarks

All positions need to be legal. Hence you cannot define a
position resulting from the king being captured.
Use symmetric reduction to find positions of

• white-to-move and lose
▷ To find these positions, flip black and white, and the next player from

white to black, find those Bi’s.

• black-to-move and win
▷ To find these positions, flip black and white, and the next player from

black to white, find those Wi’s.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 36

Initialization

Initialization:
• Depends on rules of the game, B0 and W0 have different initialization
methods.

▷ For chess, B1 is empty.

For constructing depth-to-mate (DTM) values in a lattice way
• Wi contains the positions that white captures a black piece and then
inductively becomes a black-to-move and lose in i plys. If there are
several such captures, use the one with the smallest i

• Bi contains the positions that black can only capture in the next ply
and each capture is inductively win fir white in i plys. Among all these
captures, use the one with the largest i.

For constructing depth-to-conversion (DTC) values in a lattice
way

• initialize W0 to be the positions that white captures a black piece and
then inductively becomes black-to-move and win in any plys.

• Bi contains the positions that black can only capture in the next ply
and each capture is inductively win fir white in any plys.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 37

Summary of algorithms

Forward based algorithm (layered)
Backward based algorithms

• Layered
• Propagate only stable nodes once
• Layered and propagate only stable nodes once

Disk based approach

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 38

Fundamental procedures (1/3)

Update the value of p’s parent p′ using the value of p.
UPDATE Bb(position p)
// backward update
// p is black-to-move

• if current(p) is lose-in-i, then
▷ if current(p′) is lose, unknown or win-in-j and j > i + 1, then

current(p′) = win-in-(i + 1) // update to a better value

UPDATE Wb(position p)
// backward update
// p is white-to-move

• if current(p) is win-in-i, then
▷ if current(p′) is unknown or loss-in-j and j < i, then

current(p′) = lose-in-i // update to a better value

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 39

Fundamental procedures (2/3)

Update the value of p using the values of all its children so far.
UPDATE Wf(position p) //p is white-to-move
// forward update for white-to-move and win

• if there exists a child pj of p such that current(pj) is loss, then
▷ // a child of p is black-to-move
▷ find a lose child p∗ with current(p∗) being the least k in lose-in-k
▷ current(p) = win-in-(k + 1)

• Otherwise, the value of p is un-decided, and remains to be unknown.

UPDATE Bf(position p) //p is black-to-move
// forward update for black-to-move and lose

• // there is no losing child
• if all children of p are winning, then

▷ // a child of p is white-to-move
▷ find a win child p∗ with current(p∗) being the largest k in win-in-k
▷ current(p) = lose-(k + 1)

• Otherwise, the value of p is un-decided, and remains to be unknown.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 40

Fundamental procedures (3/3)

How to verify a black-to-move position p is sure-to-lose using
information of all its children?
VERIFYloss(position p)
// verify p is a losing position
// p is black-to-move

• if all children of p are white-to-move and win, then
▷ return TRUE;

• else return FALSE;

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 41

Forward based Algorithms

A repeatedly forward checking retrograde analysis algorithm.
RFC(endgame E)
// build endgame E using repeatedly forward checking RA
// in layers

• initialize B0 and W0

• initialize all other positions to be unknown
• for each unknown black-to-move position p do

if all children of p are in W0 then
put p in B1

• i = 1
• repeat

▷ for each unknown white-to-move position p do
if a child of p is in Bi−1 then
put p in Wi

▷ for each unknown black-to-move position p do
if all children of p are in some Wj, j ≤ i, then
put p in Bi+1

▷ i + +

• until no values of positions is changed in the above for loop
• Mark all unknown positions to be draw

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 42

Properties

For i > 0, a position p in Wi has a child in Bi−1.
• Some children of p may be unknown.
• Some children of p may be in some Bj, j ≥ i.
• No child of p can be in some Bj, j < i− 1.

For i > 0, every child of a position p in Bi is in Wj, j < i.
Furthermore, p has a child in Wi−1.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 43

Layered Backward algorithm (1/2)

Di not need to scan the whole database to find updates.
• Use un-move generator to find Wi from Bi−1.

▷ The parents of positions in Bi−1.are Wi.

• Use un-move generator to find potential candidates of Bi+1 from Wi.
▷ The parents of positions in Wi.are potential candidates which is called

the set Ji+1.
▷ Bi+1 ⊆ Ji+1

▷ Ji+1 is much smaller than the whole database
▷ Use V ERIFYLOSS to filter Ji+1 and find Bi+1.

Cost:
• It is frequently the case that an un-move generator is more difficult to
implement than a move generator.

• Need to use a move generator in V ERIFYLOSS.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 44

Layered Backward algorithm (2/2)

LBP(endgame E)
// build endgame E using backward propagation RA
// in layers

• initialize B0 and W0

• initialize all other positions to be unknown
• B1 = parents of positions in W0 that are unknown;
• i = 1
• repeat

▷ Wu = parents of positions in Bi−1 that are unknown;
▷ Ju+1 = parents of positions in Wi that are unknown;
▷ Bi+1 = ∅
▷ for each position p in Ji+1 do

if V ERIFYloss(p) then Bi+1 ∪= {p}
▷ i + +

• until no values of positions is changed in the above for loop
• Mark all unknown positions to be draw

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 45

Propagate only stable positions

Properties:
• Only stable positions are needed to back propagate their scores to their
parents.

• A stable position only need to propagate once.
• A terminal position is stable.
• A position whose children are all stable is stable.

Need to record the number of unstable children, when and only
when this number becomes 0, then do the propagation.

• Di not need to find potential candidates and the filter some out.

Cost: need to maintain the number of unstable children.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 46

Backward propagation with children counting

BPC(endgame E) // build endgame E
• set the number of children in each legal position
• put positions in B0 and W0 to the queue Q
• while Q is not empty do

▷ pop a position p from Q
▷ if p is a black-to-move position then {

UPDATE Bb(p) //p is lose
put p’s parents whose values are changed by p into Q //

}
▷ if p is a white-to-move position then {

UPDATE Wb(p) //p is win
for each parent p′ of p do
nchild(p′) − −
if nchild(p′) == 0 then put p′ into Q

}
• Mark all unknown positions to be draw

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 47

Layered Propagation of only stable positions

Use both the layered propagation and unknown child counting
techniques.
LBPC(endgame E) // build endgame E

• initialize B0 and W0

• while Bi ̸= ∅ or Wi+1 ̸= ∅ do
▷ for each position p in Bi do

UPDATE Bb(p) //p is lose
put p’s parents whose values are changed by p into Wi+1

▷ for each position p in Wi+1 do
UPDATE Wb(p) //p is win
for each parent p′ of p do
nchild(p′) − −
if nchild(p′) == 0 then put p′ into Bi+1

}
• Mark all unknown positions to be draw

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 48

Disk based techniques

Problems:
• How to do UPDATEf and UPDATEb on the disk efficiently

Main techniques [Hsu and Liu 2002] [Wu et al 2006]:
• Do operations on a file in the disk only sequentially

▷ Randomly access (via lseek) 10,000 records in a disk takes a long time
and may make the disk to have a shorter life span

▷ Sort and merge the locations of the 10,000 records, and then do a
sequential access in ascending order takes not too much time and does
not hurt the life span of the disk too much.

• Batched or delayed processing
▷ Accumulate requests of updating and do them at once using the above

techniques.
▷ During accumulation, you have a chance to merge all updates of a

location into only one request.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 49

Example

Assumptions:
• DB[0..w] is stored on disk
• In UPDATEf(p) you want to find whether all children of p are win.
• calls to UPDATEf(p1), ... , UPDATEf(ps)
• The children of pi are stored almost randomly in DB[]

Naive RFC-based algorithm: very slow and use the disk heavily
• for each UPDATEf(pi)

▷ use lseek() to retrieve the content of each child of pi

Batched algorithm
• for each UPDATE Wf(pi)

▷ accumulate record the location x of each child pi into an array W with
W [j] = (idx = i, loc = x)

• sort and merge W according to the second key
• for i = 1 to |W |

▷ use lseek() to retrieve BD[W [i].loc] and put it in an array T [j] =
(W [i].idx,DB[W [i].loc])

• sort T using the first key
• read T sequentially to where all information needed by each pi are in
a continuous segment

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 50

Previous results — Retrograde analysis

Western chess: general approach.
• Complete 3- to 5-piece, pawn-less 6-piece endgames are built.
• Selected 6-piece endgames, e.g., KQQKQP.

▷ Perfect information for roughly 7.75 ∗ 109 positions per endgame.

▷ 1.5 – 3 ∗1012 bytes for all 3- to 6-piece endgames.

• 7-piece endgames were built in 2012. [140TB; http://tb7.chessok.com/]
Awari: machine and game dependent approach.

• Solved in the year 2002.
• 2.04 ∗ 1011 positions in an endgame.

▷ Using parallel machines.
▷ Win/loss/draw.

Checkers: game dependent approach.
• 1.7 ∗ 1011 positions in an endgame.

▷ Currently (upto 2020) the largest endgame database of any games using
a sequential machine.

▷ Win/loss/draw.

▷ Solved in the year 2007 with a total endgame size of 3.9 ∗ 1013.

Many other games.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 51

Results — Chinese chess

Earlier work by Prof. S. C. Hsu () and his students, and
some other researchers in Taiwan.

• KRKGGMM (vs.) [Fang 1997; master thesis]

▷ About 4 ∗ 106 positions; Perfect information.

Memory-efficient implementation: general approach.

• KCPGMKGGMM (vs.) [Wu & Beal 2001]

▷ About 2 ∗ 109 positions; Perfect information.

• KCPGGMMKGGMM (vs.)
[Wu, Liu & Hsu 2006]

▷ About 8.8 ∗ 109 positions; 2.6 ∗ 10−5 seconds per position; Perfect in-
formation.

▷ The largest single endgame database and the largest collection reported.

• Verification [Hsu & Liu 2002]
Special rules: more likely to be affected by special rules when
endgames get larger.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 52

Problems and solutions

Need to solve the cycle detection and shrinking problem in a
graph.

• Modeling using graph theory.
• Using previous knowledge from graph theory.

Need to solve the problem of requiring a huge space o store
the database being constructed.
General technique: trading memory usage with time usage.

• Using advanced encoding schemes for each position.
▷ Limitation: 1 bit per position.

• Carefully partition the database into disjoint portions so that only the
needed parts are loaded into the memory.

▷ Using combinatorial properties to do the partition.

• External memory algorithms.
▷ Disk-based algorithms.

• Advanced data structures for compressions.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 53

Comments

Almost all state-of-the-art game programs use some sorts of
endgame databases.
Building a large endgame database is one problem, how to use
it in searching efficiently is a bigger issue.
Q: Can endgames be replaced with rules similar to the one used
by human experts?

• Deep learning?

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 54

Construction of a huge knowledge base that
is consistent

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 55

Motivations

Computing of the material values is a crucial part of a good
evaluating function for Chinese chess.
Static material values:

• King: 100
• Guard/Minister: 2
• Rook: 10
• Knight/Cannon: 5
• Pawn: 1

Meanings:
• A knight is about equal to a cannon.
• A rook is about equal to two knights, two cannons, or a cannon plus a
knight.

• Three defending pieces are better than a knight, but two of them are
as good.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 56

Dynamic piece value

Values of pieces are dynamic depending on the combination.
• It is better to have different types of attacking pieces.

▷ Cannons can “jump” over pieces, rooks can attack in straight-lines, and
knights can attack in a very different way.

▷ Guards are better in protecting the king in facing a rook attack.
▷ Guards are not good in protecting the king in facing a cannon attack.

Examples:
• Example 1:

▷ KCPGMMKGGMM is a red-win endgame.
▷ KNPGMMKGGMM is a draw endgame.

• Example 2:
▷ KPPKGG and KPPKMM are red-win endgames.
▷ KPPKGM is a draw endgame.

• Example 3:
▷ KNPKGM and KNPKGG are red-win endgames.
▷ KNPKMM is a difficult endgame for red to win.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 57

Usage of Endgame Knowledge

Computer constructed endgame databases are too large to be
loaded into the main memory during searching.

• only useful at the very end of games.

Human experts:
• Studies the degree of “advantageous” by considering only positions of
pawns and material combinations.

• Lots of endgame books exist.

What does it mean when we say a material combination M1 of
one side is better than M2 of the other side?

• Among all legal positions with M1 +M2 the side with M1 has a better
chance of winning.

• Among all legal and reasonable positions with M1 +M2 the side with
M1 has a better chance of winning.

▷ We only consider quiescent positions.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 58

Books

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 59

Format

Granularity: 12 different levels by considering material combi-
nations only.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 60

Motivations

There are many existing heuristics about Chinese Chess
endgames.

• Books.
• Computer records.
• Annotations from human experts.
• · · ·

Previously, efforts are spent to collect heuristics.
Now, our problem is to compile a consistent set of heuristics.

• Granuality.
• Errors and contradictions.

▷ Input error.
▷ Cognition error.
▷ Approximation and conversion error.

Questions:
• How to compile a consistent set of heuristics?
• How can you choose the “right” one when you have two different
selections?

• How can you easily detect a potential conflict?
▷ It is difficult to be 100% sure that there is no conflict.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 61

Comments

Numerical scale.

0 1 2 3 4 5 6 7 8 9 10 11

We do not assume every endgame has a fixed value by simply
considering its material combination.

• Many critical endgames have different values according to their posi-
tions.

It is an art to integrate the values from material combinations
into the evaluating function.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 62

Sources (I)

Books: about 10,000 combinations

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 63

Sources (II)

Computer constructed endgames: about 2,500.
Endgames input by a human expert: about 17,000.

• Using a web interface to manually input results of endgames with very
few total number of attacking pieces.

Using expert systems and rules: about 110,000.
• Differ from collected endgames by one piece after removing some
meaningless ones.

• Bo-Nian Chen and Pangfeng Liu and Shun-Chin Hsu and Tsan-sheng
Hsu, ”Knowledge Inferencing on Chinese Chess Endgames,” Pro-
ceedings of the 6th International Conference on Computers and
Games (CG), Springer-Verlag LNCS# 5131, pages 180–191, 2008.

Total: 140,320 out of the 2,125,764 feasible combinations.
• Bo-Nian Chen, Hung-Jui Chang, Shun-Chin Hsu, Jr-Chang Chen and
Tsan-sheng Hsu, ”Multi-Level Inference in Chinese Chess Endgame
Knowledge Bases,” International Computer Game Association (ICGA)
Journal, volume 36, number 4, pages 203–214, December 2013.

• Bo-Nian Chen, Hung-Jui Chang, Shun-Chin Hsu, Jr-Chang Chen,
and Tsan-sheng Hsu,”Advanced meta-knowledge for Chinese Chess
Endgame,” International Computer Game Association (ICGA) Journal,
volume 37, number 1, pages 17–24, March 2014.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 64

Problems

Human mistakes.
• Different conclusions from different sources, e.g., books.

▷ Different conclusions were made in different eras.
▷ Different conclusions were made by different authors.
▷ Some books discuss an endgame extensively with detailed positions,

but have no general conclusions.

Algorithmic mistakes.
• Our algorithm for computer inferred endgame values has a roughly
90% of correctness.

Granularity.
• Some books only record results using a win-loss-draw format, not in 10
levels as we do.

• Perfect endgame databases obtained by retrograde analysis contain
winning rates, not a 12-level value.

▷ How to convert rates to levels?

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 65

How to detect conflicts – Basics

Piece additive rule:
• The result of an endgame cannot get worse by

▷ gaining extra pieces on your side;
▷ losing pieces on your opponent’s side.

• The result of an endgame cannot get better
▷ by losing pieces on your side;
▷ if your opponent gains piece.

Rule of defensive pieces, i.e., Elephant and Guard.
• The result of an endgame cannot normally be greatly changed by
gaining/losing an extra defensive piece.

Rule of draw and tie:
• It is a draw if no side can win.
• It is a tie if either side can win.
• An endgame cannot usually be turned from tie into draw by using the
piece additive rule.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 66

How to detect conflicts – Process

Procedure: check rules for endgames that we have already
collected.

• Piece additive rule.
• Rule of defensive pieces, i.e., Elephant and Guard.
• Rule of draw and tie.

Using relations between endgames, not just endgames them-
selves to check for potential conflicts.

• Similar activities applied for human cognitive process.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 67

A graphic view

A graph theoretical model.
• vertex: an endgame
• edge: between two vertices u and v if they follow the piece additive
rule.

▷ the direction from u to v if the value of u must be no worse than that
of v.

KNCPGKNPP

KNPPKNCG

KNCG KNP

KNPPKNCP

KNPPKNC

KNPPKNPGKNPPKCPG

advantage to red

slightly better to black tietiegreat advantage to black

advantage to blackgreat advantage to red

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 68

High level ideas

Assume the major part of the heuristics are correct.
A conflict is an edge such that the values between them does
not follow the piece additive rule.

>=

The vertex who has a large percentage of conflicts is more
likely to be incorrect.

X
X

X

X

X

A B

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 69

EndEdit (1/3)

Build a software tool to process and find conflicts.
EndEdit.

• 140,320 combinations.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 70

EndEdit (2/3)

Change the value for KRPGMKNCC from tie to sure win.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 71

EndEdit (3/3)

Conflicts for KRPGMKNCC.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 72

Enhanced ideas

A potential conflict is an edge such that the difference in values
between the endpoints is more than a threshold, say 3, and the
two connected endgames follow the rule of the defensive pieces.
Original relation.

>=

Enhanced relation.

<= +threshold

>=

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 73

Algorithm

For each endgame, compute the percentage of conflicts, which
is the ratio between the number of “corrected” relations and
the number of total relations.
Identify the ones with the large percentage of conflicts and
either use human or an automatic procedure to re-assign its
value.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 74

Potential problems for our approach

A cluster of endgames all with consistent errors.
A sparse or isolated cluster where inter-relation is few.
A vertex can have a wide range of possible values due to the
fact the values of its neighbors are much higher or lower than
it.
Solution: randomly select endgames in different clusters and
verify them by human experts.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 75

Remarks

Out of about 140,320 endgames, there are about 1/12 severe
errors (ones whose corrected values differ from the original
values by at least 3).
A total of 1/3 endgames are revised.
A period of 1 year is spent to obtain a consistent set of
heuristics where it is almost impossible to manually check the
consistency of the collection of endgames previously.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 76

Ongoing work

More testing and analysis are needed.
Using graph theoretical techniques to further process the data.

• Assign a different weight to a different type of relations, and use the
weight to find the ones that are most likely to be incorrect.

• More inferencing rules that are not just between direct neighbors.
▷ Piece exchanges: you cannot get better by exchanging a stronger piece

with a weaker piece.
▷ Depending on the piece involved, assign a confidence factor, e.g., adding

a rook and adding a knight have different levels of confidence.

Use expert system to do a better job in self-correcting.
Test how much it can improve the performance of a Chinese
chess program.
Further usage:

• Tutoring
• E-learning
• Knowledge abstraction

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 77

Concluding remarks

Open game and endgame databases provide a chance to work
off-line before the tournament.
Need to balance between the amount of storage used and the
effort to put them into real-time usage.

• If we can load the content of an endgame into the memory and use
them while doing search, then it is equivalent to a perfect transposition
table.

• Problem: Too large to be fitted into.
• Current status: only use it at the root.
• A very good research opportunity.

Endgame databases provide a gold mine for doing knowledge
abstraction.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 78

References and further readings

M. Buro. Toward opening book learning. International
Computer Game Association (ICGA) Journal, 22(2):98–
102, 1999.
T.-s. Hsu and P.-Y. Liu. Verification of endgame databases. In-
ternational Computer Game Association (ICGA) Journal,
25(3):132–144, 2002.
P.-s. Wu, P.-Y. Liu, and T.-s Hsu. An external-memory
retrograde analysis algorithm. In H. Jaap van den Herik,
Y. Björnsson, and N. S. Netanyahu, editors, Lecture Notes
in Computer Science 3846: Proceedings of the 4th Inter-
national Conference on Computers and Games, pages 145–
160. Springer-Verlag, New York, NY, 2006.
B.-N. Chen, P.F. Liu, S.C. Hsu, and T.-s. Hsu. Knowledge
inferencing on Chinese chess endgames. In H. Jaap van den
Herik, X. Xu, Z. Ma, and M. H.M. Winands, editors, Lecture
Notes in Computer Science 5131: Proceedings of the 6th
International Conference on Computers and Games, pages
180–191. Springer-Verlag, New York, NY, 2008.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 79

B.-N. Chen, P.F. Liu, S.C. Hsu, and T.-s. Hsu. Conflict
resolution of Chinese chess endgame knowledge base. In
Lecture Notes in Computer Science 6048: Proceedings of
the 12th Advances in Computer Games Conference, pages
146–157. Springer-Verlag, New York, NY, 2010.
B.-N. Chen, P.F. Liu, S.C. Hsu, and T.-s. Hsu. Knowledge
abstraction in Chinese chess endgame databases. In Lecture
Notes in Computer Science 6515: Proceedings of the 7th
International Conference on Computers and Games, pages
176–187. Springer-Verlag, New York, NY, 2011.
B.-N. Chen, P.F. Liu, S.C. Hsu, and T.-s. Hsu. Aggregating
consists endgame knowledge in Chnese Chess. Knowledge-
Based System, volume 34, pages 34–42, October 2012.

TCG: Open/End games, 20251211, Tsan-sheng Hsu © 80

