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Abstract

Tree node numbering

Exhaustive mini-max search and its neg-amax version

Ideas for cut off

o Alpha cut
o Beta cut

e direct, shallow and deep cut

Alpha-beta cut off
o Algorithm
e Proof of performance
> Categorize nodes of different cutting properties
e Variations

> One-sided
> Fail hard
> Fail soft



Introduction

Alpha-beta pruning is the standard searching procedure used for
solving 2-person perfect-information zero sum games exactly.
Definitions:

e A position p.

o The value of a position p, f(p), is a numerical value computed from
evaluating p.
>

> Positive values mean in favor of the root player.
> Negative values mean in favor of the opponent.

> Since it is a zero sum game, thus from the opponent’s point of view,
the value can be assigned — f(p).

e A terminal position: a position whose value can be decided.

> A position where win/loss/draw can be concluded.
> In practice, we encounter

e A position p has b legal moves pq,po, ..., pp.
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Tree node numbering

From the root, number a node in a search tree by a sequence

of integers a1.a2.4a3.ay4 * - -
e Meaning from the root, you first take the a;th branch, then the asth
branch, and then the asth branch, and then the a th branch - --
o The root is specified as an empty sequence.
o The depth of a node is the length of the sequence of integers specifying
it.
This is called “Dewey decimal system.”
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Mini-max formulation

max
min
max

min

Mini-max formulation:

‘ ) if b=0
F(p) = { mé’x{g(pl), LG (pp)Y ifb>0

/ f(p) if b=0
Gp) = { mfn{F’(pl)a--wF’(pb)} if b>0

e An indirect recursive formula with a bottom-up evaluation!
o Equivalent to AND-OR logic.
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Algorithm: Mini-max (native)

Algorithm F’(position p) // max node
e determine the successor positions p;,...,pp
o if b =0, then return f(p) else begin
> m = —o0O
> fort:=1 to b do
> t = G/(pi)
> if t > m then m :=t // find max value
e end;
o return m

Algorithm G’(position p) // min node
e determine the successor positions pi,...,ps
o if b =0, then return f(p) else begin
> m = o0
> for 1 :=1 to b do
> t:= F'(p;)
> if t < m then m :=t // find min value
e end;
e return m
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Mini-max: comments

A brute-force method to try all possibilities!
o May visit a position many times.

Depth-first search
o Move ordering is according to the order the successor positions are
generated.
o Bottom-up evaluation.
o Post-ordering traversal.

Q:
o lterative deepening?
o BFS?
o Other types of searching?
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Mini-max: depth/resource limited (1/2)

Search a max-node position p with a depth limit of depth.
Algorithm F(0’(position p, integer depth) // max node

o determine the successor positions p{,...,pp
e if b=0 // a terminal node
or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here
then return f(p)// current board value

else begin
> m := —oo // initial value
> for i := 1 to b do // try each child
> begin
> t := GO'(p;, depth — 1)
> if t > m then m :=t // find max value
> end
end

e return m
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Mini-max: depth/resource limited (2/2)

Search a min-node position p with a depth limit of depth.
Algorithm G0’(position p, integer depth) // min node

o determine the successor positions p{,...,pp
e if b=0 // a terminal node
or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here
then return f(p)// current board value

else begin
> m := oo // initial value
> for i := 1 to b do // try each child
> begin
> t := F0'(p;, depth — 1)
> if t < m then m :=t // find min value
> end
end

e return m
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Nega-max formulation

max /)
min
max
1 5 6 7 2 7
min
-1 -8

Nega-max formulation:
Let F'(p) be the greatest possible value achievable from position
p against the optimal defensive strategy.

h(p) if
f

0
Fip) _{ max{—F(p1),...,—F(pp)} i 0

Vol

b
b

h(p) = f(p) if depth of p is 0 or even
P) =19 —f(p) ifdepth of p is odd

> h(p) is the position’s value from the point of view of the player of p.
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Algorithm: Nega-max (native)

Algorithm F(position p)

e determine the successor positions p;,...,pp

e if b=0 // a terminal node

o then return h(p) else

e begin
> m = —00
> for i :=1 to b do
> begin
> t := —F(p;) // recursive call, the returned value is negated
> if t > m then m :=t // always find a max value
> end

o end

e return m

TCG: o~ Pruning, 20251017, Tsan-sheng Hsu (C)

17



Algorithm: Nega-max (depth/resource Iimited)

Algorithm FO(position p, integer depth)
e determine the successor positions p;,...,pp
e if b=0 // a terminal node
or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here
then return h(p) else

e begin
> m = —o0
> for i :=1 to b do
> begin
> t := —FO0(p;,depth — 1) // recursive call, the returned value is
negated
> if t > m then m :=t // always find a max value
> end
e end
e return m
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Nega-max: comments

Another brute-force method to try all possibilities.
e Use h(p) instead of f(p).

> Zero-sum game: if one player thinks a position p has a value of w, then
the other player thinks it is —w.
o De Morgan’s laws
> min{z,y, 2z} = —max{—x, —y, —z}.
> max{x,y,z} = —min{—z, —y, —z}.
o Watch out the code in dealing with search termination conditions.

> Leaf.

> Reach a given searching depth.

> Timing control.

> Other constraints such as the score is good or bad enough.

Notations:
e I’ means the Mini-max version.

> Need a G’ companion.
> FEasy to explain.

e F' means the Nega-max version.

> Simpler code.
> May be difficult to explain.
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Intuition for improvements

Branch-and-bound: using information you have so far to cut or

prune branches.
e A branch is cut means we do not need to search it anymore.
o If you know for sure or almost sure the value of your result is more
than x and the current search result for this branch so far can give you
no more than z,

> then there is no/almost no need to search this branch any further.

Two types of approaches
o Exact algorithms: through mathematical proof, it is guaranteed that
the branches pruned won’t contain the solution.

> Alpha-beta pruning: reinvented by several researchers in the 1950’s
and 1960’s.

> Scout.
D « o e

o Approximated heuristics: with a high probability that the solution won'’t
be contained in the branches pruned.

> Obtain a good estimation on the remaining cost.

> Cut a branch when it is in a very bad position and there is little hope
to gain back the advantage.
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Alpha cut-off

e On the max node which is the root:

>

v Vv

v

Assume you have finished exploring the branch at 1 and obtained the
best value from it as bound.

You now search the branch at 2 by first searching the branch at 2.1.
Assume branch at 2.1 returns a value that is < bound.

Then no need to evaluate the branch at 2.2 and all later branches of 2,
if any, at all.

The best possible value for the branch at 2 must be < bound.
Q: what should be the returned value for the branch at 27
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Beta cut-off

e On the min node 1:

>

v VvV V

\4

Assume you have finished exploring the branch at 1.1 and obtained the
best value from it as bound.

You now search the branch at 1.2 by first exploring the branch at 1.2.1.
Assume the branch at 1.2.1 returns a value that is > bound.

Then no need to evaluate the branch at 1.2.2 and all later branches of
1.2, if any, at all.

The best possible value for the branch at 1.2 is > bound.
Q: What should be the returned valued for the branch at 1.17
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Alpha and Beta cut-off

Alpha cut-off for a min node u:

e An elder brother w of u produces a lower bound V.

o A branch (descendant) of u produces an upper bound V,, for wu.

o If V; > V,, then there is no need to evaluate all later branches
(descendants) of w.

Beta cut-off for a max node v:
e An elder brother y produces an upper bound V,,.
o A branch (descendant) of u produces a lower bound V; for w.
o If V; > V,, then there is no need to evaluate all later branches
(descendant) of .
These are also called shallow cut-offs as compared to the deep
cut-offs to be introduced later.
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Degenerated case: direct alpha/beta cut-off

Assume in the case of zero sum two-player games, the maximum
value is maxr and the minimum value is min = —maz.

Direct alpha cut-off
e A branch of a min node u produces an upper bound V,, for wu.

o If V, = —max, then there is no need to evaluate all later branches of
U.
e Note when V, = —max, then V; > V,, for all V; since —max is the

minimum possible value.

Direct beta cut-off

e A branch of a max node v produces a lower bound V; for v.

o If V; = max, then there is no need to evaluate all later branches of v.

e Note when V; = max, then V;, > V,, for all V,, since max is the maximum
possible value.

Rationality: When one finds a way to win, stop thinking other
alternatives.

Direct cut-off is a very shallow cut-off.
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Alpha-beta pruning: shallow, Max (1/2)

Note: one-sided bound.
Algorithm F'1’(position p, value beta, integer depth)

e // max node
o determine the successor positions p{,...,ps
e if b=0 // a terminal node
or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here
o then return f(p) else
> m = —o0
> for i+ :=1 to b do
> t := G1'(p;, m, depth — 1)

> if t > m then m :=t // improve the current best value
> if m is max or m > beta then return(m) // direct or shallow beta
cut off

e end;
o return m // if nothing is over beta, then the largest one is returned

“m is max* refers to m is the maximum possible value, which
triggers a direct beta cut-off.
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Alpha-beta pruning: shallow, Min (2/2)

Note: one-sided bound.
Algorithm G1'(position p, value alpha, integer depth)

e // min node
o determine the successor positions p{,...,pp
e if b=0 // a terminal node
or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here
o then return f(p) else
> m = o0
> for i+ :=1 to b do
> t:= F1'(p;, m,depth — 1)

> if t < m then m :=t // improve the current best value
> if m is min or m < alpha then return(m) // direct or shallow alpha
cut off
e end;

o return m // if nothing is below alpha, then the smallest one is returned
“m is min* refers to m is the minimum possible value, which
triggers a direct alpha cut-off.
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Example of F'1" and G1’

Initial call: F'1’(root,0c0,depth)

e N — —OO

o call G1'(node 1,00,depth — 1)

> it 1S a terminal node
> return value 15

o t =1h;

> since t > m, m is now 15

o call G1'(node 2,15,depth — 1)

call F1'(node 2.1,15,depth — 2)
it is a terminal node; return 10

t = 10; since t < oo, m is now 10
bound is 15, m is 10, so we have

v VvV Vv V

an alpha cut off,

no need to call

F1'(node 2.2,10,depth — 2)
return 10

v
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Alpha-beta pruning: shallow, Nega-Max

Note: one-sided bound.
Algorithm F'1(position p, value bound, integer depth)

o determine the successor positions p{,...,pp
e if b=0 // a terminal node
or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here
o then return h(p) else
e begin
m := —00
for 1 :=1 to b do
begin
t:= —F1(p;, —m, depth — 1)
if t > m then m :=t // improve the current best value

if m is max or m > bound then return(m) // direct or shallow cut
off

end

v VvV VvV VvV V¥V

v

° end
e return m
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Deep alpha/beta cut-off

For alpha cut-off:

> For a min node u, an elder brother w produces a lower bound V).
> A branch of u produces an upper bound V,, for u.
> If V; > V,, then there is no need to evaluate all later branches of u.

Definition: For a node u in a tree and a positive integer g,
Ancestor(g, u) is the ancestor of u by tracing the parent’s link
g times.

Deep alpha cut-off:
e When a lower bound V] is produced at and propagated from u’s great
grand parent, i.e., Ancestor(3,u), or any Ancestor(2i + 1,u), i > 1.
e When an upper bound V,, is returned from the a branch of » and
V; > V,, then there is no need to evaluate all later branches of w.

Deep beta cut-off:

e When an upper bound V,, is produced at and propagated from u’s great
great grand parent, i.e., Ancestor(4,u), or any Ancestor(2i,u), i > 1.

e When a lower bound V] is returned from the a branch of v and V; >V,
then there is no need to evaluate all later branches of w.
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lllustration — Deep alpha cut-off
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Lower and upper bounds of a node

During searching, maintain two values alpha and beta for a node

u so that
e alpha is the current lower bound of the possible returned value;

> This means you have known a way to achieve the value alpha from
searching a max node that is u or an ancestor of u.

> This will be a pre-condition set for every min node v that is a descendent
of u.

> Node v lowers its beta value after searching a child.
> When v’s beta is lower than u’s alpha, we have an alpha cut.

o beta is the current upper bound of the possible returned value.

> This means your opponent have known a way to to achieve the value
beta from searching a min node that is u or an ancestor of u.

> This will be a pre-condition set for every max node v that is a descen-
dent of u.

> Node v raises its alpha value after searching a child.
> When v’s alpha is higher than u’s beta, we have a beta cut.

Q: Does it help at all to record how “bad” this pre-condition is
violated?
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Ildeas for refinements

If alpha = beta = val, then we have found the solution which is
val.

If during searching, we know for sure alpha > beta, then there
iIs no need to search any more in this branch.

e No value returned from this branch can be the solution we want.

o Backtrack until it is the case alpha < beta.
The two values alpha and beta are called the ranges of the

current search window.

e These values are dynamic.
o Initially, alpha is —oo and beta is oc.
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Alpha-beta pruning: Max (1/2)

Algorithm F2'(position p, value alpha, value beta, integer depth)

e // max node
o determine the successor positions p{,...,pp
if b=0 // a terminal node
or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here
then return f(p) else
> m := alpha
> fori::=1 to b do
> t := G2'(p;, m, beta, depth — 1)

> if t > m then m :=t // improve the current best value
> if m is max or m > beta then return(beta) // direct or general beta
cut off

e end;
e return m

“m is max" refers to m is the maximum possible value, which
triggers a direct beta cut-off.
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Alpha-beta pruning: Min (2/2)

Algorithm G2'(position p, value alpha, value beta, integer depth)

e // min node
o determine the successor positions p{,...,pp
if b=0 // a terminal node
or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here
then return f(p) else
> m := beta
> for ¢ :=1 to b do
> t := F2'(p;, alpha, m, depth — 1)
if t < m then m :=t // improve the current best value

>
> if m is min or m < alpha then return(alpha) // direct or general
alpha cut off

e end;
e return m

“m is min* refers to m is the minimum possible value, which
triggers a direct alpha cut-off.
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Example of F2' and G2

Initial call: F'2'(root,—o0,00,depth)

e N — —OO

o call G2'(node 1,—0c0,00,depth — 1)

> it 1S a terminal node
> return value 15

o t =1h;

> since t > m, m is now 15

o call G2'(node 2,15,00,depth — 1)

call F2'(node 2.1,15,00,depth — 2)
it is a terminal node; return 10

t = 10; since t < oo, m is now 10
alpha is 15, m is 10, so we have

v VvV Vv V

an alpha cut off,

no need to call

F?2'(node 2.2,15,10,depth — 2)
return 15

v
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Comments: F2' and G2’

The initial values for F'2’ and G2’ are alpha and beta respectively,
while they are —oo and oo for F'1” and G1'.

The returned values for F2' and G2’ when cut-off happens are
beta and ahpa respectively, while they are the values which
make the cut-off happen for F'1’ and G1'.

The return values cannot be outside of the range in between
alpha and beta though the tree may contain no value in this
range.
o If the initial values of alpha and beta are —oo and oo respectively, then
the value found must come from a leaf in the tree.

We call this type of search fail hard.
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A complete example

max
min
max

min
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A complete example

max

min

max

min

The solution is the same with or without the cuts as circled by
dashed lines.
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Alpha-beta pruning algorithm: Nega-max

Algorithm ['2(position p, value alpha, value beta, integer depth)

o determine the successor positions p{,...,pp
e if b=0 // a terminal node
or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here
o then return h(p) else
e begin
m := alpha
for 1 := 1 to b do
begin
t := —F2(p;, —beta, —m, depth — 1)
if t > m then m :=t // improve the current best value
if m is max or m > beta then return(beta) // general cut off
end

AYZRR VAR VAR VAR VARR VARR V4

° end
e return m

Comment: Watch out the changes of the bounds in the
recursive call.
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Comparing F'1 and F'2

F'1 is a degenerated version of F'2 using only one-sided bound.

o When something is over expected, then return this unexpected value
the moment it appears.

o When something is less expected, then continue searching.
o MAX node:

> (alpha,beta) = (—o0, beta).
e MIN node:
> (alpha,beta) = (alpha, 00).

Deep alpha-beta cut-offs are not possible for F'1 since it uses
only one-sided bounds!

o Three types of cut-off: direct, shallow and deep.
o They are called general alpha-beta cut-offs.

F'1 is only an intermediate version. From now on, we focus on
F2.

TCG: a-f Pruning, 20251017, Tsan-sheng Hsu (C) 40



Examples (1/4)

max
min

max

®
max
min
max

min
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Examples (2/4)

max
min

max

®
max
min
max

min
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Examples (3/4)

max

min

max
7 2 7 1 5 6
min

8 1
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Examples (3/4)
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max

min
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Examples (4/4)

max

min

max

min

max

min

max

min
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What happened in the previous examples

Assume we run 2" and G2’ in the order of from left to right in
a game tree.

The tree on the top and the tree on the bottom are the same
game tree with different search orderings.

e A tree has a fixed searched value no matter what search orderings are
used.

We can prune 4 nodes in the tree on the top, but cannot prune
any node in the tree on the bottom.
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Lessons from the previous examples

It looks like for the same tree, different move orderings give
very different cut branches.

It looks like if a node can evaluate a child with the best possible

outcome earlier, then it has a chance to cut earlier.

e For a min node, this means to search the child branch that gives the
lowest value first.

o For a max node, this means to search the child branch that gives the
highest value first.

Comments:
o Watch out the returned value v for a node p when alpha or beta cut-off
happens.

> It is a bound for p, not its best possible value.

o It is impossible to always know which the best branch is; otherwise we
need to always do a brute-force exhaustive search.

Q: In the best case scenario, how many nodes can be cut?
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Analysis of a possible best case

Definitions:
o A path in a search tree is a sequence of numbers indicating the branches
selected in each level using the Dewey decimal system.

e A position is denoted as a path a;.as. - .ay from the root.

o A position a;.as.--- .ay is critical if
> a; = 1 for all even values of © or
> a; = 1 for all odd values of © or
> it is the root.

e Note: as a special case, the root is critical.
Examples:
> 2.1.4.1.2, 1.3.1.5.1.2, 1.1.1.2.1.1.1.3 and 1.1 are critical
> 1.2.1.1.2 is not critical
e The number of 1’'s in a path has little to do with whether it is critical
or not.
> A critical node has at least |¢/2]| 1’s, but the reverse is not true.

Q: Why does the root need to be critical?
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Perfect-ordering tree

A perfect-ordering tree:

F(al- e CLE) — { h(al- T -Cbe) if a1.--- .ay is a terminal

1 —F(ay.--- .ap.1) otherwise

o The first successor of every non-terminal position gives the best possible
value.
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Theorem 1

Theorem 1: F'2 examines precisely the critical positions of a
perfect-ordering tree.

Proof sketch:
o Classify the critical positions, a.k.a. nodes, into different types.

> You must evaluate the first branch from the root to the bottom.

> Alpha cut off happens at odd-depth nodes as soon as the first branch

of this node is evaluated.
> Beta cut off happens at even-depth nodes as soon as the first branch of

this node is evaluated.
o For nodes of the same type, find common characteristics causing or
not causing prunings to happen.

50
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Types of nodes

Classification of critical positions a;.as.--- .a;.--- .ay where j is
the least index, if exists, such that a; # 1 and ¢ is the last

index.

e 7 is the anchor in the analysis.
o Definition: let /51(a;) be a boolean function so that it is O if it is not
the value 1 and it is 1 if it is.

> We call this I S1 parity of a number.

o If 5 exists and 7 > j, then

> a;+1 = 1 because this position is critical and thus the IS1 parities of a;
and a;, are different.

o Since this position is critical, if a; # 1, then a;, = 1 for any A such that
h — 7 is odd.

> aj+1 must be 1.

We now classify critical nodes into three types.
e Nodes of the same type share some common properties.
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lllustration —

critical nodes
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Type 1 nodes

type 1: the root, or a node with all the q; are 1;
e This means the anchor ; does not exist.
e Nodes on the leftmost branch.
e The leftmost child of a type 1 node except the root.

In a DFS-like searching, type 1 nodes are examined first.

type 1

TCG: a-f Pruning, 20251017, Tsan-sheng Hsu (C)
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Type 2 nodes

Classification of critical positions a;.as.--- .a;.--- .ay where j is
the least index such that a; # 1 and / is the last index.
The anchor ; exists.
Type 2: / — j is zero or even;
o type 2.1: / — 5 = 0 which means ¢ = j.

> It is in the form of 1.1.1.--- .1.1.1.ay and a, # 1.
> The non-leftmost children of a type 1 node.

o type 2.2: /— 5 > 0 and is even.
> It is in the form of 1.1.--- .1.1.a;.1.a42. -+ .ar—2.1.ay.

> Note, we will define 1.1.--- .1.1.a;.1.a42. -+ .a¢—2.1 to be a type 3
node. This means all of the children of a type 3 node.

Can a, be 1 or non-1 for a type 2 node?
Can ay be 1 or non-1 for a type 2.1 node?
e Can ay be 1 or non-1 for a type 2.2 node?
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Type 3 nodes

Classification of critical positions a;.as.--- .a;.--- .ay where j is
the least index such that a; # 1 and / is the last index.

The anchor ; exists.

Type 3: / — j is odd;
e a; #1 and ¢ — j is odd

> Since this position is critical, the 1S1 parities of a; and a, are different.
p— ay = 1
— aji41 = 1

e It is in the form of
> 1.1.--- .1.a,j.1.aj+2.1. o+ l.ap_q.1.
o The leftmost child of a type 2 node.
type 3.1: /— 5 = 1.
> It is of the form 1.1.--- .1.a;.1
> The leftmost child of a type 2.1 node.
o type 3.2: /— 5 > 1.
> It is of the form 1.1.--- .1.a;.1.a42.1.--- .1l.ay—1.1
> The leftmost child of a type 2.2 node.

Q: Can a, be 1 or non-1 for a type 3 node?
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Comments

Nodes of the same type have common properties.

These properties can be used in solving other problems.

o Example: Efficient parallelization of alpha-beta based searching algo-
rithmes.

Main techniques used:

e For each non-1 number, any number appeared later and is odd distance
away must be 1.

> You cannot have two consecutive non-1 numbers in the ID of a critical
node.
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Type 2.1 nodes

Classification of critical positions a;.as.--- .a;.--- .ay where j is
the least index such that a; # 1 and / is the last index.

type 2: / — j is zero or even;
o type 2.1° /— j = 0.
> Then ¢ = j.
> It is of the form of 1.1.1.--- .1.1.1.a, and ay # 1.
> The non-leftmost children of a type 1 node.

typel

& 5 A%y

By
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Type 3.1 nodes

Classification of critical positions a;.as.--- .a;.--- .ay where j is
the least index such that a; # 1 and / is the last index.
type 3: / — j is odd;
o type 3.1: 7/ — 5 = 1.
> Then ¢ = j + 1.
> It is of the form 1.1.--- .1.a;.1 and a, # 1.
> The leftmost child of a type 2.1 node.

typel

vpe3y/ é)% {,“4 % <|||4|» %O

LN
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Type 2.2 nodes

Classification of critical positions a;.as.--- .a;.--- .ay where j is
the least index such that a; # 1 and / is the last index.

type 2: / — j is zero or even;
o type 2.2: /— 5 > 0 and is even.
> The IS1 parties of a; and a;4; are different.
— Since a; # 1, aj11 = 1.
> (L —1) — j is odd:
— The IS1 parties of ay—1 and a; are different.
—> Since a; # 1, ay_; = 1.

> It is in the form of 1.1.--- .1.1.a;.1.a42. -+ .ar—2.1.ay.
> Note, 1.1.--- .1.1.a;.1.aj42. -+ .ar—2.1 is a type 3 node.
> All of the children of a type 3 node.
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lllustration: Type 2.2 nodes
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Type 3.2 nodes

Classification of critical positions a;.as.--- .a;.--- .ay where j is
the least index such that a; # 1 and / is the last index.
type 3: / — j is odd;
o type 3.2: / — 5 > 1.
> Since ¢ — j is odd, £ — 5 > 3.

> It is of the form 1.1.--- .1.a;.1.a42.1.--- .1.ay—1.1
> 1.1.--- .1l.aj.l.aj42.1.--- .1.ay—1 is a type 2.2 node since { —1 — j is even
and > 2.

> The leftmost child of a type 2.2 node.
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lllustration: Type 3.2 nodes
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lllustration of all nodes

type 1
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lllustration of all nodes
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lllustration of all nodes
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Illustration of all nodes
type 1
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Illustration of all nodes
type 1
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Illustration of all nodes
type 1

/i ét\ypeilllf/j)k) MTE K

(i

ERS

e2.2
3.2
pEi.Z

P .

CG: a-B Pruning, 20251017, Tsan-sheng Hsu

68



Illustration of all nodes
type 1
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Theorem 1: Proof sketch (1/2)

Using an inductive argument to prove all and also only critical
positions are examined.

Property (invariant) I: A type 1 position p is examined by calling
F2(p, —00, 00, depth)

o p's first successor p; is of type 1

o F(p)=—F(p1) # £

e p’'s other successors po, ..., p, are of type 2

o p;y © > 1, are examined by calling —F2(p;, —oo, —F(p1), depth — 1)
Property (invariant) Il: A type 2 position p is examined by
calling ['2(p, —oo, beta, depth) where —oo < beta < F(p)

o p's first successor p; is of type 3 and is examined

o F'(p) =—F(p1) ]
o p’'s other successors po,...,p, are not examined due to cut off
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Theorem 1: Proof sketch (2/2)

Property (invariant) Ill: A type 3 position p is examined by
calling F'2(p, alpha, oo, depth) where co > alpha > F(p)

e p’s successors pi,...,py are of type 2
o they are examined by calling

> —F2(p1, —oo, —alpha, depth — 1),

> —F2(p2, —00, —mq,depth — 1), ...,

> —F2(p;, —o00, —m,;_1,depth — 1)

> where mg = alpja, m; = max{—F2(p;, —oo, —m,;_1,depth — 1), m;_1},
1> 1
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Properties of Theorem 1

To cut off a subtree rooted at a node u entirely using alpha-beta

based algorithms, at the very least, we need to know the values
of

e one of u’s elder sibling, and
o one of v’ elder sibling where v is the parent of .

To know the value of a node rooted at a subtree, the subtree’s
left-most branch must be examined at the very least.

Branches of a vertex that are examined
o leftmost branch only
> type 2.1, whose leftmost child is type 3.1
> type 2.2, whose leftmost child is type 3.2
e all branches

> type 1
> type 3.1
> type 3.2
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Analysis: best case

Corollary 1: Assume each position has exactly b successors

o The number of positions examined by the alpha-beta procedure on
level i is exactly
pli/2l 4 pli/2] _ 1.

Proof:
o There are bl/2] sequences of the form a;.--- .a; with 1 < a; < b for all
¢ such that a; = 1 for all odd values of ;.
o There are b!"/2] sequences of the form a;.--- .a; with 1 < a; < b for all
¢ such that a; = 1 for all even values of ..
o We subtract 1 for the sequence 1.1.--- .1.1 which is counted twice.

Total number of nodes visited is

14
S bl plis2) g,
1=0
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Comments for the best case

Assume we can afford to spend 7' time in searching a game
tree with an average branching factor b.

From 7' and the speed of your implementation, you can estimate
the total number of nodes N that can be searched.

From b and N, you can set the search depth limit d as follows

b = N.

This means you can search to the depth of d using a brute force
algorithm.

Using alpha-beta pruning in the best case you can afford to
search up to a depth of about 2-d — 1 within the time 7.
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Analysis: average case

Random game tree . N
e A random game tree be generated in such a way that each position on

level 5 has
> a probability q; of being nonterminal and
> an average of b; successors.

o Expected number of positions on level 7 is by X by X --- X by_;
Corollary 2: Expected number of positions on level / examined
by an alpha-beta procedure assumed the random game tree is
perfectly ordered is

boq1b2qs3 - - - by—2qe—1 + qob1gabs - - - qr—2be—1 — qoq1 - - - qe—1if £ is even;

boq1baqs - - - qe—obe—1 + qob1gobs - - - by—_2qe—1 — qoq1 - - - qe—11f £ is odd

Proof sketch:
o If = is the expected number of positions of a certain type on level j,

then = x b; is the expected number of successors of these positions,
and = x g; is the expected number of “numbered 1" successors.

o The above numbers equal to those of Corollary 1 when ¢; = 1 and
b =0 for 0 < j < /.
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Comments for the average case (1/2)

[Knuth & Moore 1975] proved that with only the shallow
alpha-beta pruning across two adjacent levels, the effective
branching factor in the average case is O(b/logb) where b is the
average branching factor.

e That is, in average, alpha-beta only searches one branch every logb
branches encountered.

[Fuller et al 1975] proved that together with deep alpha-beta
pruning, the effective branching factor in the average case is
~ b%™ where b is the average branching factor.

o This means O(b/b"?) which is much better asymptotically than
O(b/ logb).
e Much more performance come from deep cut than shallow ones.
Direct alpha-beta pruning makes more cuts in the endgame
phase than in the open game phase.
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Comments for the average case (2/2)

Assume you can afford to seraph b nodes in time 7' using brute
force methods.
o Note: given a tree of depth d and branching factor b, it has b? nodes.

In average, alpha-beta only searches one branch for every "%
branches encountered.
o Using alpha-beta pruning in the average case you can afford to search
up to a depth of about ; - d within the time 7.

However, within time 7T,
o without deep alpha-beta pruning, the searching depth is only about

log b - d, which means a lot of cut offs come from deep prunings;
log b—loglog b

In the best case, you can search up to the depth of 2-d — 1.

In practice, using a good move ordering heuristic plus other
heuristics and techniques, Chinese chess programs can almost
achieve a constant effective branching factor of about 3.
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Perfect ordering is not always the best

Intuitively, we may “think” alpha-beta pruning would be most

effective when a game tree is perfectly ordered.

o That is, when the first successor of every position is the best possible

move.
e This is not always the case!

¢ o

Truly optimum order of game trees traversal is not obvious.

TCG: a-f Pruning, 20251017, Tsan-sheng Hsu (C)
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When is a branch pruned?

Assume a node r has two children v and v with u being visited

before v using some move ordering.
e Further assume u produced a new bound bound.

Assume node v has a child w.

o If the value new returned from w can cause a range conflict with bound,
then branches of v later than w are cut.

This means as long as the “relative” ordering of u and v is

good enough, then we can have a cut-off.
e There is no need to have a perfect ordering to enable cut-off to happen.
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Theorem 2

Theorem 2: Alpha-beta pruning is optimum in the following
sense:

e Given any game tree and any algorithm which computes the value of
the root position, there is a way to permute the tree

> by reordering successor positions if necessary;

e so that every terminal position examined by the alpha-beta method
under this permutation is examined by the given algorithm.

e Furthermore if the value of the root is not oo or —o0, the alpha-beta
procedure examines precisely the positions which are critical under this
permutation.
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Variations of alpha-beta search

Initially, to search a tree with the root r by calling
F2(r,—oo0,+00,depth).
e What does it mean to search a tree with the root r by calling
F2(r,alpha,beta,depth)?

> To search the tree rooted at r requiring that the returned value to be
within alpha and beta.

Searching with a pre-assigned window (alpha, beta):

o Failed-high means the correct value is larger than or equal to its upper
bound beta.

o Failed-low means the correct value is smaller than or equal to its lower
bound alpha.

Variations: Always finds the correct answer according to the
Nega-Max formula.

o Brute force Nega-Max version: F'/F(

e One-sided shallow alpha-beta cut (Nega-Max) version: F'l

e Fail hard general alpha-beta cut (Nega-Max) version: F2
o Fail soft general alpha-beta cut (Nega-Max) version: F'3
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Shallow, one-sided, Nega-Max

Algorithm F'1(position p, value bound, integer depth)

o determine the successor positions p{,...,pp
e if b=0 // a terminal node
or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here
o then return h(p) else
e begin
m = —00
for 1 :=1 to b do
begin
t:= —F1(p;, —m, depth — 1)
if t > m then m :=t // improve the current best value

if m is max or m > bound then return(m) // direct or shallow cut
off, return m that is > bound

> end

v VvV VvV VvV VvV VvV

e end
e return m
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Properties of F'1

Assumptions:
e pis not a leaf
e depth = o0
o there is no additional resource or knowledge constants

Recall that F'(p) is the true value of p.
F1(p, bound, depth) = F(p) if F(p) < bound

F1(p, bound, depth) > bound if F(p) > bound
o Note that F(p) > F'1(p, bound, depth) in this case.

F'1(p, 00, depth) = F(p)
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Comments: F'l

F1(p,bound, depth): find the best possible value according to a
nega-max formula for the position p with the constraints that

> If F(p) < bound, then F1(p, bound, depth) returns F(p).

> If F(p) > bound, then F1(p,bound,depth) returns a value > bound from a
terminal position whose value is > bound.

An intermediate version.

> One-sided bounded. direct or shallow cut-off.

> Always return something better than the expected bound, but never some-
thing worse!!

> FEasier to find the branch where the returned value is coming from.
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Fail hard, general, Nega-max

Requiring alpha < beta; nega-max version
Algorithm ['2(position p, value alpha, value beta, integer depth)

e determine the successor positions pi,...,pp
e if b=0 // a terminal node
or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here
o then return h(p) else
e begin
m := alpha // hard initial value
for 1 :=1 to b do
begin
t .= —F2(p;, —beta, —m, depth — 1)
if t > m then m :=t // the returned value is “used”
if m is max or m > beta then return(beta) // general cut off
end

AVARR VAR VAR VAR VAR VAR V/

e end
return m // if nothing is over alpha, then alpha is returned
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Properties of F'2

Assumptions:
e alpha < beta
e pis not a leaf
o depth = o0
o there is no additional resource or knowledge constraints

Recall that F'(p) is the true value of p.
F2(p, alpha, beta, depth) = alpha if F(p) < alpha

2(p, alpha, beta, depth) = F(p) if alpha < F(p) < beta
F2(p, alpha, beta, depth) = beta if F(p) > beta

2(p, —00, +00, depth) = F(p)
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Comments

F2(p, alpha, beta, depth): find the best possible value according
to a nega-max formula for the position p with the constraints
that

> If F(p) < alpha, then F2(p,alpha,beta, depth) returns with the value alpha
from a terminal position whose value is < alpha.

> If F(p) > beta, then F2(p, alpha, beta, depth) returns the value beta from a
terminal position whose value is > beta.

The meanings of alpha and beta during searching:

> For a max node: the current best value is at least alpha.
> For a min node: the current best value is at most beta.

F'2 always finds a value that is within alpha and beta.

> Both bounds are hard, i.e., cannot be violated.

> When it is failed high or failed-low, we do not know where the values come
from.

Q: What are the differences between ['1(p,oc,depth) and
F2(p, —00,00,depth)?
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F2: Example

window
(4000,5000)

return min{ 5000 .max{ 4000 ,200,v}}

—_—_—— —

|
|
|
|
!
Y

9 NG

a
F2(Q,-5000,-4000,d) _v

As long as the value of the leaf node W is less than the current
alpha value, the returned value of A will be alpha.

If the value of the leaf node W is greater than the current beta
value, the returned value of A will be beta.
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Version F'3

Intuition
e MAX node:

> Same with F'2: when the value is more than beta, report this value,
not just beta.

> Additional: if the value is less than alpha, report his value being a very
bad node for a max node.

> Next time, this fact can be used to have a faster cut off.

e MIN node:

> Same with F'2: when the value is less than alpha, try to report this
value, not just alpha.

> Additional: if the value is more than beta, report his value being a very
bad node for a min node.

> Next time, this fact can be used to have a faster cut off.
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Alpha-beta pruning: Fail soft, Max (1/2)

Algorithm F'3'(position p, value alpha, value beta, integer depth)

o // max node
o determine the successor positions p{,...,pp
e if b=0 // a terminal node
or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here
o then return f(p) else
begin
m := —oo // soft initial value
for 1 :=1 to b do
begin
t := G3'(p;, max{m, alpha}, beta, depth — 1)
if t > m then m :=t // the returned value is “used”
if m is max or m > beta then return(m) // beta cut off
end

AYZRR VAR VAR VAR VARR VARR V4

o end
e return m
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Alpha-beta pruning: Fail soft, Min (2/2)

Algorithm G3'(position p, value alpha, value beta, integer depth)

o // min node
o determine the successor positions p{,...,pp
e if b=0 // a terminal node
or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

o then return f(p) else

begin

> m := oo // soft initial value
> for i :=1 to b do
> begin
> t := F3'(p;, alpha, min{m, beta’}, depth — 1)
> if t < m then m :=1t // the returned value is “used”
> if m is min or m < alpha then return(m) // alpha cut off
> end

e end

e return m
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Example of '3’ and G3’

Initial call: F'3'(root,—o0,00,depth)

e N — —OO

o call G3'(node 1,—0c0,00,depth — 1)

> it 1S a terminal node
> return value 15

o t =1h;

> since t > m, m is now 15

o call G3'(node 2,15,00,depth — 1)

call F3'(node 2.1,15,00,depth — 2)
it is a terminal node; return 10

t = 10; since t < oo, m is now 10
alpha is 15, m is 10, so we have

v VvV Vv V

an alpha cut off,

no need to call

F3'(node 2.2,15,10,depth — 2)
return 10

v
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Alpha-beta pruning: Fail soft, Nega-Max

Algorithm ['3(position p, value alpha, value beta, integer depth)

o determine the successor positions p{,...,pp
e if b=0 // a terminal node
or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here
then return h(p) else
e begin

m := —oo // soft initial value
for 1 :=1 to b do
begin
t := —F3(p;, —beta, — max{m, alpha}l, depth — 1)
if t > m then m :=t // the returned value is “used”
if m is max or m > beta then return(m) // cut off
end

AYZRR VAR VARR VAR VARR VARR V4

o end
e return m
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Properties of F'3

Assumptions

e alpha < beta

e pis not a leaf

e depth = o0

e there is no additional resource or knowledge constants
Recall that F'(p) is the true value of p.
F3(p, alpha, beta, depth) < alpha if F(p) < alpha

o Note that F(p) < F3(p, alpha, beta, depth) in this case.
F3(p, alpha, beta, depth) = F(p) if alpha < F(p) < beta
F3(p, alpha, beta, depth) > beta if F(p) > beta

o Note that F(p) > F3(p, alpha, beta, depth) in this case.

F3(p, —00, +00, depth) = F(p)
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Comments: F'3

F'3 finds a “better” value when the value of the tree searched

is out of the search window.
o Better means a tighter and more informatic bound.
> The bounds are soft, i.e., can be violated.

o When it is failed-high, '3 normally returns a value that is higher than
that of F'1 or F2.

> Never higher than that of F'!

e When it is failed-low, F'3 normally returns a value that is lower than
that of F'1 or F2.

> INever lower than that of F'!

You can always find a leaf in a search tree I' with the value
F3(T).

Example: assume you search the root 7, a MAX node, with a
very high alpha value and actually F'(r) << alpha.

o F'2(r,alpha, beta, o) returns alpha.

o I'3(r,alpha,beta,c0) may return a value < alpha which is more infor-
matic than returning alpha.
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Fail soft version (F3): Example

window
(4000,5000)

return max{200,v}

—_—,——— —

|
|
|
|
|
\

-200

Let the value of the leaf node W be .
If u < alpha, then the returned value of A will be at least w.
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Comparisons between F2 and F'3

Both versions find the corrected value v if v is within the
window (alpha, beta).
Both versions scan the same set of nodes during searching.

> If the returned value of a subtree is decided by a cut, then F'2 and F'3 return
the same value.

F'3 provides more information when the true value is out of the

pre-assigned search window.
o Can provide a feeling on how bad or good the game tree is.
o Use this “better” value to guide searching later on.

F'3 saves about 7% of time than that of '2 when a transposition
table is used to save and re-use searched results [Fishburn

1983].

e A transposition table is a data structure to record the results of previous
searched results.

o The entries of a transposition table can be efficiently accessed, i.e.,
read and write, during searching.

o Need an efficient addressing scheme, e.g., hash, to translate between
a position and its address.
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F2 and F'3: Example (1/2)

Pl T P2

> ~ window
\

window 390,600)

(4000,5000)

—
—

[
[
\
[
[
\
|
Y

-200

Assume the node A can be reached from the starting position
using path P, and path PA.

o If W is visited first along P, with a window (4000, 5000), and returns a
value of 200, then

> the returned value of W, 200, is stored into the transposition table.

o If A is visited again along P, with the window (390, 600), then a better
value of previously stored value of W helps to decide whether the
subtree rooted at I needs to be searched again.
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F2 and F'3: Example (2/2)

Pl T P2
s window

~
N

window 390,600)

(4000,5000)

-
—
—

[
[
\
[
[
\
|
Y

Fail soft version has a chance to record a “better’ value to be
used later when this position is revisited.
o If A is visited again along P, with the window (390, 600), then

> it does not need to be searched again, since the previous stored value
of W is —200.

o However, if the value of W is 450, then it needs to be searched again.

Fail hard version does not store the returned value of W after
its first visit since this value is less than alpha.
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Concluding remarks

We compare F'2 and F'3, and remember that F'1 is the slowest
one since it has no deep cut-offs.

e To me, F'l is an intermediate version.
e F2 is never been considered historically.

> People first use F'1, then F'3, never F'2.

What move ordering is good?

e It may not be good to search good, but not the best possible move
first.

o It may be better to cut off a branch with more nodes first.
Q: How about the case when the tree is not uniform?

Q: What is the effect of using iterative-deepening alpha-beta
cut off?

Q: How about the case for searching a game graph instead of a
game tree?
e Some nodes are visited more than once.
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