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Abstract

Tree node numbering
Exhaustive mini-max search and its neg-amax version
Ideas for cut off

• Alpha cut
• Beta cut
• direct, shallow and deep cut

Alpha-beta cut off
• Algorithm
• Proof of performance

▷ Categorize nodes of different cutting properties

• Variations
▷ One-sided
▷ Fail hard
▷ Fail soft
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Introduction

Alpha-beta pruning is the standard searching procedure used for
solving 2-person perfect-information zero sum games exactly.
Definitions:

• A position p.
• The value of a position p, f(p), is a numerical value computed from
evaluating p.

▷ Value is computed from the root player’s point of view.
▷ Positive values mean in favor of the root player.
▷ Negative values mean in favor of the opponent.
▷ Since it is a zero sum game, thus from the opponent’s point of view,

the value can be assigned −f(p).

• A terminal position: a position whose value can be decided.
▷ A position where win/loss/draw can be concluded.
▷ In practice, we encounter a position where some constraints, e.g., time

limit and depth limit, are met.

• A position p has b legal moves p1, p2, . . . , pb.
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Tree node numbering

1 2 3

1.1 1.2 1.3 2.1 2.2 3.1 3.2

3.1.1 3.1.2

From the root, number a node in a search tree by a sequence
of integers a1.a2.a3.a4 · · ·

• Meaning from the root, you first take the a1th branch, then the a2th
branch, and then the a3th branch, and then the a4th branch · · ·

• The root is specified as an empty sequence.
• The depth of a node is the length of the sequence of integers specifying
it.

This is called “Dewey decimal system.”
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Mini-max formulation

max

min

max

min

1 5 6 27

81

7

Mini-max formulation:
•

F ′(p) =

{
f(p) if b = 0
max{G′(p1), . . . , G

′(pb)} if b > 0
•

G′(p) =

{
f(p) if b = 0
min{F ′(p1), . . . , F

′(pb)} if b > 0

• An indirect recursive formula with a bottom-up evaluation!
• Equivalent to AND-OR logic.
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Algorithm: Mini-max (native)

Algorithm F ′(position p) // max node
• determine the successor positions p1, . . . , pb
• if b = 0, then return f(p) else begin

▷ m := −∞
▷ for i := 1 to b do
▷ t := G′(pi)
▷ if t > m then m := t // find max value

• end;
• return m

Algorithm G′(position p) // min node
• determine the successor positions p1, . . . , pb
• if b = 0, then return f(p) else begin

▷ m := ∞
▷ for i := 1 to b do
▷ t := F ′(pi)
▷ if t < m then m := t // find min value

• end;
• return m
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Mini-max: comments

A brute-force method to try all possibilities!
• May visit a position many times.

Depth-first search
• Move ordering is according to the order the successor positions are
generated.

• Bottom-up evaluation.
• Post-ordering traversal.

Q:
• Iterative deepening?
• BFS?
• Other types of searching?
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Mini-max: depth/resource limited (1/2)

Search a max-node position p with a depth limit of depth.
Algorithm F0′(position p, integer depth) // max node

• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

then return f(p)// current board value
else begin

▷ m := −∞ // initial value
▷ for i := 1 to b do // try each child
▷ begin
▷ t := G0′(pi, depth − 1)
▷ if t > m then m := t // find max value
▷ end

end
• return m
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Mini-max: depth/resource limited (2/2)

Search a min-node position p with a depth limit of depth.
Algorithm G0′(position p, integer depth) // min node

• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

then return f(p)// current board value
else begin

▷ m := ∞ // initial value
▷ for i := 1 to b do // try each child
▷ begin
▷ t := F0′(pi, depth − 1)
▷ if t < m then m := t // find min value
▷ end

end
• return m
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Nega-max formulation

max

max

1 5 6 27 7

−8−1

min

min

Nega-max formulation:
Let F (p) be the greatest possible value achievable from position
p against the optimal defensive strategy.

•

F (p) =

{
h(p) if b = 0
max{−F (p1), . . . ,−F (pb)} if b > 0

▷

h(p) =

{
f(p) if depth of p is 0 or even
−f(p) if depth of p is odd

▷ h(p) is the position’s value from the point of view of the player of p.
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Algorithm: Nega-max (native)

Algorithm F (position p)
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node
• then return h(p) else
• begin

▷ m := −∞
▷ for i := 1 to b do
▷ begin
▷ t := −F (pi) // recursive call, the returned value is negated
▷ if t > m then m := t // always find a max value
▷ end

• end
• return m

TCG: α-β Pruning, 20251017, Tsan-sheng Hsu © 17



Algorithm: Nega-max (depth/resource limited)

Algorithm F0(position p, integer depth)
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return h(p) else
• begin

▷ m := −∞
▷ for i := 1 to b do
▷ begin
▷ t := −F0(pi, depth − 1) // recursive call, the returned value is

negated
▷ if t > m then m := t // always find a max value
▷ end

• end
• return m
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Nega-max: comments

Another brute-force method to try all possibilities.
• Use h(p) instead of f(p).

▷ Zero-sum game: if one player thinks a position p has a value of w, then
the other player thinks it is −w.

• De Morgan’s laws
▷ min{x, y, z} = −max{−x,−y,−z}.
▷ max{x, y, z} = −min{−x,−y,−z}.

• Watch out the code in dealing with search termination conditions.
▷ Leaf.
▷ Reach a given searching depth.
▷ Timing control.
▷ Other constraints such as the score is good or bad enough.

Notations:
• F ′ means the Mini-max version.

▷ Need a G′ companion.
▷ Easy to explain.

• F means the Nega-max version.
▷ Simpler code.
▷ May be difficult to explain.
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Intuition for improvements

Branch-and-bound: using information you have so far to cut or
prune branches.

• A branch is cut means we do not need to search it anymore.
• If you know for sure or almost sure the value of your result is more
than x and the current search result for this branch so far can give you
no more than x,

▷ then there is no/almost no need to search this branch any further.

Two types of approaches
• Exact algorithms: through mathematical proof, it is guaranteed that
the branches pruned won’t contain the solution.

▷ Alpha-beta pruning: reinvented by several researchers in the 1950’s
and 1960’s.

▷ Scout.
▷ · · ·

• Approximated heuristics: with a high probability that the solution won’t
be contained in the branches pruned.

▷ Obtain a good estimation on the remaining cost.
▷ Cut a branch when it is in a very bad position and there is little hope

to gain back the advantage.
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Alpha cut-off

1 2

2.1 2.2

V=15

V=10

V <= 10

cut

V>=15

• On the max node which is the root:
▷ Assume you have finished exploring the branch at 1 and obtained the

best value from it as bound.
▷ You now search the branch at 2 by first searching the branch at 2.1.
▷ Assume branch at 2.1 returns a value that is ≤ bound.
▷ Then no need to evaluate the branch at 2.2 and all later branches of 2,

if any, at all.
▷ The best possible value for the branch at 2 must be ≤ bound.
▷ Q: what should be the returned value for the branch at 2?
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Beta cut-off

1 2

cut

1.1 1.2

1.2.1 1.2.2

V=8

V<=8

V=13

V >= 13

• On the min node 1:
▷ Assume you have finished exploring the branch at 1.1 and obtained the

best value from it as bound.
▷ You now search the branch at 1.2 by first exploring the branch at 1.2.1.
▷ Assume the branch at 1.2.1 returns a value that is ≥ bound.
▷ Then no need to evaluate the branch at 1.2.2 and all later branches of

1.2, if any, at all.
▷ The best possible value for the branch at 1.2 is ≥ bound.
▷ Q: What should be the returned valued for the branch at 1.1?
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Alpha and Beta cut-off

Alpha cut-off for a min node u:
• An elder brother w of u produces a lower bound Vl.
• A branch (descendant) of u produces an upper bound Vu for u.
• If Vl ≥ Vu, then there is no need to evaluate all later branches
(descendants) of u.

Beta cut-off for a max node v:
• An elder brother y produces an upper bound Vu.
• A branch (descendant) of u produces a lower bound Vl for u.
• If Vl ≥ Vu, then there is no need to evaluate all later branches
(descendant) of v.

These are also called shallow cut-offs as compared to the deep
cut-offs to be introduced later.
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Degenerated case: direct alpha/beta cut-off

Assume in the case of zero sum two-player games, the maximum
value is max and the minimum value is min = −max.
Direct alpha cut-off

• A branch of a min node u produces an upper bound Vu for u.
• If Vu = −max, then there is no need to evaluate all later branches of
u.

• Note when Vu = −max, then Vl ≥ Vu for all Vl since −max is the
minimum possible value.

Direct beta cut-off
• A branch of a max node v produces a lower bound Vl for v.
• If Vl = max, then there is no need to evaluate all later branches of v.
• Note when Vl = max, then Vl ≥ Vu for all Vu since max is the maximum
possible value.

Rationality: When one finds a way to win, stop thinking other
alternatives.
Direct cut-off is a very shallow cut-off.

TCG: α-β Pruning, 20251017, Tsan-sheng Hsu © 24



Alpha-beta pruning: shallow, Max (1/2)

Note: one-sided bound.
Algorithm F1′(position p, value beta, integer depth)

• // max node
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return f(p) else
▷ m := −∞
▷ for i := 1 to b do
▷ t := G1′(pi,m, depth − 1)
▷ if t > m then m := t // improve the current best value
▷ if m is max or m ≥ beta then return(m) // direct or shallow beta

cut off

• end;
• return m // if nothing is over beta, then the largest one is returned

“m is max“ refers to m is the maximum possible value, which
triggers a direct beta cut-off.
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Alpha-beta pruning: shallow, Min (2/2)

Note: one-sided bound.
Algorithm G1′(position p, value alpha, integer depth)

• // min node
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return f(p) else
▷ m := ∞
▷ for i := 1 to b do
▷ t := F1′(pi,m, depth − 1)
▷ if t < m then m := t // improve the current best value
▷ if m is min or m ≤ alpha then return(m) // direct or shallow alpha

cut off

• end;
• return m // if nothing is below alpha, then the smallest one is returned

“m is min“ refers to m is the minimum possible value, which
triggers a direct alpha cut-off.
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Example of F1′ and G1′

Initial call: F1′(root,∞,depth)

• m = −∞
• call G1′(node 1,∞,depth− 1)

▷ it is a terminal node
▷ return value 15

• t = 15;
▷ since t > m, m is now 15

• call G1′(node 2,15,depth− 1)
▷ call F1′(node 2.1,15,depth − 2)
▷ it is a terminal node; return 10
▷ t = 10; since t < ∞, m is now 10
▷ bound is 15, m is 10, so we have

an alpha cut off,
▷ no need to call

F1′(node 2.2,10,depth − 2)
▷ return 10
▷ · · ·

1 2

2.1 2.2

V=15

V=10

V <= 10

cut

V>=15
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Alpha-beta pruning: shallow, Nega-Max

Note: one-sided bound.
Algorithm F1(position p, value bound, integer depth)

• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return h(p) else
• begin

▷ m := −∞
▷ for i := 1 to b do
▷ begin
▷ t := −F1(pi,−m, depth − 1)
▷ if t > m then m := t // improve the current best value
▷ if m is max or m ≥ bound then return(m) // direct or shallow cut

off
▷ end

• end
• return m
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Deep alpha/beta cut-off

For alpha cut-off:
▷ For a min node u, an elder brother w produces a lower bound Vl.
▷ A branch of u produces an upper bound Vu for u.
▷ If Vl ≥ Vu, then there is no need to evaluate all later branches of u.

Definition: For a node u in a tree and a positive integer g,
Ancestor(g, u) is the ancestor of u by tracing the parent’s link
g times.
Deep alpha cut-off:

• When a lower bound Vl is produced at and propagated from u’s great
grand parent, i.e., Ancestor(3,u), or any Ancestor(2i+ 1,u), i ≥ 1.

• When an upper bound Vu is returned from the a branch of u and
Vl ≥ Vu, then there is no need to evaluate all later branches of u.

Deep beta cut-off:
• When an upper bound Vu is produced at and propagated from u’s great
great grand parent, i.e., Ancestor(4,u), or any Ancestor(2i,u), i > 1.

• When a lower bound Vl is returned from the a branch of u and Vl ≥ Vu,
then there is no need to evaluate all later branches of u.
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Illustration — Deep alpha cut-off

1 2

2.1 2.2

V=15

cut

V>=15

2.1.1

2.1.1.1 2.1.1.2

V=7

V <= 7

V>=15
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Lower and upper bounds of a node

During searching, maintain two values alpha and beta for a node
u so that

• alpha is the current lower bound of the possible returned value;
▷ This means you have known a way to achieve the value alpha from

searching a max node that is u or an ancestor of u.
▷ This will be a pre-condition set for every min node v that is a descendent

of u.
▷ Node v lowers its beta value after searching a child.
▷ When v’s beta is lower than u’s alpha, we have an alpha cut.

• beta is the current upper bound of the possible returned value.
▷ This means your opponent have known a way to to achieve the value

beta from searching a min node that is u or an ancestor of u.
▷ This will be a pre-condition set for every max node v that is a descen-

dent of u.
▷ Node v raises its alpha value after searching a child.
▷ When v’s alpha is higher than u’s beta, we have a beta cut.

Q: Does it help at all to record how “bad” this pre-condition is
violated?
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Ideas for refinements

If alpha = beta = val, then we have found the solution which is
val.
If during searching, we know for sure alpha > beta, then there
is no need to search any more in this branch.

• No value returned from this branch can be the solution we want.
• Backtrack until it is the case alpha < beta.

The two values alpha and beta are called the ranges of the
current search window.

• These values are dynamic.
• Initially, alpha is −∞ and beta is ∞.
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Alpha-beta pruning: Max (1/2)

Algorithm F2′(position p, value alpha, value beta, integer depth)

• // max node
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return f(p) else
▷ m := alpha
▷ for i := 1 to b do
▷ t := G2′(pi,m, beta, depth − 1)
▷ if t > m then m := t // improve the current best value
▷ if m is max or m ≥ beta then return(beta) // direct or general beta

cut off

• end;
• return m

“m is max“ refers to m is the maximum possible value, which
triggers a direct beta cut-off.
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Alpha-beta pruning: Min (2/2)

Algorithm G2′(position p, value alpha, value beta, integer depth)

• // min node
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return f(p) else
▷ m := beta
▷ for i := 1 to b do
▷ t := F2′(pi, alpha,m, depth − 1)
▷ if t < m then m := t // improve the current best value
▷ if m is min or m ≤ alpha then return(alpha) // direct or general

alpha cut off

• end;
• return m

“m is min“ refers to m is the minimum possible value, which
triggers a direct alpha cut-off.
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Example of F2′ and G2′

Initial call: F2′(root,−∞,∞,depth)

• m = −∞
• call G2′(node 1,−∞,∞,depth− 1)

▷ it is a terminal node
▷ return value 15

• t = 15;
▷ since t > m, m is now 15

• call G2′(node 2,15,∞,depth− 1)
▷ call F2′(node 2.1,15,∞,depth−2)
▷ it is a terminal node; return 10
▷ t = 10; since t < ∞, m is now 10
▷ alpha is 15, m is 10, so we have

an alpha cut off,
▷ no need to call

F2′(node 2.2,15,10,depth − 2)
▷ return 15
▷ · · ·

1 2

2.1 2.2

V=15

V=10

V <= 10

cut

V>=15
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Comments: F2′ and G2′

The initial values for F2′ and G2′ are alpha and beta respectively,
while they are −∞ and ∞ for F1′ and G1′.
The returned values for F2′ and G2′ when cut-off happens are
beta and ahpa respectively, while they are the values which
make the cut-off happen for F1′ and G1′.
The return values cannot be outside of the range in between
alpha and beta though the tree may contain no value in this
range.

• If the initial values of alpha and beta are −∞ and ∞ respectively, then
the value found must come from a leaf in the tree.

We call this type of search fail hard.
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A complete example

max

min

max

min

7

8 1

2 7 1 5 6
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A complete example

max

min

max

min

7

8 1

2 7 1 5 6

The solution is the same with or without the cuts as circled by
dashed lines.
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Alpha-beta pruning algorithm: Nega-max

Algorithm F2(position p, value alpha, value beta, integer depth)

• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return h(p) else
• begin

▷ m := alpha
▷ for i := 1 to b do
▷ begin
▷ t := −F2(pi,−beta,−m, depth − 1)
▷ if t > m then m := t // improve the current best value
▷ if m is max or m ≥ beta then return(beta) // general cut off
▷ end

• end
• return m

Comment: Watch out the changes of the bounds in the
recursive call.
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Comparing F1 and F2

F1 is a degenerated version of F2 using only one-sided bound.
• When something is over expected, then return this unexpected value
the moment it appears.

• When something is less expected, then continue searching.
• MAX node:

▷ (alpha, beta) = (−∞, beta).

• MIN node:
▷ (alpha, beta) = (alpha,∞).

Deep alpha-beta cut-offs are not possible for F1 since it uses
only one-sided bounds!

• Three types of cut-off: direct, shallow and deep.
• They are called general alpha-beta cut-offs.

F1 is only an intermediate version. From now on, we focus on
F2.
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Examples (1/4)
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Examples (2/4)
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Examples (3/4)
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Examples (3/4)
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Examples (4/4)
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What happened in the previous examples

Assume we run F2′ and G2′ in the order of from left to right in
a game tree.
The tree on the top and the tree on the bottom are the same
game tree with different search orderings.

• A tree has a fixed searched value no matter what search orderings are
used.

We can prune 4 nodes in the tree on the top, but cannot prune
any node in the tree on the bottom.
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Lessons from the previous examples

It looks like for the same tree, different move orderings give
very different cut branches.
It looks like if a node can evaluate a child with the best possible
outcome earlier, then it has a chance to cut earlier.

• For a min node, this means to search the child branch that gives the
lowest value first.

• For a max node, this means to search the child branch that gives the
highest value first.

Comments:
• Watch out the returned value v for a node p when alpha or beta cut-off
happens.

▷ It is a bound for p, not its best possible value.

• It is impossible to always know which the best branch is; otherwise we
need to always do a brute-force exhaustive search.

Q: In the best case scenario, how many nodes can be cut?
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Analysis of a possible best case

Definitions:
• A path in a search tree is a sequence of numbers indicating the branches
selected in each level using the Dewey decimal system.

• A position is denoted as a path a1.a2. · · · .aℓ from the root.
• A position a1.a2. · · · .aℓ is critical if

▷ ai = 1 for all even values of i or
▷ ai = 1 for all odd values of i or
▷ it is the root.

• Note: as a special case, the root is critical.
• Examples:

▷ 2.1.4.1.2, 1.3.1.5.1.2, 1.1.1.2.1.1.1.3 and 1.1 are critical
▷ 1.2.1.1.2 is not critical

• The number of 1’s in a path has little to do with whether it is critical
or not.

▷ A critical node has at least ⌊ℓ/2⌋ 1’s, but the reverse is not true.

Q: Why does the root need to be critical?
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Perfect-ordering tree

A perfect-ordering tree:

F (a1. · · · .aℓ) =
{

h(a1. · · · .aℓ) if a1. · · · .aℓ is a terminal
−F (a1. · · · .aℓ.1) otherwise

• The first successor of every non-terminal position gives the best possible
value.
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Theorem 1

Theorem 1: F2 examines precisely the critical positions of a
perfect-ordering tree.
Proof sketch:

• Classify the critical positions, a.k.a. nodes, into different types.
▷ You must evaluate the first branch from the root to the bottom.
▷ Alpha cut off happens at odd-depth nodes as soon as the first branch

of this node is evaluated.
▷ Beta cut off happens at even-depth nodes as soon as the first branch of

this node is evaluated.

• For nodes of the same type, find common characteristics causing or
not causing prunings to happen.
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Types of nodes

Classification of critical positions a1.a2. · · · .aj. · · · .aℓ where j is
the least index, if exists, such that aj ̸= 1 and ℓ is the last
index.

• j is the anchor in the analysis.
• Definition: let IS1(ai) be a boolean function so that it is 0 if it is not
the value 1 and it is 1 if it is.

▷ We call this IS1 parity of a number.

• If j exists and ℓ > j, then
▷ aj+1 = 1 because this position is critical and thus the IS1 parities of aj

and aj+1 are different.

• Since this position is critical, if aj ̸= 1, then ah = 1 for any h such that
h− j is odd.

▷ aj+1 must be 1.

We now classify critical nodes into three types.
• Nodes of the same type share some common properties.
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Illustration — critical nodes
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Type 1 nodes

type 1: the root, or a node with all the ai are 1;
• This means the anchor j does not exist.
• Nodes on the leftmost branch.
• The leftmost child of a type 1 node except the root.

In a DFS-like searching, type 1 nodes are examined first.

type 1
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Type 2 nodes

Classification of critical positions a1.a2. · · · .aj. · · · .aℓ where j is
the least index such that aj ̸= 1 and ℓ is the last index.
The anchor j exists.
Type 2: ℓ− j is zero or even;

• type 2.1: ℓ− j = 0 which means ℓ = j.
▷ It is in the form of 1.1.1. · · · .1.1.1.aℓ and aℓ ̸= 1.
▷ The non-leftmost children of a type 1 node.

• type 2.2: ℓ− j > 0 and is even.
▷ It is in the form of 1.1. · · · .1.1.aj.1.aj+2. · · · .aℓ−2.1.aℓ.

▷ Note, we will define 1.1. · · · .1.1.aj.1.aj+2. · · · .aℓ−2.1 to be a type 3
node. This means all of the children of a type 3 node.

Q:
• Can aℓ be 1 or non-1 for a type 2 node?
• Can aℓ be 1 or non-1 for a type 2.1 node?
• Can aℓ be 1 or non-1 for a type 2.2 node?
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Type 3 nodes

Classification of critical positions a1.a2. · · · .aj. · · · .aℓ where j is
the least index such that aj ̸= 1 and ℓ is the last index.
The anchor j exists.
Type 3: ℓ− j is odd;

• aj ̸= 1 and ℓ− j is odd
▷ Since this position is critical, the IS1 parities of aj and aℓ are different.

=⇒ aℓ = 1
=⇒ aj+1 = 1

• It is in the form of
▷ 1.1. · · · .1.aj.1.aj+2.1. · · · .1.aℓ−1.1.

• The leftmost child of a type 2 node.
• type 3.1: ℓ− j = 1.

▷ It is of the form 1.1. · · · .1.aj.1

▷ The leftmost child of a type 2.1 node.

• type 3.2: ℓ− j > 1.
▷ It is of the form 1.1. · · · .1.aj.1.aj+2.1. · · · .1.aℓ−1.1

▷ The leftmost child of a type 2.2 node.

Q: Can aℓ be 1 or non-1 for a type 3 node?
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Comments

Nodes of the same type have common properties.
These properties can be used in solving other problems.

• Example: Efficient parallelization of alpha-beta based searching algo-
rithms.

Main techniques used:
• For each non-1 number, any number appeared later and is odd distance
away must be 1.

▷ You cannot have two consecutive non-1 numbers in the ID of a critical
node.
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Type 2.1 nodes

Classification of critical positions a1.a2. · · · .aj. · · · .aℓ where j is
the least index such that aj ̸= 1 and ℓ is the last index.
type 2: ℓ− j is zero or even;

• type 2.1: ℓ− j = 0.
▷ Then ℓ = j.
▷ It is of the form of 1.1.1. · · · .1.1.1.aℓ and aℓ ̸= 1.
▷ The non-leftmost children of a type 1 node.

type 1

type 2.1
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Type 3.1 nodes

Classification of critical positions a1.a2. · · · .aj. · · · .aℓ where j is
the least index such that aj ̸= 1 and ℓ is the last index.
type 3: ℓ− j is odd;

• type 3.1: ℓ− j = 1.
▷ Then ℓ = j + 1.
▷ It is of the form 1.1. · · · .1.aj.1 and aℓ ̸= 1.

▷ The leftmost child of a type 2.1 node.

type 1

type 2.1

type 3.1
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Type 2.2 nodes

Classification of critical positions a1.a2. · · · .aj. · · · .aℓ where j is
the least index such that aj ̸= 1 and ℓ is the last index.
type 2: ℓ− j is zero or even;

• type 2.2: ℓ− j > 0 and is even.
▷ The IS1 parties of aj and aj+1 are different.

=⇒ Since aj ̸= 1, aj+1 = 1.
▷ (ℓ − 1) − j is odd:

=⇒ The IS1 parties of aℓ−1 and aj are different.
=⇒ Since aj ̸= 1, aℓ−1 = 1.

▷ It is in the form of 1.1. · · · .1.1.aj.1.aj+2. · · · .aℓ−2.1.aℓ.

▷ Note, 1.1. · · · .1.1.aj.1.aj+2. · · · .aℓ−2.1 is a type 3 node.
▷ All of the children of a type 3 node.
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Illustration: Type 2.2 nodes

type 1

type 2.1

type 3.1

type 2.2
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Type 3.2 nodes

Classification of critical positions a1.a2. · · · .aj. · · · .aℓ where j is
the least index such that aj ̸= 1 and ℓ is the last index.
type 3: ℓ− j is odd;

• type 3.2: ℓ− j > 1.
▷ Since ℓ − j is odd, ℓ − j ≥ 3.
▷ It is of the form 1.1. · · · .1.aj.1.aj+2.1. · · · .1.aℓ−1.1

▷ 1.1. · · · .1.aj.1.aj+2.1. · · · .1.aℓ−1 is a type 2.2 node since ℓ−1−j is even
and ≥ 2.

▷ The leftmost child of a type 2.2 node.
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Illustration: Type 3.2 nodes
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Illustration of all nodes

type 1
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Illustration of all nodes
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Illustration of all nodes
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Illustration of all nodes
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Illustration of all nodes
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Illustration of all nodes
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Illustration of all nodes

type 1

type 2.1

type 3.1

type 2.2

type 3.2

type 2.2

TCG: α-β Pruning, 20251017, Tsan-sheng Hsu © 69



Theorem 1: Proof sketch (1/2)

Using an inductive argument to prove all and also only critical
positions are examined.
Property (invariant) I: A type 1 position p is examined by calling
F2(p,−∞,∞, depth)

• p’s first successor p1 is of type 1
• F (p) = −F (p1) ̸= ±∞
• p’s other successors p2, . . . , pb are of type 2
• pi, i > 1, are examined by calling −F2(pi,−∞,−F (p1), depth− 1)

Property (invariant) II: A type 2 position p is examined by
calling F2(p,−∞, beta, depth) where −∞ < beta ≤ F (p)

• p’s first successor p1 is of type 3 and is examined
• F (p) = −F (p1)
• p’s other successors p2, . . . , pb are not examined due to cut off

TCG: α-β Pruning, 20251017, Tsan-sheng Hsu © 70



Theorem 1: Proof sketch (2/2)

Property (invariant) III: A type 3 position p is examined by
calling F2(p, alpha,∞, depth) where ∞ > alpha ≥ F (p)

• p’s successors p1, . . . , pb are of type 2
• they are examined by calling

▷ −F2(p1,−∞,−alpha, depth − 1),
▷ −F2(p2,−∞,−m1, depth − 1), . . . ,
▷ −F2(pi,−∞,−mi−1, depth − 1)
▷ where m0 = alpja, mi = max{−F2(pi,−∞,−mi−1, depth − 1),mi−1},

i ≥ 1
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Properties of Theorem 1

To cut off a subtree rooted at a node u entirely using alpha-beta
based algorithms, at the very least, we need to know the values
of

• one of u’s elder sibling, and
• one of v’ elder sibling where v is the parent of u.

To know the value of a node rooted at a subtree, the subtree’s
left-most branch must be examined at the very least.
Branches of a vertex that are examined

• leftmost branch only
▷ type 2.1, whose leftmost child is type 3.1
▷ type 2.2, whose leftmost child is type 3.2

• all branches
▷ type 1
▷ type 3.1
▷ type 3.2
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Analysis: best case

Corollary 1: Assume each position has exactly b successors
• The number of positions examined by the alpha-beta procedure on
level i is exactly

b⌈i/2⌉ + b⌊i/2⌋ − 1.

Proof:
• There are b⌊i/2⌋ sequences of the form a1. · · · .ai with 1 ≤ ai ≤ b for all
i such that ai = 1 for all odd values of i.

• There are b⌈i/2⌉ sequences of the form a1. · · · .ai with 1 ≤ ai ≤ b for all
i such that ai = 1 for all even values of i.

• We subtract 1 for the sequence 1.1. · · · .1.1 which is counted twice.

Total number of nodes visited is

ℓ∑
i=0

b⌈i/2⌉ + b⌊i/2⌋ − 1.
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Comments for the best case

Assume we can afford to spend T time in searching a game
tree with an average branching factor b.
From T and the speed of your implementation, you can estimate
the total number of nodes N that can be searched.
From b and N , you can set the search depth limit d as follows

bd = N.

This means you can search to the depth of d using a brute force
algorithm.
Using alpha-beta pruning in the best case you can afford to
search up to a depth of about 2 · d− 1 within the time T .
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Analysis: average case

Random game tree
• A random game tree be generated in such a way that each position on
level j has

▷ a probability qj of being nonterminal and
▷ an average of bj successors.

• Expected number of positions on level ℓ is b0 × b1 × · · · × bℓ−1

Corollary 2: Expected number of positions on level ℓ examined
by an alpha-beta procedure assumed the random game tree is
perfectly ordered is

b0q1b2q3 · · · bℓ−2qℓ−1 + q0b1q2b3 · · · qℓ−2bℓ−1 − q0q1 · · · qℓ−1if ℓ is even;

b0q1b2q3 · · · qℓ−2bℓ−1 + q0b1q2b3 · · · bℓ−2qℓ−1 − q0q1 · · · qℓ−1if ℓ is odd
Proof sketch:

• If x is the expected number of positions of a certain type on level j,
then x × bj is the expected number of successors of these positions,
and x× qj is the expected number of “numbered 1” successors.

• The above numbers equal to those of Corollary 1 when qj = 1 and
bj = b for 0 ≤ j < ℓ.
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Comments for the average case (1/2)

[Knuth & Moore 1975] proved that with only the shallow
alpha-beta pruning across two adjacent levels, the effective
branching factor in the average case is O(b/ log b) where b is the
average branching factor.

• That is, in average, alpha-beta only searches one branch every log b
branches encountered.

[Fuller et al 1975] proved that together with deep alpha-beta
pruning, the effective branching factor in the average case is
∼ b0.75 where b is the average branching factor.

• This means O(b/b0.25) which is much better asymptotically than
O(b/ log b).

• Much more performance come from deep cut than shallow ones.

Direct alpha-beta pruning makes more cuts in the endgame
phase than in the open game phase.
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Comments for the average case (2/2)

Assume you can afford to seraph bd nodes in time T using brute
force methods.

• Note: given a tree of depth d and branching factor b, it has bd nodes.

In average, alpha-beta only searches one branch for every b0.25

branches encountered.
• Using alpha-beta pruning in the average case you can afford to search
up to a depth of about 4

3 · d within the time T .

However, within time T ,
• without deep alpha-beta pruning, the searching depth is only about

log b
log b−log log b · d, which means a lot of cut offs come from deep prunings;

In the best case, you can search up to the depth of 2 · d− 1.
In practice, using a good move ordering heuristic plus other
heuristics and techniques, Chinese chess programs can almost
achieve a constant effective branching factor of about 3.
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Perfect ordering is not always the best

Intuitively, we may “think” alpha-beta pruning would be most
effective when a game tree is perfectly ordered.

• That is, when the first successor of every position is the best possible
move.

• This is not always the case!

2 3 3

4

2 1 2 1

4

>=4

<=2

>=4

<=3

Truly optimum order of game trees traversal is not obvious.
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When is a branch pruned?

Assume a node r has two children u and v with u being visited
before v using some move ordering.

• Further assume u produced a new bound bound.

Assume node v has a child w.
• If the value new returned from w can cause a range conflict with bound,
then branches of v later than w are cut.

This means as long as the “relative” ordering of u and v is
good enough, then we can have a cut-off.

• There is no need to have a perfect ordering to enable cut-off to happen.
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Theorem 2

Theorem 2: Alpha-beta pruning is optimum in the following
sense:

• Given any game tree and any algorithm which computes the value of
the root position, there is a way to permute the tree

▷ by reordering successor positions if necessary;

• so that every terminal position examined by the alpha-beta method
under this permutation is examined by the given algorithm.

• Furthermore if the value of the root is not ∞ or −∞, the alpha-beta
procedure examines precisely the positions which are critical under this
permutation.
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Variations of alpha-beta search

Initially, to search a tree with the root r by calling
F2(r,−∞,+∞,depth).

• What does it mean to search a tree with the root r by calling
F2(r,alpha,beta,depth)?

▷ To search the tree rooted at r requiring that the returned value to be
within alpha and beta.

Searching with a pre-assigned window (alpha, beta):
• Failed-high means the correct value is larger than or equal to its upper
bound beta.

• Failed-low means the correct value is smaller than or equal to its lower
bound alpha.

Variations: Always finds the correct answer according to the
Nega-Max formula.

• Brute force Nega-Max version: F/F0
• One-sided shallow alpha-beta cut (Nega-Max) version: F1
• Fail hard general alpha-beta cut (Nega-Max) version: F2
• Fail soft general alpha-beta cut (Nega-Max) version: F3
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Shallow, one-sided, Nega-Max

Algorithm F1(position p, value bound, integer depth)
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return h(p) else
• begin

▷ m := −∞
▷ for i := 1 to b do
▷ begin
▷ t := −F1(pi,−m, depth − 1)
▷ if t > m then m := t // improve the current best value
▷ if m is max or m ≥ bound then return(m) // direct or shallow cut

off, return m that is ≥ bound
▷ end

• end
• return m
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Properties of F1

Assumptions:
• p is not a leaf
• depth = ∞
• there is no additional resource or knowledge constants

Recall that F (p) is the true value of p.
F1(p, bound, depth) = F (p) if F (p) < bound
F1(p, bound, depth) ≥ bound if F (p) ≥ bound

• Note that F (p) ≥ F1(p, bound, depth) in this case.

F1(p,∞, depth) = F (p)
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Comments: F1

F1(p, bound, depth): find the best possible value according to a
nega-max formula for the position p with the constraints that

▷ If F (p) ≤ bound, then F1(p, bound, depth) returns F (p).
▷ If F (p) ≥ bound, then F1(p, bound, depth) returns a value ≥ bound from a

terminal position whose value is ≥ bound.

An intermediate version.
▷ One-sided bounded. direct or shallow cut-off.
▷ Always return something better than the expected bound, but never some-

thing worse!!
▷ Easier to find the branch where the returned value is coming from.
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Fail hard, general, Nega-max

Requiring alpha ≤ beta; nega-max version
Algorithm F2(position p, value alpha, value beta, integer depth)

• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return h(p) else
• begin

▷ m := alpha // hard initial value
▷ for i := 1 to b do
▷ begin
▷ t := −F2(pi,−beta,−m, depth − 1)
▷ if t > m then m := t // the returned value is “used”
▷ if m is max or m ≥ beta then return(beta) // general cut off
▷ end

• end
• return m // if nothing is over alpha, then alpha is returned
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Properties of F2

Assumptions:
• alpha ≤ beta
• p is not a leaf
• depth = ∞
• there is no additional resource or knowledge constraints

Recall that F (p) is the true value of p.
F2(p, alpha, beta, depth) = alpha if F (p) ≤ alpha
F2(p, alpha, beta, depth) = F (p) if alpha < F (p) < beta
F2(p, alpha, beta, depth) = beta if F (p) ≥ beta
F2(p,−∞,+∞, depth) = F (p)
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Comments

F2(p, alpha, beta, depth): find the best possible value according
to a nega-max formula for the position p with the constraints
that

▷ If F (p) ≤ alpha, then F2(p, alpha, beta, depth) returns with the value alpha
from a terminal position whose value is ≤ alpha.

▷ If F (p) ≥ beta, then F2(p, alpha, beta, depth) returns the value beta from a
terminal position whose value is ≥ beta.

The meanings of alpha and beta during searching:
▷ For a max node: the current best value is at least alpha.
▷ For a min node: the current best value is at most beta.

F2 always finds a value that is within alpha and beta.
▷ Both bounds are hard, i.e., cannot be violated.
▷ When it is failed high or failed-low, we do not know where the values come

from.

Q: What are the differences between F1(p,∞, depth) and
F2(p,−∞,∞, depth)?
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F2: Example

−200

W Q

−v

return(−200)

return(−v)

A

4000window

(4000,5000)
5000return min{          ,max{           ,200,v}}

F2(W,−5000,−4000,d)

F2(Q,−5000,−4000,d)

As long as the value of the leaf node W is less than the current
alpha value, the returned value of A will be alpha.
If the value of the leaf node W is greater than the current beta
value, the returned value of A will be beta.
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Version F3

Intuition
• MAX node:

▷ Same with F2: when the value is more than beta, report this value,
not just beta.

▷ Additional: if the value is less than alpha, report his value being a very
bad node for a max node.

▷ Next time, this fact can be used to have a faster cut off.

• MIN node:
▷ Same with F2: when the value is less than alpha, try to report this

value, not just alpha.
▷ Additional: if the value is more than beta, report his value being a very

bad node for a min node.
▷ Next time, this fact can be used to have a faster cut off.
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Alpha-beta pruning: Fail soft, Max (1/2)

Algorithm F3′(position p, value alpha, value beta, integer depth)

• // max node
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return f(p) else
• begin

▷ m := −∞ // soft initial value
▷ for i := 1 to b do
▷ begin
▷ t := G3′(pi,max{m, alpha}, beta, depth − 1)
▷ if t > m then m := t // the returned value is “used”
▷ if m is max or m ≥ beta then return(m) // beta cut off
▷ end

• end
• return m
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Alpha-beta pruning: Fail soft, Min (2/2)

Algorithm G3′(position p, value alpha, value beta, integer depth)

• // min node
• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return f(p) else
• begin

▷ m := ∞ // soft initial value
▷ for i := 1 to b do
▷ begin
▷ t := F3′(pi, alpha,min{m, beta}, depth − 1)
▷ if t < m then m := t // the returned value is “used”
▷ if m is min or m ≤ alpha then return(m) // alpha cut off
▷ end

• end
• return m
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Example of F3′ and G3′

Initial call: F3′(root,−∞,∞,depth)

• m = −∞
• call G3′(node 1,−∞,∞,depth− 1)

▷ it is a terminal node
▷ return value 15

• t = 15;
▷ since t > m, m is now 15

• call G3′(node 2,15,∞,depth− 1)
▷ call F3′(node 2.1,15,∞,depth−2)
▷ it is a terminal node; return 10
▷ t = 10; since t < ∞, m is now 10
▷ alpha is 15, m is 10, so we have

an alpha cut off,
▷ no need to call

F3′(node 2.2,15,10,depth − 2)
▷ return 10
▷ · · ·

1 2

2.1 2.2

V=15

V=10

V <= 10

cut

V>=15
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Alpha-beta pruning: Fail soft, Nega-Max

Algorithm F3(position p, value alpha, value beta, integer depth)

• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node

or depth = 0 // remaining depth to search
or time is running up // from timing control
or some other constraints are met // add knowledge here

• then return h(p) else
• begin

▷ m := −∞ // soft initial value
▷ for i := 1 to b do
▷ begin
▷ t := −F3(pi,−beta,−max{m, alpha}, depth − 1)
▷ if t > m then m := t // the returned value is “used”
▷ if m is max or m ≥ beta then return(m) // cut off
▷ end

• end
• return m
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Properties of F3

Assumptions
• alpha ≤ beta
• p is not a leaf
• depth = ∞
• there is no additional resource or knowledge constants

Recall that F (p) is the true value of p.
F3(p, alpha, beta, depth) ≤ alpha if F (p) ≤ alpha

• Note that F (p) ≤ F3(p, alpha, beta, depth) in this case.

F3(p, alpha, beta, depth) = F (p) if alpha < F (p) < beta
F3(p, alpha, beta, depth) ≥ beta if F (p) ≥ beta

• Note that F (p) ≥ F3(p, alpha, beta, depth) in this case.

F3(p,−∞,+∞, depth) = F (p)
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Comments: F3

F3 finds a “better” value when the value of the tree searched
is out of the search window.

• Better means a tighter and more informatic bound.
▷ The bounds are soft, i.e., can be violated.

• When it is failed-high, F3 normally returns a value that is higher than
that of F1 or F2.

▷ Never higher than that of F !

• When it is failed-low, F3 normally returns a value that is lower than
that of F1 or F2.

▷ Never lower than that of F !

You can always find a leaf in a search tree T with the value
F3(T ).
Example: assume you search the root r, a MAX node, with a
very high alpha value and actually F (r) << alpha.

• F2(r, alpha, beta,∞) returns alpha.
• F3(r, alpha, beta,∞) may return a value < alpha which is more infor-
matic than returning alpha.
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Fail soft version (F3): Example

−200

W Q

−v

return(−200)

return(−v)

return max{200,v}

A

F3(W,−5000,−4000,d)

F3(Q,−5000,−4000,d)

(4000,5000)

window

Let the value of the leaf node W be u.
If u < alpha, then the returned value of A will be at least u.
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Comparisons between F2 and F3

Both versions find the corrected value v if v is within the
window (alpha, beta).
Both versions scan the same set of nodes during searching.

▷ If the returned value of a subtree is decided by a cut, then F2 and F3 return
the same value.

F3 provides more information when the true value is out of the
pre-assigned search window.

• Can provide a feeling on how bad or good the game tree is.
• Use this “better” value to guide searching later on.

F3 saves about 7% of time than that of F2 when a transposition
table is used to save and re-use searched results [Fishburn
1983].

• A transposition table is a data structure to record the results of previous
searched results.

• The entries of a transposition table can be efficiently accessed, i.e.,
read and write, during searching.

• Need an efficient addressing scheme, e.g., hash, to translate between
a position and its address.
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F2 and F3: Example (1/2)

−200

W
Q

P1 P2

A

window

(4000,5000)

window

(390,600)

Assume the node A can be reached from the starting position
using path P1 and path P2.

• If W is visited first along P1 with a window (4000, 5000), and returns a
value of 200, then

▷ the returned value of W , 200, is stored into the transposition table.

• If A is visited again along P2 with the window (390, 600), then a better
value of previously stored value of W helps to decide whether the
subtree rooted at W needs to be searched again.
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F2 and F3: Example (2/2)

−200

W
Q

P1 P2

A

window

(4000,5000)

window

(390,600)

Fail soft version has a chance to record a “better” value to be
used later when this position is revisited.

• If A is visited again along P2 with the window (390, 600), then
▷ it does not need to be searched again, since the previous stored value

of W is −200.

• However, if the value of W is 450, then it needs to be searched again.

Fail hard version does not store the returned value of W after
its first visit since this value is less than alpha.
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Concluding remarks

We compare F2 and F3, and remember that F1 is the slowest
one since it has no deep cut-offs.

• To me, F1 is an intermediate version.
• F2 is never been considered historically.

▷ People first use F1, then F3, never F2.

What move ordering is good?
• It may not be good to search good, but not the best possible move
first.

• It may be better to cut off a branch with more nodes first.

Q: How about the case when the tree is not uniform?
Q: What is the effect of using iterative-deepening alpha-beta
cut off?
Q: How about the case for searching a game graph instead of a
game tree?

• Some nodes are visited more than once.
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