

Theory of Computer Games: Selected Advanced Topics

Tsan-sheng Hsu

徐讚昇

tshsu@iis.sinica.edu.tw

<http://www.iis.sinica.edu.tw/~tshsu>

Abstract

■ Some advanced research issues.

- The graph history interaction (GHI) problem.
- Opponent models.
- Multi-player game tree search.
- Bit board speedup.
- Proof-number search.

■ More research topics.

- The influence of rules on games.
 - ▷ *Allowing long cycles in Go.*
 - ▷ *The scoring of a suicide ply in chess.*
- Why a position is difficult to human?
- Unique features in games.

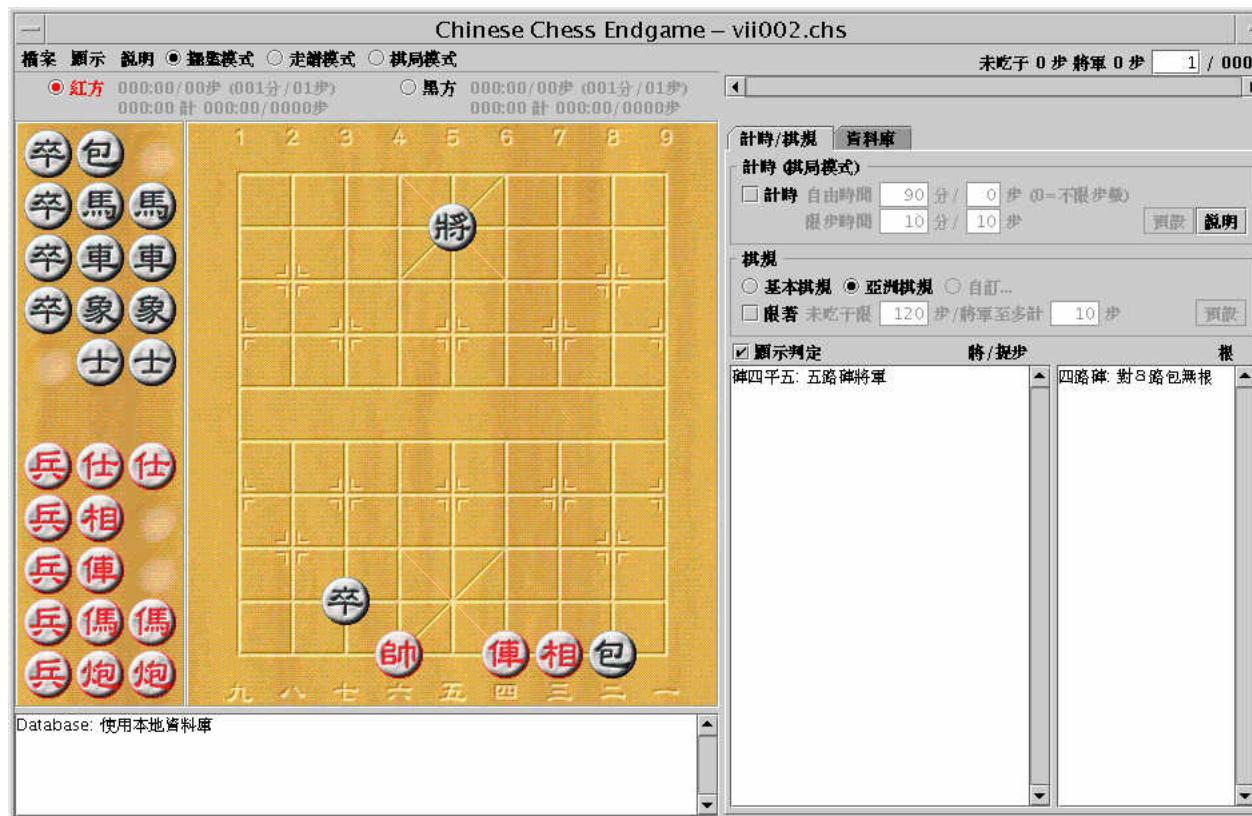
Graph history interaction problem

- The graph history interaction (GHI) problem [Campbell 1985]:
 - In a game graph, a position can be visited by more than one paths from a starting position.
 - The value of the position depends on **the path** visiting it.
 - ▷ *It can be win, loss or draw for Chinese chess.*
 - ▷ *It can only be draw for Western chess and Chinese dark chess.*
 - ▷ *It can only be loss for Go.*
- In the transposition table, you record the value of a position, but not the path leading to it.
 - Values computed from rules on repetition cannot be used later on.
 - It takes a huge amount of storage to store all the paths visiting it.
- This is a very difficult problem to be solved in real time [Wu et al '05] [Kishimoto and Müller '04].

Asia Rule Example #1b

■ Checking the opponent's king repetitively with no hope of checkmate.

- ▷ $R4=5, K5=6, R5=4, K6=5, \dots$
- ▷ *Red Rook checks Black King. Red loses.*

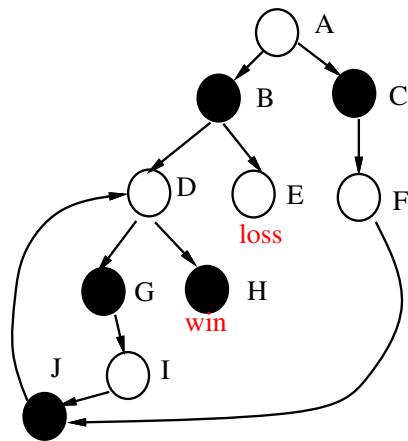


Asia Rule Example #2a

■ Red checks black and vice versa.

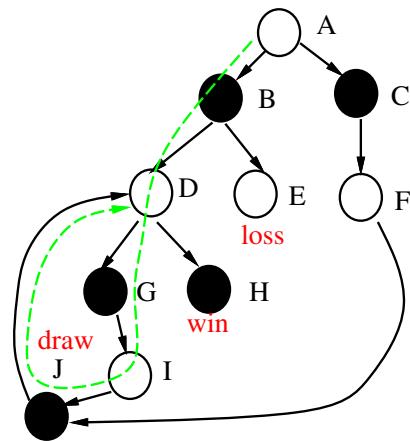
- ▷ $R5+1, C6=5, R5=4, C5=6, R4=5, C6=5, \dots$
- ▷ *Red Rook checks Black King and Black Cannon checks Red King. Draw.*

GHI: when loop draws



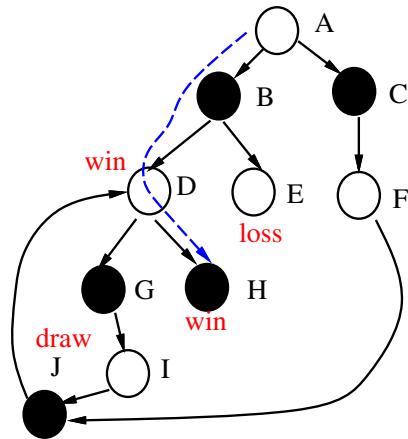
- Assume if the game falls into a loop, then it is a draw.

GHI: when loop draws



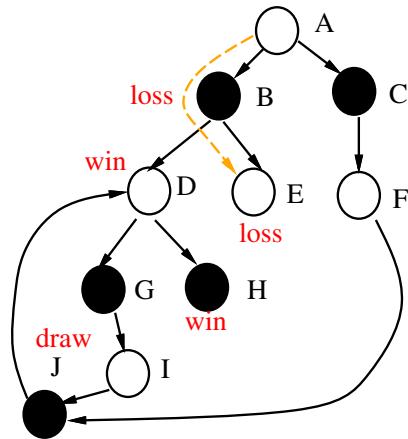
- Assume if the game falls into a loop, then it is a draw.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is draw by **rules of repetition**.
 - ▷ Memorized J as a draw position.

GHI: when loop draws



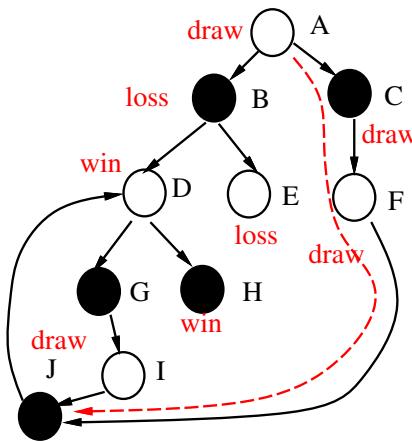
- Assume if the game falls into a loop, then it is a draw.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is draw by **rules of repetition**.
 - ▷ Memorized J as a draw position.
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.

GHI: when loop draws



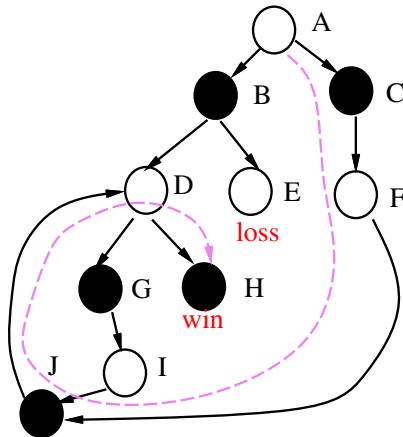
- Assume if the game falls into a loop, then it is a draw.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is draw by **rules of repetition**.
▷ Memorized *J* as a draw position.
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence *D* is win.
- $A \rightarrow B \rightarrow E$ is a loss. Hence *B* is loss.

GHI: when loop draws



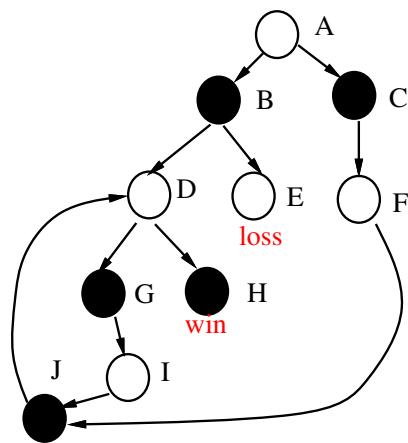
- Assume if the game falls into a loop, then it is a draw.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is draw by **rules of repetition**.
 - ▷ Memorized J as a draw position.
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.
- $A \rightarrow B \rightarrow E$ is a loss. Hence B is loss.
- $A \rightarrow C \rightarrow F \rightarrow J$ is draw because J is recorded as draw.
- A is draw because one child is loss and the other child is draw.

GHI: when loop draws



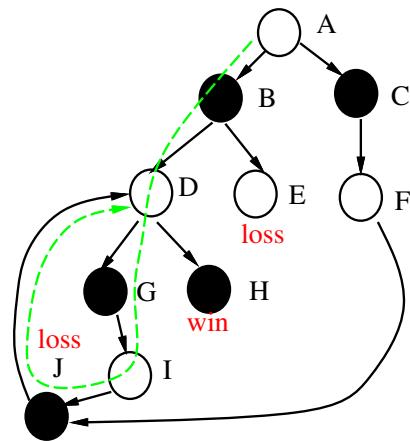
- Assume if the game falls into a loop, then it is a draw.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is draw by **rules of repetition**.
 - ▷ Memorized J as a draw position.
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.
- $A \rightarrow B \rightarrow E$ is a loss. Hence B is loss.
- $A \rightarrow C \rightarrow F \rightarrow J$ is draw because J is recorded as draw.
- A is draw because one child is loss and the other child is draw.
- However, $A \rightarrow C \rightarrow F \rightarrow J \rightarrow D \rightarrow H$ is a win (for the root).

GHI: when loop wins



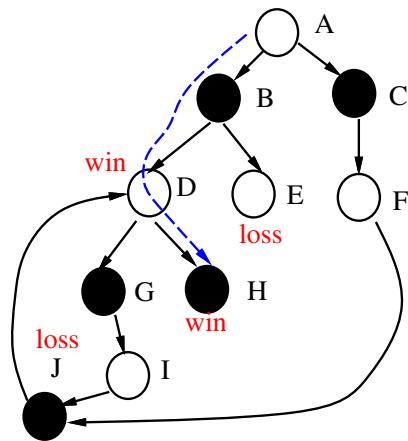
- Assume the one causes loops wins the game.

GHI: when loop wins



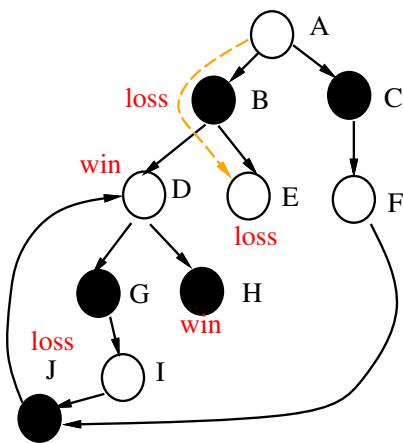
- Assume the one causes loops wins the game.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is loss because of rules of repetition.
 - ▷ Memorized J as a loss position (for the root).

GHI: when loop wins



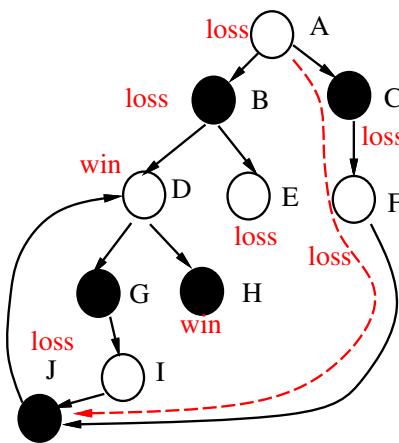
- Assume the one causes loops wins the game.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is loss because of rules of repetition.
 - ▷ Memorized J as a loss position (for the root).
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.

GHI: when loop wins



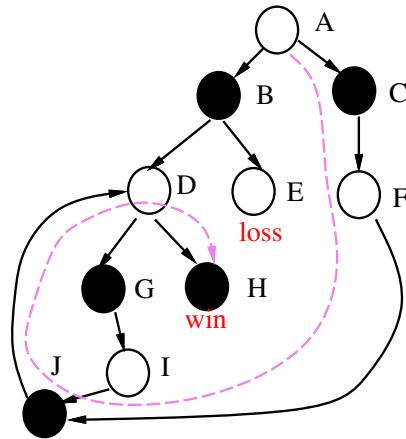
- Assume the one causes loops wins the game.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is loss because of rules of repetition.
 - ▷ Memorized J as a loss position (for the root).
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.
- $A \rightarrow B \rightarrow E$ is a loss. Hence B is loss.

GHI: when loop wins



- Assume the one causes loops wins the game.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is loss because of rules of repetition.
 - ▷ Memorized J as a loss position (for the root).
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.
- $A \rightarrow B \rightarrow E$ is a loss. Hence B is loss.
- $A \rightarrow C \rightarrow F \rightarrow J$ is loss because J is recorded as loss.
- A is loss because both branches lead to loss.

GHI: when loop wins



- **Assume the one causes loops wins the game.**
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is loss because of **rules of repetition**.
 - ▷ Memorized J as a loss position (for the root).
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.
- $A \rightarrow B \rightarrow E$ is a loss. Hence B is loss.
- $A \rightarrow C \rightarrow F \rightarrow J$ is loss because J is recorded as loss.
- A is loss because both branches lead to loss.
- **However, $A \rightarrow C \rightarrow F \rightarrow J \rightarrow D \rightarrow H$ is a win (for the root).**

Comments

- Using DFS to search the above game graph from left first or from right first produces two different results.
- Position *A* is actually a win position.
 - Problem: memorize *J* being draw is only valid when the path leading to it causes a loop.
- Storing the path leading to a position in a transposition table requires too much memory.
 - Maybe we can store some forms of hash code to verify it.
- Finding a better data structure for solving this problem remains to be a challenging research issue.
- Remark: In real settings, it is usually the case that the rule of loops is enforced after 3 repetitions. However, GHI problem holds for any times of repetition.

Opponent models

- In a normal alpha-beta search, it is assumed that you and the opponent use the same strategy.
 - What is good to you is bad to the opponent and vice versa!
 - Hence we can reduce a minimax search to a NegaMax search.
 - This is normally true when the game ends, but may not be true in the middle of the game.
- What will happen when there are two strategies or evaluation functions f_1 and f_2 so that
 - for some positions p , $f_1(p)$ is **better** than $f_2(p)$
 - ▷ “better” means closer to the real value $f(p)$
 - for some positions q , $f_2(q)$ is **better** than $f_1(q)$
- If you are using f_1 and you know your opponent is using f_2 , what can be done to take advantage of this information.
 - This is called OM (**opponent model**) search [Carmel and Markovitch 1996].
 - ▷ In a MAX node, use f_1 .
 - ▷ In a MIN node, use f_2 .

Other usage of the opponent model

- Depend on strength of your opponent, decide whether to force an easy draw or not.
 - This is called the **contempt factor**.
- Example in CDC:
 - It is easy to chase the king of your opponent using your pawn.
 - Drawing a weaker opponent is a waste.
 - Drawing a stronger opponent is a gain.
- It is feasible to use a learning model to “guess” the level of your opponent as the game goes and then adapt to its model in CDC [Chang et al 2021].

Opponent models – comments

■ Comments:

- Need to know your opponent's model precisely or to have some knowledge about your opponent.
- How to learn the opponent model on-line or off-line?
- When there are more than 2 possible opponent strategies, use a probability model (PrOM search) to form a strategy.

■ Remark: A common misconception is that if your opponent uses a worse strategy f_3 than the one, namely f_2 , used in your model, then he may get advantage.

- **This is impossible** if f_2 is truly better than f_3 .
- If f_1 can beat f_2 , then f_1 can sure beat f_3 .

Multi-player game tree search

■ Games with more than 2 players.

- Mahjong: 4 players
- Contract bridge or bridge: 4 players
- Monopoly: 2 to many players
- Scrabble: 2 to 4 players
- Risk: 2 to 6 players

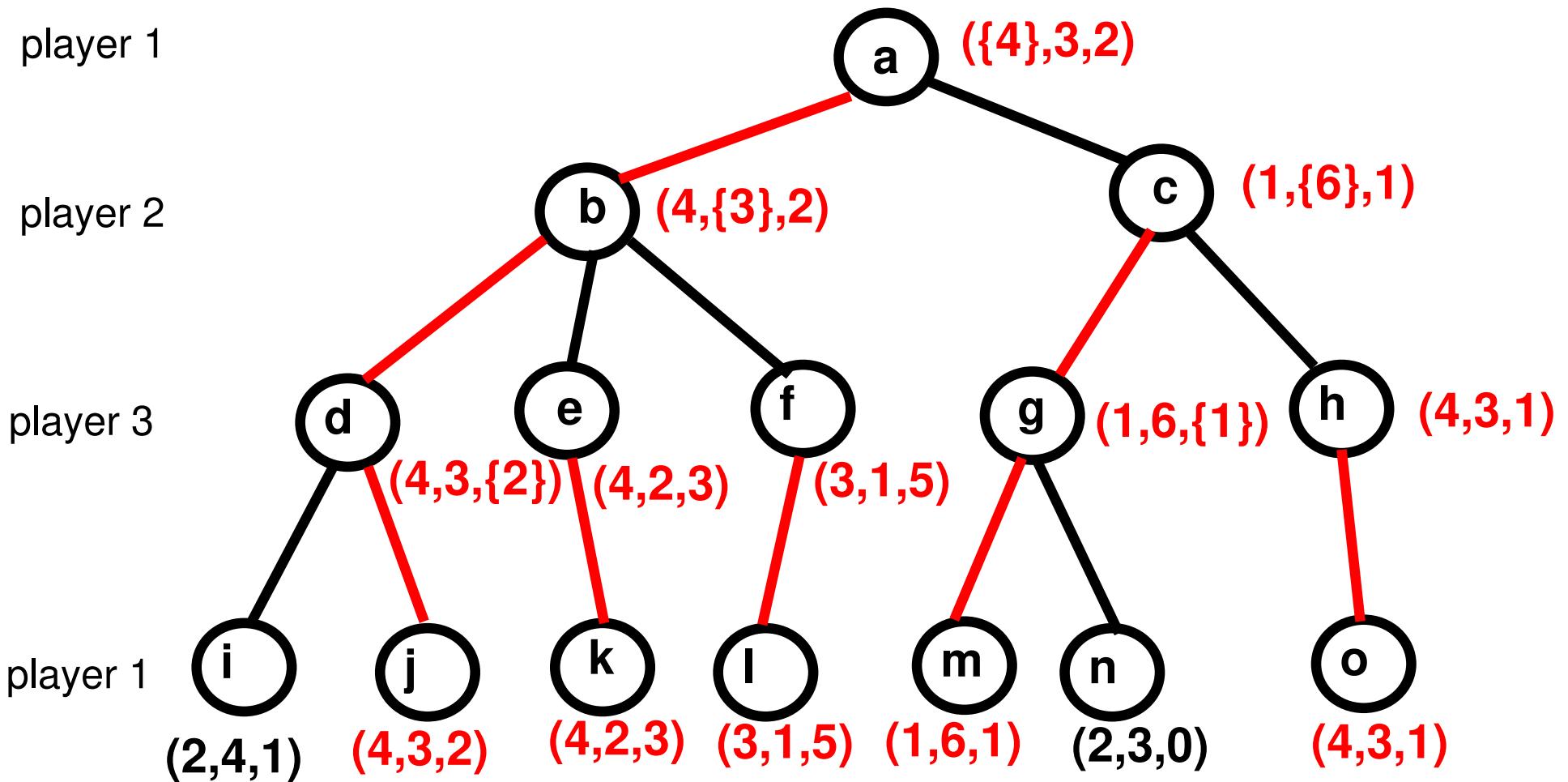
■ Assume we have n players, y_1, \dots, y_n in a game.

- We have n evaluating functions, $score_i$, one for each player.
- Given a position p with the children p_1, \dots, p_m , let $score_i(p)$ be the score of y_i for p .
 - ▷ If p is a terminal position for y_i , then $m = 0$ and $score_i(p)$ is the “true” score of y_i in p .
 - ▷ Otherwise, $score_i(p) = \max_{j=1}^m score_i(p_j)$.
- The above algorithm is called **MAX** ^{n} where stands for during each turn, each player maximizes his own score without considering scores of others.

MAXⁿ: algorithm

- $next_player(idx)$: the player who is next to player idx .
- Brute force algorithm for multi-player games.
- **Algorithm MAXN(position p , player idx)**
 - output: $best$ which is an array with $best[i]$ being the best value for player i so far.
 - If p is terminal, then **return** $best[i] = score_i(p), \forall i$;
 - initialize $best$ to be $best[i] = -\infty, \forall i$;
 - Let p_i be the i th child of p ;
 - **for** $i = 1$ to last child of p **do**
 - ▷ $current = MAXN(p_i, next_player(idx))$;
 - ▷ **if** $current[idx] > best[idx]$, $best = current$; // maximized player idx
 - **return** $best$;

MAX^n : example ($n = 3$)



Opportunities for pruning (1/2)

- Let p be a position in a multi-player game.
- Alpha-beta pruning is a special case for $n = 2$ and cannot be generalized for $n > 2$.
 - Property used in alpha-beta pruning:
 - ▷ What is good for y_1 is definitely bad for y_2 by using the zero sum principle which is for a position p , $score_1(p) + score_2(p) = 0$.
 - ▷ If player 1 maximizes his score, then player 2 has the worst score.
 - The above may not be true for $n > 2$.
 - ▷ For example when $n = 3$, what is good for y_1 may be also good for y_2 , but is very bad for y_3 .
 - ▷ If player 1 maximizes his score, he may not be rank 1. If player 1 is willing to get a lower score, he may become rank 1.
 - ▷ What are the rewards for being rank i in a game?

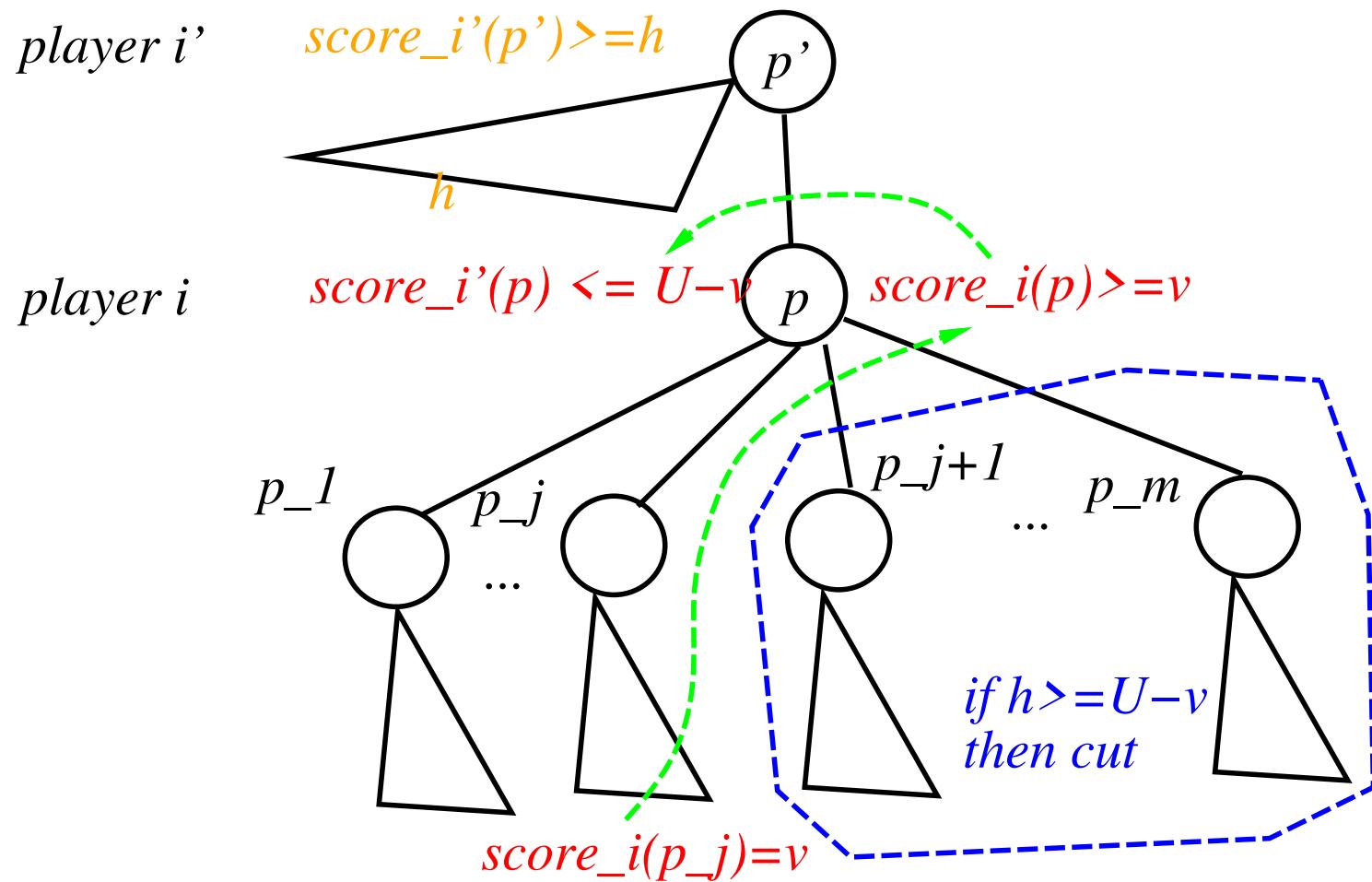
Opportunities for pruning (2/2)

- For a position p , if there is no constraints on the n scores of p , then it is impossible to have any cut offs for MAX^n .
 - In applications we often have the following properties.
 - ▷ Zero sum.
 - ▷ The sum of all n scores for p has an upper bound U .
 - ▷ The score of p for any player has a lower bound L .
 - Examples:
 - ▷ Go for n players: each player owns pieces of a distinct color.
→ the sum of all points \leq the board size, and the score cannot be negative.
 - ▷ Othello for n players: each player owns pieces of a distinct color and flips all pieces of different colors.
→ the sum of all points \leq the plys played so far and the score cannot be negative.

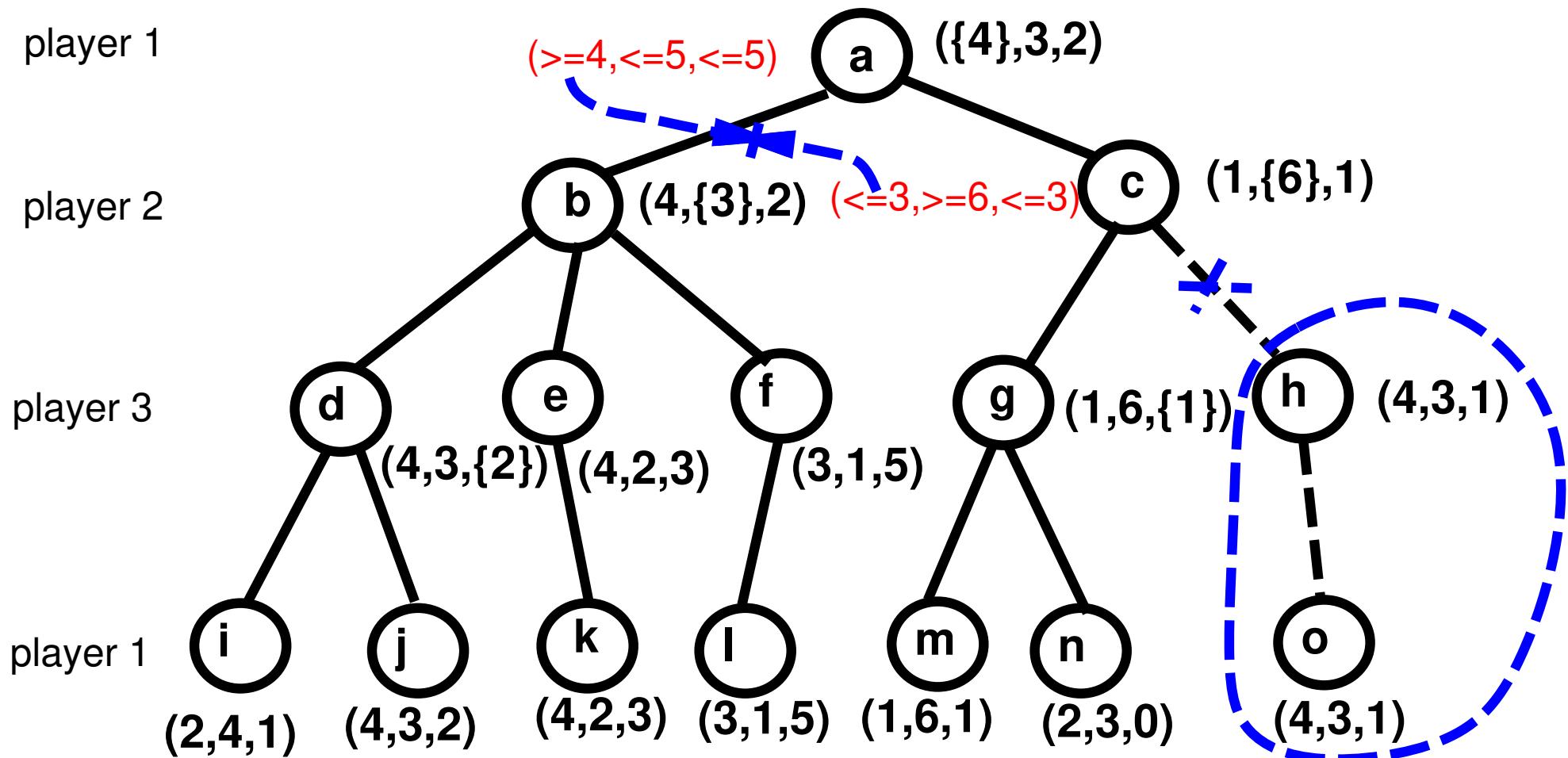
Pruning

- **Recall:** a position p with the children p_1, \dots, p_m and the parent p' , and $score_i(p)$ is the score of player i for p .
- **Direct pruning:**
 - During the turn of the i th player, if $score_i(p_j) = U$, then no more search is needed.
- **Shallow pruning:**
 - Without loss of generality, assume $L = 0$.
 - During the turn of the i th player, if $score_i(p_j) = v$ so far, then $score_i(p) \geq v$ since each player is a max player.
 - This implies $score_j(p) \leq U - v$ if $j \neq i$.
 - Let i' be the index of the immediate previous player.
 - We know $score_{i'}(p') \geq h$ if he has done some searching.
 - If $h \geq U - v$, then we have a cut off.

MAX^n : ideas for cutoff



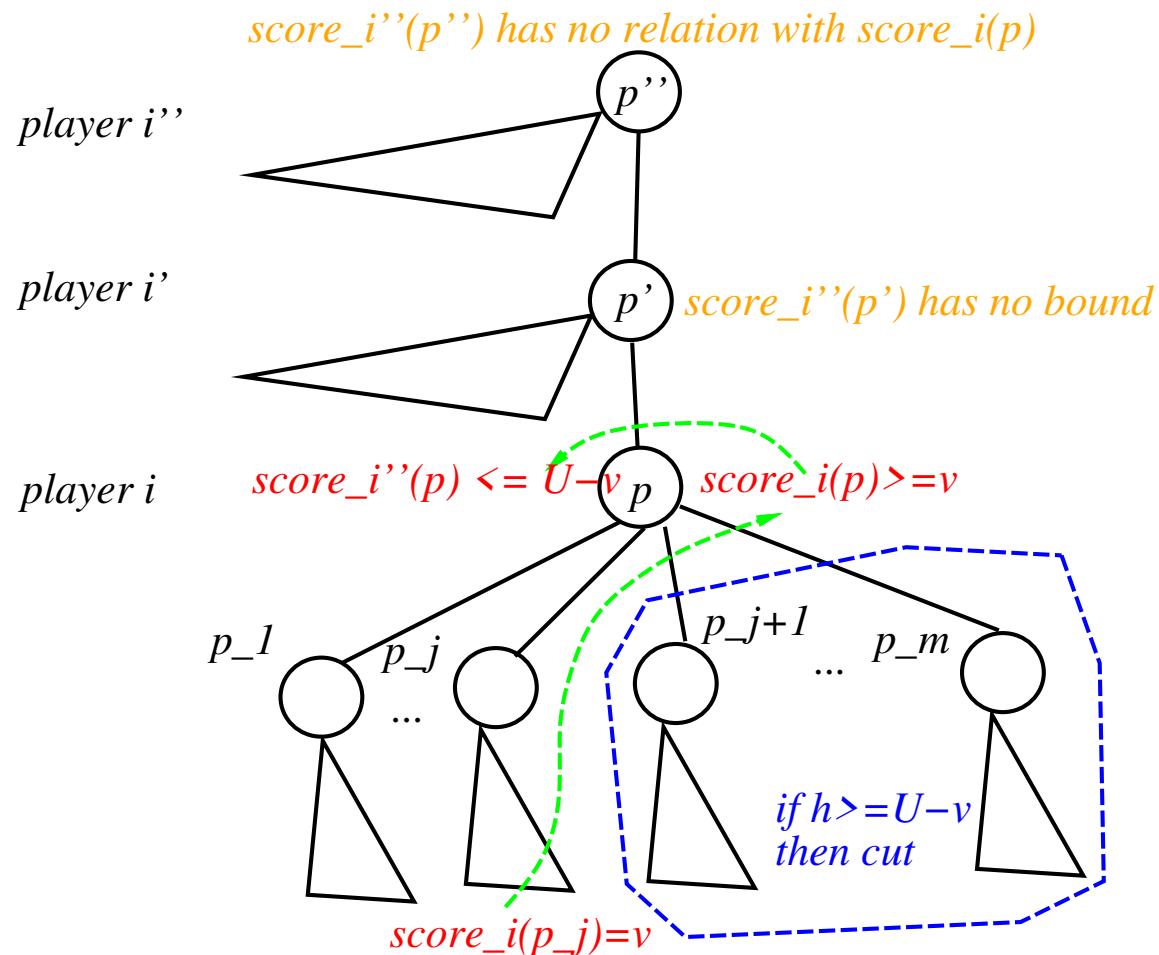
MAXⁿ: cutoff example ($n = 3, U = 9$)



Remarks about pruning in MAX^n

- Direct pruning is a degenerated case of the shallow pruning by the following settings.
 - If $v = U$, then the scores of all other players are all zero.
 - Using the lower bound L , you can get a cut off.
- Compared to two-player alpha-beta pruning, both direct and shallow pruning can be used in $n \geq 2$.
- Deep pruning does not work when $n > 2$.
 - Assume node x is the turn of player $\text{player}(x)$.
 - Assume you are searching the node w , v is your parent and u is an ancestor that is not v .
 - Any value of $\text{score}_{\text{player}(u)}(u)$ cannot produce any cutoff on searching the tree T_w because $\text{player}(v)$ makes the decision first in propagating the values up.
 - Any value of $\text{score}_{\text{player}(u)}(w)$ can be propagated up and be used by u .

MAXⁿ: deep cut does not work



Algorithm for shallow cut off

■ Functions and data structures

- $next_player(idx)$: the player who is next to player idx .
- $score_i(p)$: the score of player i for the position p .
- U : the upper bound of sum of all scores among all players on a position.
- Assume L is 0.
- $best$ and $current$ are both arrays of size n .

■ Algorithm shallow(position p , player idx , value bound)

- return value: $best$ which is an array with $best[i]$ being the best value for player i so far.
- If p is terminal, then return $best[i] = score_i(p), \forall i$;
- Let p_i be the i th child of p ;
- $best = shallow(p_1, next(idx), U)$; // recursive call on the first child
- for $i = 2$ to last child of p do
 - 4.1: if $best[idx] = U$, then return $best$ // immediate cut off
 - 4.2: if $best[idx] \geq bound$, then return $best$ // shallow cut off
 - 4.3: $current = shallow(p_i, next_player(idx), U - best[idx])$;
 - 4.4: if $current[idx] > best[idx]$, $best = current$; // maximize player idx
- return $best$;

Comments

- A generalization of alpha-beta cutoff on adjacent depths.
- Does not work on deep alpha-beta cutoff [Korf 1991].
- In the **best case**, the effective branching factor is $\frac{1+\sqrt{4b-3}}{2}$ where b is the average branching factor.
 - Comparing to alpha-beta cut off, the best effective branching factor is \sqrt{b} .
- In the **average case**, the effective branching factor is approaching $O(b)$.
 - Comparing to alpha-beta cut off, the the average effective branching factor is $b^{0.75}$ [Fuller et al 1975].
 - This implies most of the cut off come from deep pruning in the average case.
- More research are needed to get more cutoff by observing additional constraints on the values from the application domain.
- MCTS can be easily extended to work on any number of players, but need to work on better properties of convergence.

Hardware Speedup

- **Using hardware to speed up searching is not new.**

- **Parallel computing.**

- ▷ *The Northwestern University CHESS program series on the 1970's makes full usage of hardware advantages from supercomputers [Atkin & Slate 1977].*

- **Special hardware acceleration:**

- ▷ *Belle: a chess machine with special micro instructions for move generation, alpha-beta pruning and transposition table operations [Condon & Thompson 1982].*
 - ▷ *Deep Blue: custom VLSI FPGA chips for operating chess playing expert systems [Hsu et al 1995].*

- **The above's are very costly.**

Bit board techniques

- **Everyone can make use of the benefits of hardware acceleration now by smart usage of fast parallel bitwise operations provided by modern day CPU's.**
 - Intel CPU's: MMX and SSE [Intel 2021]
 - AMD: 3D Now! [AMD 2000]
- **Main technique**
 - Using bits to represent the board and pieces on the board.
 - ▷ *Transfer a board into an $n \times m$ picture*
 - ▷ *Transfer pieces into patterns of pixel rectangles*
 - These instructions are usually in the form of SIMD (single instruction multiple data).
 - Many are for image related operations.
 - May also make use of GPU.

Special instruction sets (1/2)

- Make use of fast parallel bitwise operations provided by modern day CPU's.
- Many different types
 - Find aggregated information
 - Parallel bit deposit and extract
 - ...
- Most of the instructions can be done using AND, OR, NOT operations, but can be done much faster using special CPU instructions.

Special instruction sets (2/2)

■ Find aggregated information:

- population count (POPCNT): the number of 1-bits in a “word”.
- leading/trailing zero count: LZCNT, TZCNT

■ Parallel bit deposit and extract

- Pack in sequence selected bits (PEXT): extract something out
 - ▷ *PEXT(W, Mask) returns a word by packing to the right those bits in the word W whose corresponding bits in the word Mask are equal to 1.*
 - ▷ *Example: PEXT(010110010, 010101010) extracts the four even numbered bit and then pack it to the right. Thus it returns 01100.*
- Distribute bits in sequence to selected locations (PDEP): deposit something into.
 - ▷ *PDEP(W, Mask) returns a word by sending the i th bit in the word W to the location addressed by the i th 1.*
 - ▷ *Example: PEXT(01100, 010101010) deposits the four bits to the even numbered location. Thus it returns 010100000.*

Example I

- In Go, how to find the number of empty intersections on the board?
 - Assume you have a long hardware word W of $19*2=38$ bits.
 - ▷ Use 19 words W_1, \dots, W_{19} to represent the rows.
 - Encoding: bits i and $i+1$ in W_j represents the status of the intersection at the i th column and j th row.
 - ▷ 00 means empty.
 - ▷ 10 means a black stone.
 - ▷ 01 means a white stone.
 - $\text{POPCOUNT}(W_j)$ gives the number of stones in the j th row.
 - $19 - \text{POPCOUNT}(W_j)$ gives the number of empty intersections in the j th row.

Example II

- In Chinese Dark Chess (CDC), how to find all revealed pieces of a color on the board?
 - Assume you have a long hardware word W of $32*3=96$ bits.
 - Encoding: bits $3i$, $3i + 1$, and $3i + 2$ in W_b represents the status of the i th cell on the board with regard to the black side. Similarly, we have W_r for the red side.
 - ▷ 000 means empty, or pieces of other color or dark.
 - ▷ xyz means the xyz th kind of piece where there are up to only 7 different kinds of pieces of a color. Thus the encodings used are from 1 to 7.
- Algorithm Find_PCES(color c)
 - // find all pieces of color c and put them in $m[]$
 - $i = 0$
 - while $W_c \neq 0$ do
 - ▷ $a = TZCNT(W_c)$ // count the number of trailing zeros
 - ▷ $a = a - a \bmod 3$ // find piece location
 - ▷ $W_c \gg= a$ // right shift a bits, find next piece
 - ▷ $m[i + +] = W_c \& 07$ // gives a piece of color c
 - ▷ $W_c \&= \sim(07)$ // mask off the lowest 3 bits
 - return m

Example III

■ In Othello, how to pack information of a column in a continuous sequence of cells?

- Problem:

- ▷ The board of Othello is a 8 by 8 rectangle. Assume we use a word to represent the board and use the row-major ordering, then cells in a column are non-adjacent.
- ▷ Example: The first (leftmost) column are numbered 0, 8, 16, 24, 32, 40, 48, and 56 in a row-major ordering.

- Encoding:

- ▷ Assume you have a hardware word W of 64 bits.
- ▷ W_b and W_w are words for black and white stones respectively.
- ▷ 0 means empty or other color.
- ▷ $(W_b|W_w)$ gives the word for empty spaces.

■ Algorithm `Find_Column(color c, int idx)`

- // pack information in column idx into adjacent bits
- // Loc is an array which gives the masks of bits in column idx
- $Mask = Loc[idx]$
- $W = PEXT(W_c, Mask)$
- return W

Comments

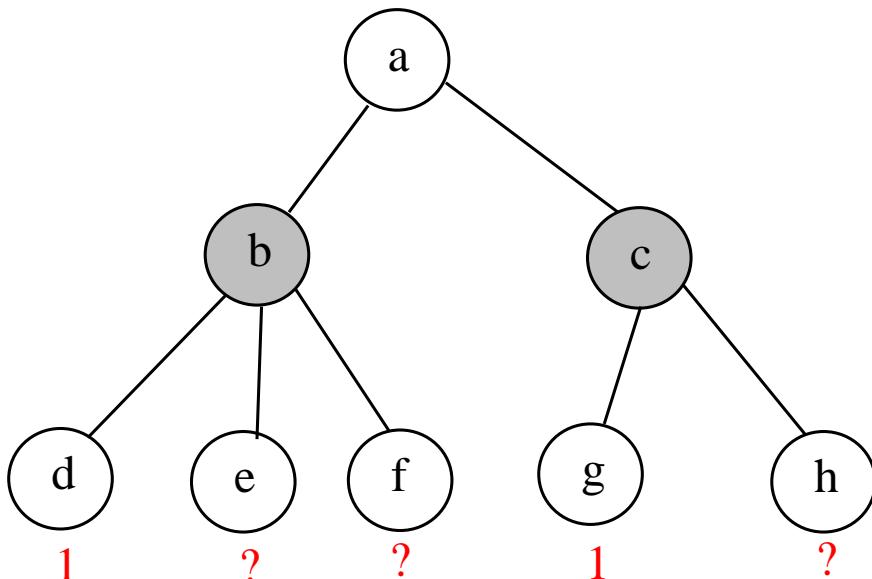
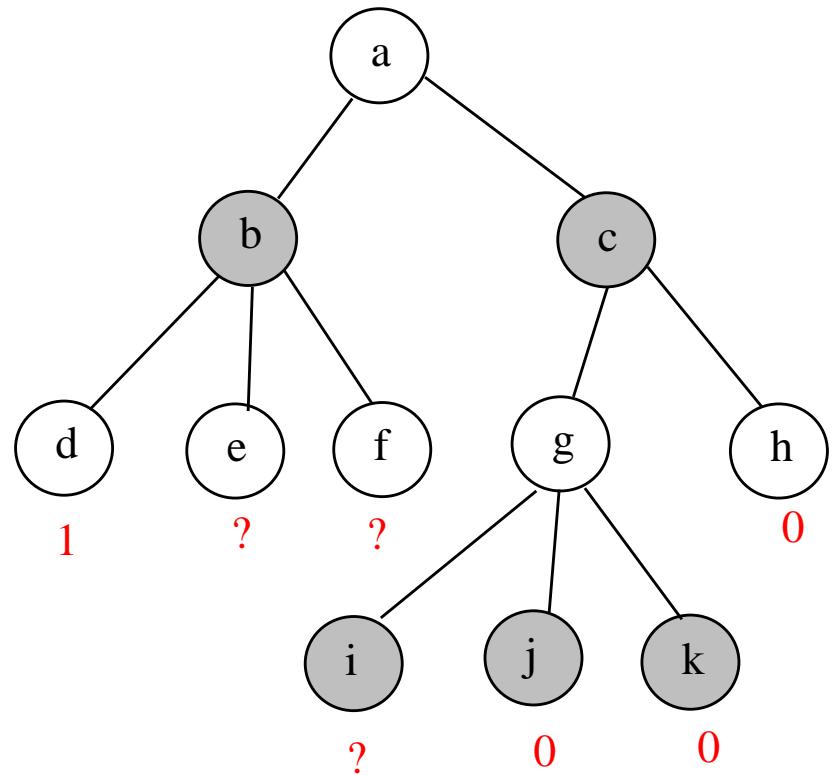
- Read carefully the instruction set of the CPU used to find out any special SIMD operations that are or aren't provided.
- The speedup is a lot, sometimes more than 50 times, if the encoding used is good [Browne 2014].

Proof number search

- Consider the case of a 2-player game tree with either 0 or 1 on the leaves.
 - win, or not win which is lose or draw;
 - lose, or not lose which is win or draw;
 - Call this a **binary valued game tree**.
- If the game tree is known as well as the values of some leaves are known, can you make use of this information to search this game tree faster?
 - The value of the root is either 0 or 1.
 - If a branch of the root returns 1, then we know for sure the value of the root is 1.
 - The value of the root is 0 only when all branches of the root returns 0.
 - An AND-OR game tree search.

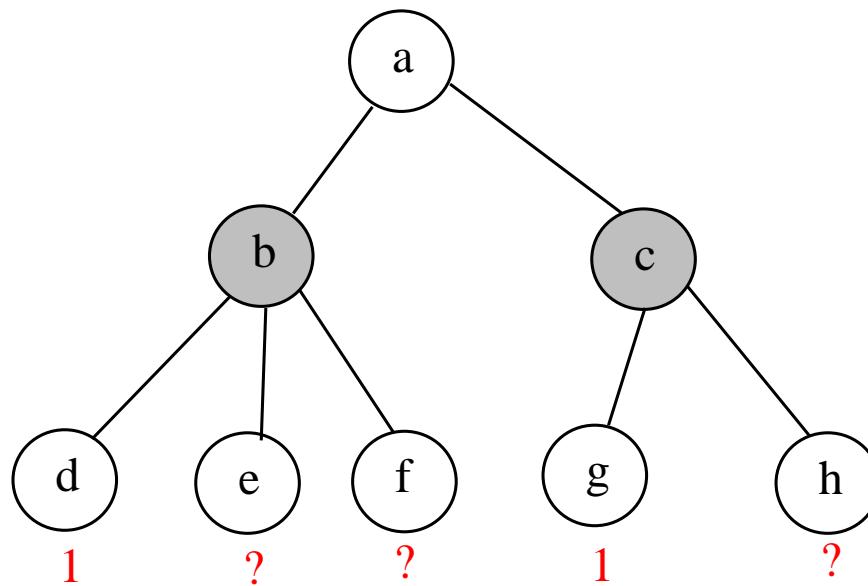
Which node to search next?

- A **most proving node** for a node u : a descendant node if its value is 1, then the value of u is 1.
- A **most disproving node** for a node u : a descendant node if its value is 0, then the value of u is 0.



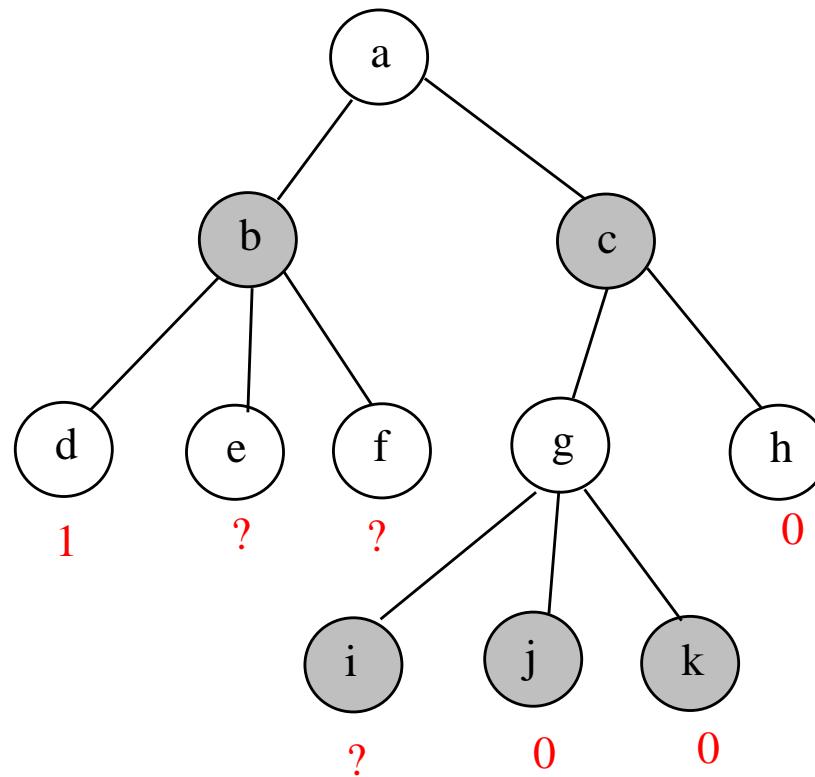
Most proving node

- Node h is a most proving node for a .



Most disproving node

- Node e or f is a most disproving node for a .

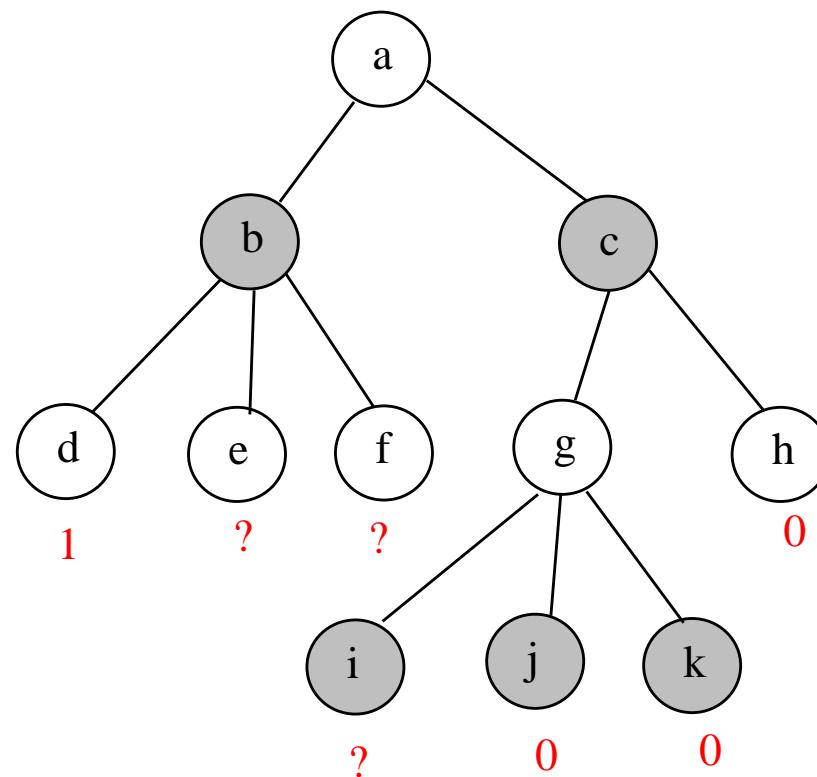


Proof or Disproof Number

- Assign a **proof number** and a **disproof number** to each node u in a binary valued game tree.
 - $proof(u)$: the minimum number of **leaves** needed to visited in order for the value of u to be 1.
 - $disproof(u)$: the minimum number of **leaves** needed to visited in order for the value of u to be 0.
- The definition implies a bottom-up ordering.

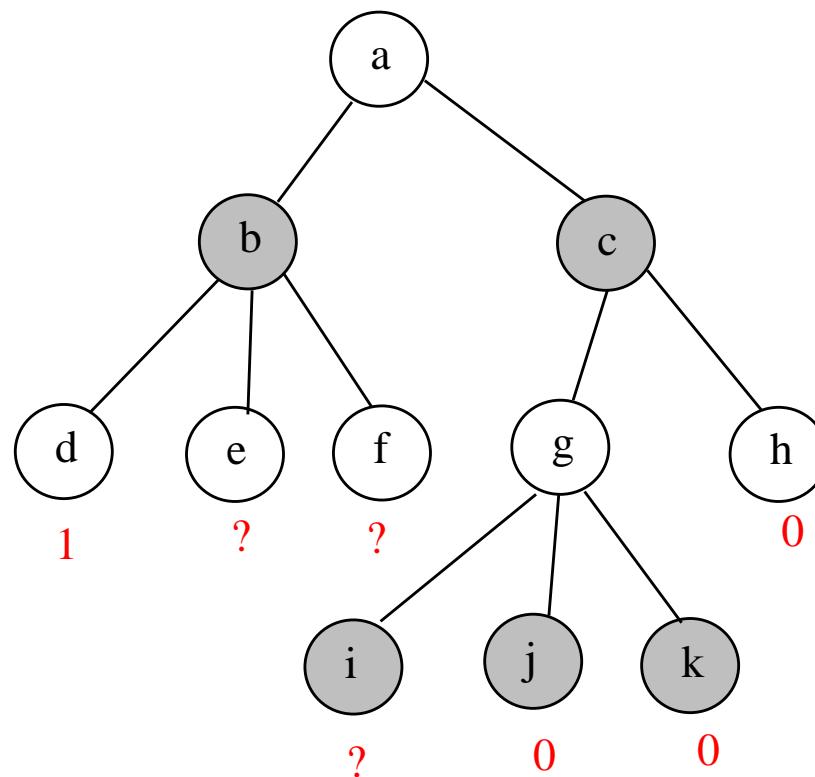
Proof number

- Proof number for the root a is 2.
 - ▷ Need to at least prove e and f .



Disproof number

- Disproof number for the root a is 2.
 - ▷ Need to at least disprove i , and either e or f .



Proof Number: Definition

- u is a leaf:
 - If $\text{value}(u)$ is unknown, then $\text{proof}(u)$ is the cost of evaluating u .
 - If $\text{value}(u)$ is 1, then $\text{proof}(u) = 0$.
 - If $\text{value}(u)$ is 0, then $\text{proof}(u) = \infty$.
- u is an internal node with all of the children u_1, \dots, u_b :
 - if u is a MAX node,

$$\text{proof}(u) = \min_{i=1}^{i=b} \text{proof}(u_i);$$

- if u is a MIN node,

$$\text{proof}(u) = \sum_{i=1}^{i=b} \text{proof}(u_i).$$

Disproof Number: Definition

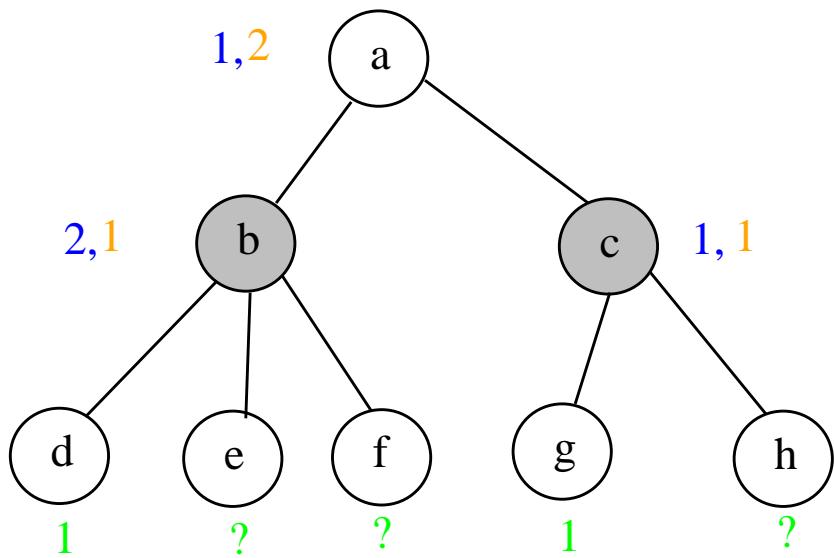
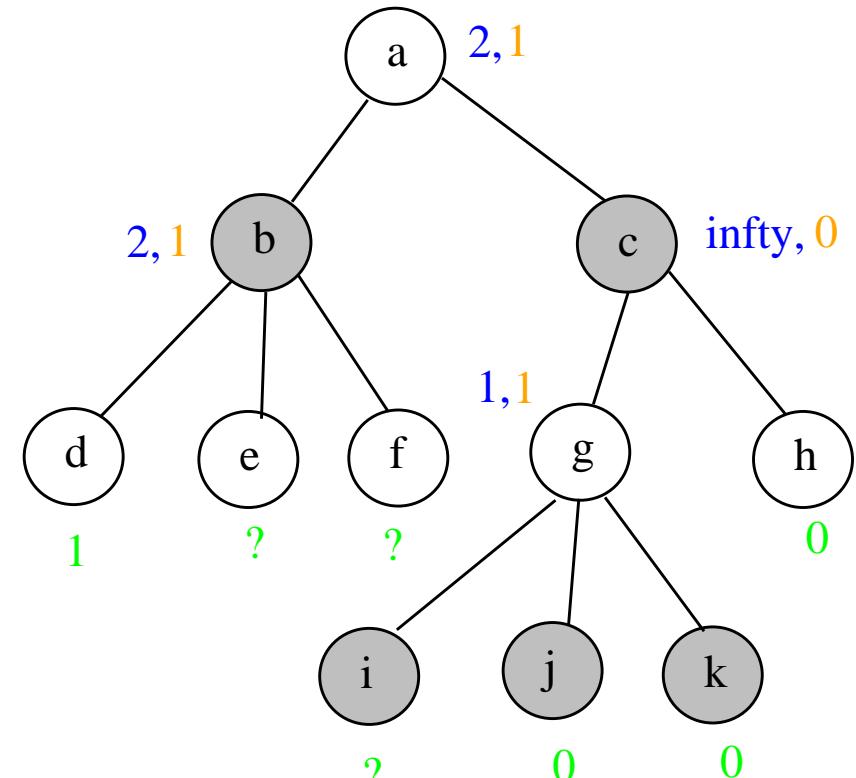
- **u is a leaf:**
 - If $value(u)$ is unknown, then $disproof(u)$ is cost of evaluating u .
 - If $value(u)$ is 1, then $disproof(u) = \infty$.
 - If $value(u)$ is 0, then $disproof(u) = 0$.
- **u is an internal node with all of the children u_1, \dots, u_b :**
 - if u is a MAX node,

$$disproof(u) = \sum_{i=1}^{i=b} disproof(u_i);$$

- if u is a MIN node,

$$disproof(u) = \min_{i=1}^{i=b} disproof(u_i).$$

Illustrations



How these numbers are used (1/2)

■ Scenario:

- For example, the tree T represents an open game tree or an endgame tree.
 - ▷ If T is an open game tree, then maybe it is asked to prove or disprove a certain open game is win.
 - ▷ If T is an endgame tree, then maybe it is asked to prove or disprove a certain endgame is win or loss.
 - ▷ Each leaf takes a lot of time to evaluate.
 - ▷ We need to prove or disprove the tree using as few time as possible.

- Depend on the results we have so far, pick a leaf to prove or disprove.

■ Goal: solve as few leaves as possible so that in the resulting tree, either $proof(root)$ or $disproof(root)$ becomes 0.

- If $proof(root) = 0$, then the tree is proved.
- If $disproof(root) = 0$, then the tree is disproved.

■ Need to be able to update these numbers on the fly.

How these numbers are used (2/2)

- Let $GV = \min\{proof(root), disproof(root)\}$.
 - GT is “prove” if $GV = proof(root)$, which means we try to prove it.
 - GT is “disprove” if $GV = disproof(root)$, which means we try to disprove it.
 - In the case of $proof(root) = disproof(root)$, we set GT to “prove” for convenience.
- From the root, we search for a leaf whose value is unknown.
 - The leaf found is a **most proving** node if GT is “prove”, or a **most disproving** node if GT is “disprove”.
 - To find such a leaf, we start from the root downwards recursively as follows.
 - ▷ If we have reached a leaf, then stop.
 - ▷ If GT is “prove”, then pick a child with the least proof number for a MAX node, and any node that has a chance to be proved for a MIN node.
 - ▷ If GT is “disprove”, then pick a child with the least disproof number for a MIN node, and any node that has a chance to be disproved for a MAX node.

PN-search: algorithm (1/2)

- **{* Compute and update proof and disproof numbers of the root in a bottom up fashion until it is proved or disproved. *}**
- **loop:**
 - **If** $proof(root) = 0$ **or** $disproof(root) = 0$, **then we are done, otherwise**
 - ▷ $proof(root) \leq disproof(root)$: we *try to prove it.*
 - ▷ $proof(root) > disproof(root)$: we *try to disprove it.*
 - $u \leftarrow root$; **{* find a leaf to prove or disprove *}**
 - **if we try to prove, then**
 - ▷ *while* u *is not a leaf do*
 - ▷ *if* u *is a MAX node, then*
 $u \leftarrow$ *leftmost child of* u *with the smallest non-zero proof number;*
 - ▷ *else if* u *is a MIN node, then*
 $u \leftarrow$ *leftmost child of* u *with a non-zero proof number;*
 - **else if we try to disprove, then**
 - ▷ *while* u *is not a leaf do*
 - ▷ *if* u *is a MAX node, then*
 $u \leftarrow$ *leftmost child of* u *with a non-zero disproof number;*
 - ▷ *else if* u *is a MIN node, then*
 $u \leftarrow$ *leftmost child of* u *with the smallest non-zero disproof number;*

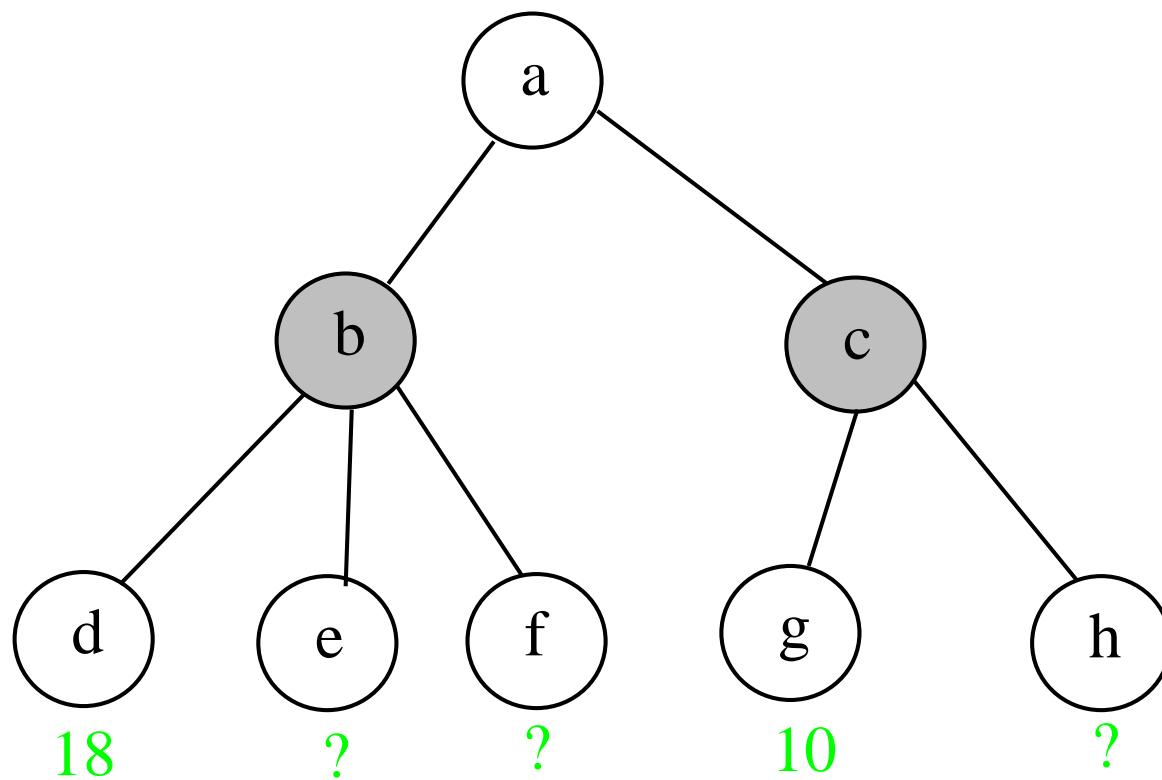
PN-search: algorithm (2/2)

- **{* Continued from the last page *}**
 - **solve u ;**
 - **repeat {* bottom up updating the values *}**
 - ▷ *update $proof(u)$ and $disproof(u)$*
 - ▷ *$u \leftarrow u$'s parent*
 - until u is the root**
 - **go to $loop$;**

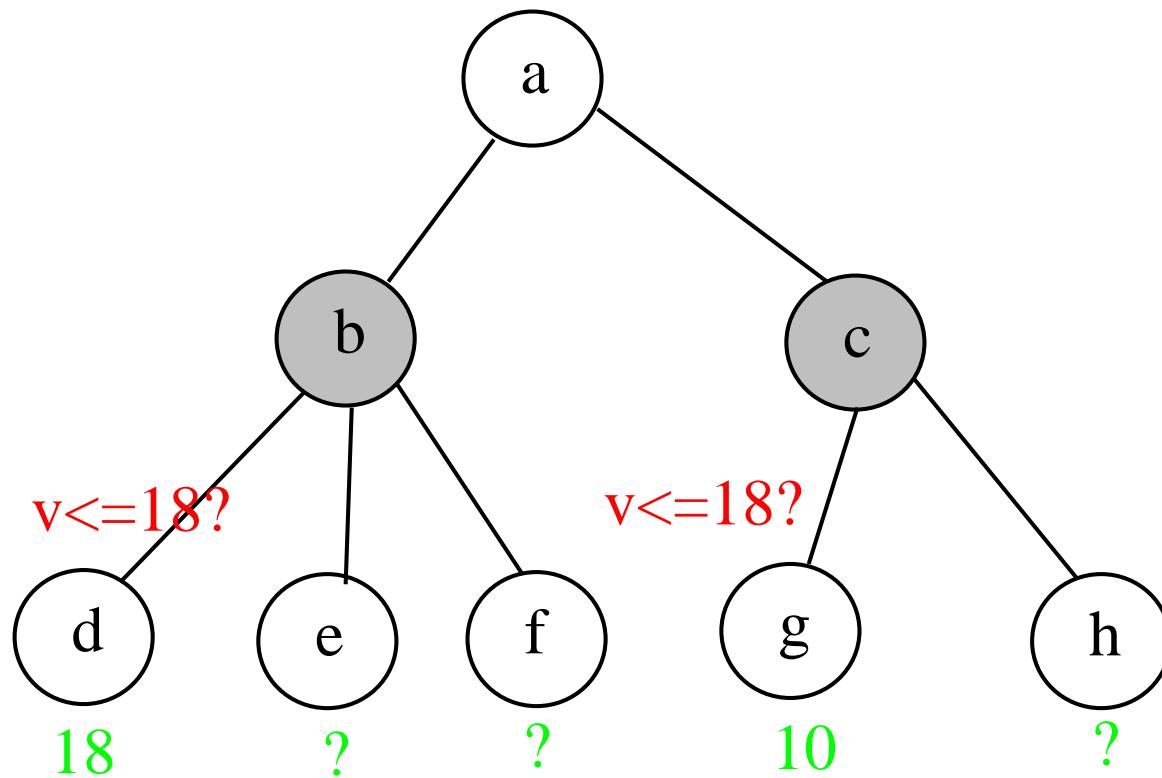
Multi-Valued game Tree

- The values of the leaves may not be binary.
 - Assume the values are non-negative integers.
 - Note: it can be in any finite countable domain.
- Revision of the proof and disproof numbers.
 - $proof_v(u)$: the minimum number of leaves needed to visited in order for the value of u to $\geq v$.
 - ▷ $proof(u) \equiv proof_1(u)$.
 - $disproof_v(u)$: the minimum number of leaves needed to visited in order for the value of u to $< v$.
 - ▷ $disproof(u) \equiv disproof_1(u)$.

Illustration



Illustration



Multi-Valued proof number

- **u is a leaf:**
 - If $value(u)$ is unknown, then $proof_v(u)$ is cost of evaluating u .
 - If $value(u) \geq v$, then $proof_v(u) = 0$.
 - If $value(u) < v$, then $proof_v(u) = \infty$.
- **u is an internal node with all of the children u_1, \dots, u_b :**
 - if u is a MAX node,

$$proof_v(u) = \min_{i=1}^{i=b} proof_v(u_i);$$

- if u is a MIN node,

$$proof_v(u) = \sum_{i=1}^{i=b} proof_v(u_i).$$

Multi-Valued disproof number

- **u is a leaf:**
 - If $value(u)$ is unknown, then $disproof_v(u)$ is cost of evaluating u .
 - If $value(u) \geq v$, then $disproof_v(u) = \infty$.
 - If $value(u) < v$, then $disproof_v(u) = 0$.
- **u is an internal node with all of the children u_1, \dots, u_b :**
 - if u is a MAX node,

$$disproof_v(u) = \sum_{i=1}^{i=b} disproof_v(u_i);$$

- if u is a MIN node,

$$disproof_v(u) = \min_{i=1}^{i=b} disproof_v(u_i).$$

Revised PN-search(v): algorithm (1/2)

- **{* Compute and update $proof_v$ and $disproof_v$ numbers of the root in a bottom up fashion until it is proved or disproved. *}**
- ***loop:***
 - **If** $proof_v(\text{root}) = 0$ **or** $disproof_v(\text{root}) = 0$, **then we are done, otherwise**
 - ▷ $proof_v(\text{root}) \leq disproof_v(\text{root})$: **we try to prove it.**
 - ▷ $proof_v(\text{root}) > disproof_v(\text{root})$: **we try to disprove it.**
 - $u \leftarrow \text{root}; \{*\text{ find a leaf to prove or disprove }*\}$
 - **if we try to prove, then**
 - ▷ **while** u **is not a leaf do**
 - ▷ **if** u **is a MAX node, then**
 - $u \leftarrow \text{leftmost child of } u \text{ with the smallest non-zero } proof_v \text{ number;}$
 - ▷ **else if** u **is a MIN node, then**
 - $u \leftarrow \text{leftmost child of } u \text{ with a non-zero } proof_v \text{ number;}$
 - **else if we try to disprove, then**
 - ▷ **while** u **is not a leaf do**
 - ▷ **if** u **is a MAX node, then**
 - $u \leftarrow \text{leftmost child of } u \text{ with a non-zero } disproof_v \text{ number;}$
 - ▷ **else if** u **is a MIN node, then**
 - $u \leftarrow \text{leftmost child of } u \text{ with the smallest non-zero } disproof_v \text{ number;}$

PN-search: algorithm (2/2)

- {* Continued from the last page *}
 - solve u ;
 - repeat {* bottom up updating the values *}
 - ▷ update $proof_v(u)$ and $disproof_v(u)$
 - ▷ $u \leftarrow u$'s parent
 - until u is the root
 - go to loop;

Multi-valued PN-search: algorithm

- When the values of the leaves are not binary, use an open value binary search to find an upper bound of the value.
 - Set the initial value of v to be 1.
 - $loop$: $PN\text{-search}(v)$
 - ▷ Prove the value of the search tree is $\geq v$ or disprove it by showing it is $< v$.
 - If it is proved, then double the value of v and go to $loop$ again.
 - If it is disproved, then the true value of the tree is between $\lfloor v/2 \rfloor$ and $v - 1$.
 - {* Use a binary search to find the exact returned value of the tree. *}
 - $low \leftarrow \lfloor v/2 \rfloor$; $high \leftarrow v - 1$;
 - **while** $low \leq high$ **do**
 - ▷ if $low = high$, then return low as the tree value
 - ▷ $mid \leftarrow \lfloor (low + high)/2 \rfloor$
 - ▷ $PN\text{-search}(mid)$
 - ▷ if it is disproved, then $high \leftarrow mid - 1$
 - ▷ else if it is proved, then $low \leftarrow mid$

Comments

- **Can be used to construct opening books.**
- **Appear to be good for searching certain types of game trees.**
 - Find the easiest way to prove or disprove a conjecture.
 - A dynamic strategy depends on work has been done so far.
- **Performance has nothing to do with move ordering.**
 - Performances of most previous algorithms depend heavily on whether good move orderings can be found.
- **Searching the “easiest” branch may not give you the best performance.**
 - Performance depends on the value of each internal node.
- **Commonly used in verifying conjectures, e.g., first-player win.**
 - Partition the opening moves in a tree-like fashion.
 - Try to the “easiest” way to prove or disprove the given conjecture.
- **Take into consideration the fact that some nodes may need more time to process than the other nodes.**

More research topics

- **Does a variation of a game make it different?**
 - Whether Stalemate is draw or win in chess.
 - Japanese and Chinese rules in Go.
 - Chinese and Asia rules in Chinese chess.
 - ...
- **Why a position is easy or difficult to human players?**
 - Can be used in tutoring or better understanding of the game.

Unique features in games

- Games are used to model real-life problems.
- Do unique properties shown in games help modeling real applications?
 - Chinese chess
 - ▷ *Very complicated rules for loops: can be draw, win or loss.*
 - ▷ *The usage of cannons for attacking pieces that are blocked.*
 - Go: the rule of Ko to avoid short cycles, and the right to pass.
 - Chinese dark chess: a chance node that makes a deterministic ply first, and then followed by a random toss.
 - EWN: a chance node that makes a random toss first, and then followed with a deterministic ply later.
 - Shogi: the ability to capture an opponent's piece and turn it into your own.
 - Chess: stalemate is draw.
 - Promotion: a piece may turn into a more/less powerful one once it satisfies some pre-conditions.
 - ▷ *Chess*
 - ▷ *Shogi*
 - ▷ *Chinese chess: the mobility of a pawn is increased once it advances twice, but is decreased once it reaches the end of a column.*

References and further readings (1/4)

- L. V. Allis, M. van der Meulen, and H. J. van den Herik. Proof-number search. *Artificial Intelligence*, 66(1):91–124, 1994.
- David Carmel and Shaul Markovitch. Learning and using opponent models in adversary search. Technical Report CIS9609, Technion, 1996.
- M. Campbell. The graph-history interaction: on ignoring position history. In *Proceedings of the 1985 ACM annual conference on the range of computing : mid-80's perspective*, pages 278–280. ACM Press, 1985.
- Akihiro Kishimoto and Martin Müller (2004). A General Solution to the Graph History Interaction Problem. AAAI, 644–648, 2004.
- Kuang-che Wu, Shun-Chin Hsu and Tsan-sheng Hsu "The Graph History Interaction Problem in Chinese Chess," Proceedings of the 11th Advances in Computer Games Conference, (ACG), Springer-Verlag LNCS# 4250, pages 165–179, 2005.

References and further readings (2/4)

- C.A. Luckhardt and K.B. Irani in "An algorithmic solution of N-person games", Proceedings of the Fifth National Conference on Artificial Intelligence (AAAI'86), p.158-162, AAAI Press.
- Nathan R. Sturtevan A Comparison of Algorithms for Multi-player Games Computers and Games, Third International Conference, CG 2002, Edmonton, Canada, July 25-27, 2002.
- Richard Korf "Multi-player alpha-beta pruning" in Artificial Intelligence 48 (1991), p.99-111.
- Condon, J.H. and K. Thompson, "Belle Chess Hardware", In Advances in Computer Chess 3 (ed. M.R.B.Clarke), Pergamon Press, 1982.
- Hsu, Feng-hsiung; Campbell, Murray; Hoane, A. Joseph, Jr. (1995). "Deep Blue System Overview" (PDF). Proceedings of the 9th International Conference on Supercomputing. 1995 International Conference on Supercomputing. Association for Computer Machinery. pp. 240--244

References and further readings (3/4)

- "Chess Skill in Man and Machine", *Chess 4.5 - The Northwestern University Chess Program*, L. Atkin & D. Slate, pp. 82—118, Springer-Verlag, 1977.
- Fuller, S.H, Gaschnig, J.G. and Gillogly, J.J. Analysis of the Alpha-beta Pruning Algorithm Carnegie Mellon University. Computer Science Department <https://books.google.com.tw/books?id=cOTmlwEACAAJ>, 1973.
- C. Browne. Bitboard methods for games *ICGA Journal*, vol. 37, no. 2, pp. 67–84, 2014
- Intel, Intel Architecture Instruction Set Extension and Future Features Programming Reference, 2021. https://community.intel.com/legacyfs/online/drupal_files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
- AMD, 3D Now! Technology manual, 2000. <https://www.amd.com/system/files/TechDocs/21928.pdf>

References and further readings (4/4)

- **Hung-Jui Chang and Cheng Yueh and Gang-Yu Fan and Ting-Yu Lin and Tsan-sheng Hsu (2021). Opponent Model Selection Using Deep Learning. Proceedings of the 2021 Advances in Computer Games (ACG).**