Scout and NegaScout

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/ " tshsu

Abstract

It looks like alpha-beta pruning is the best we can do for an
exact generic searching procedure.

e What else can be done generically?

o Alpha-beta pruning follows basically the “intelligent” searching behav-
iors used by human when domain knowledge is not involved.

o Can we find some other “intelligent” behaviors used by human during
searching?

Intuition: MAX node.
o Suppose we know currently we have a way to gain at least 300 points
at the first branch.

o If there is an efficient way to know the second branch is at most
gaining 300 points, then there is no need to search the second branch
in detail.

> Alpha-beta cut algorithm is one way to make sure of this by returning
an exact value.

> Is there a way to search a tree by only returning a bound?
> Is searching with a bound faster than searching exactly?

Similar intuition holds for a MIN node.

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©) 2

SCOUT procedure

It may be possible to verify whether the value of a branch
is greater than a value v or not in a way that is faster than
knowing its exact value [Judea Pearl 1980].

High level idea:
o While searching a branch 7; of a MAX node, if we have already
obtained a lower bound vy.
> First TEST whether it is possible for I; to return something greater
than vy.

> If FALSE, then there is no need to search Tj.
— This is called fails the test.

> If TRUE, then search T;.
— This is called passes the test.

o While searching a branch T of a MIN node, if we have already obtained
an upper bound v,
> First TEST whether it is possible for 1; to return something smaller
than v,,.

> If FALSE, then there is no need to search Tj}.
—> This is called fails the test.

> If TRUE, then search Tj.
— This is called passes the test.

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©) 3

How to TEST > v

procedure TEST - (position p, value v)
// test whether the value of the branch at p is > v

determine the successor positions p;,...,p, of p
if b= 0, then // terminal
> if f(p) > v then // f(): evaluation function

> return TRUE
> else return FALSE

if pis a MAX node, then
o for::=1to b do

> if TEST- (p;, v) is TRUE, then
return TRUE // succeed if a branch is > v
o return FALSE // fail only if all branches < v

if p is a MIN node, then
o for::=1to b do

> if TEST- (p;, v) is FALSE, then
return FALSE // fail if a branch is < v

e return TRUE // succeed only if all branches are > v

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©)

How to TEST < v

procedure TEST _(position p, value v)
// test whether the value of the branch at p is < v

determine the successor positions p;,...,p, of p
if b= 0, then // terminal
> if f(p) < v then // f(): evaluation function

> return TRUE
> else return FALSE

if pis a MAX node, then
o fori:=1to b do
> if TEST . (p;, v) is FALSE, then
return FALSE // fail if a branch is > v

o return TRUE // succeed only if all branches < v

if p is a MIN node, then
o for::=1to b do

> if TEST.(p;, v) is TRUE, then
return TRUE // succeed if a branch is < v

o return FALSE // fail only if all branches are > v

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©)

lllustration of TEST-
max . true

fase true

min

true /trge\ true

-"‘
max)OO OO0 OOC

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©)

Short circuit operations for TEST-

For a MAX node:
o if a branch is TRUE, then there is no need to do further testing;
o if a branch is FALSE, then we need to do more testing on other
branches.
o It is better to test branches with better probabilities of being TRUE

first.

For a MIN node:
o if a branch is FALSE, then there is no need to do further testing;
e if a branch is TRUE, then we need to do more testing on other

branches.
o It is better to test branches with better probabilities of being FALSE

first.

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©) 7

How to TEST — Discussions

Sometimes it may be needed to test for “> v”, or “<wv
o | TEST.(p.,v) is TRUE | =| TEST<(p,v) is FALSE

o | TEST-(p,v) is FALSE |=| TEST(p,v) is TRUE

o | TEST (p,v) is TRUE |=| TEST>(p,v) is FALSE

o | TEST(p,v) is FALSE | = | TEST>(p,v) is TRUE

Practical consideration:

o Set a depth limit and evaluate the position’s value when the limit is
reached.

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©) 8

Main SCOUT procedure

Algorithm SCOUT (position p)

determine the successor positions p;,....pp
if b =0, then return f(p)

else v = SCOUT (p1) // SCOUT the first branch

if pis a MAX node
o for . :=2 to b do

> if TEST- (p;, v) is TRUE, // TEST first for the rest of the branches
then v = SCOUT (p;) // find the value of this branch if it can be > v

if pis a MIN node
o for::=2 to b do

> if TEST (p;, v) is TRUE, // TEST first for the rest of the branches
then v = SCOUT (p;) // find the value of this branch if it can be < v

return v

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©) 9

Discussions for SCOUT (1/3)

Initially, we use recursive call to find the value v of the first
branch.

From now on, v is the current best value at any moment.
MAX node:
o Forany i > 1, if TEST~ (p;, v) is TRUE,
> then the value returned by SCOUT (p;) must be greater than v;
> and make this the new v.
o We say that p; passes the test if TEST~ (p;, v) is TRUE.
MIN node:
o For any i > 1, if TEST_(p;, v) is TRUE,
> then the value returned by SCOUT (p;) must be smaller than v;
> and make this the new v.

o We say that p; passes the test if TEST_(p;, v) is TRUE.

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©) 10

Discussions for SCOUT (2/3)

TEST which is called by SCOUT may visit less nodes than that

of alpha-beta.
min P ./D P

max

10 8 10 8
SCOUT ALPHA-BETA

o Assume TEST.(p,5) is called by the root after the first branch of the
root is evaluated.

> It calls TEST- (K,5) which skips K’s second branch.

> TEST- (p,5) is FALSE, i.e., fails the test, after returning from the 3rd
branch.

> INNo need to do SCOUT for the branch rooted p.
e Alpha-beta needs to visit K’s second branch.

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©) 1].

Discussions for SCOUT (3/3)

SCOUT may pay many visits to a node that is cut off by
alpha-beta.

max (10, infinity)

TEST>(A,10): true

min A (10,25)
10 10
TEST<(B,25): true
max (10,25)
25
min
max

SCOUT ALPHA-BETA

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©) 12

Number of nodes visited (1/4)

For TEST to return TRUE for a subtree 7, it needs to evaluate
at least

> one child for a MAX node in T', and
> and all of the children for a MIN node in T'.

> IfT has a fixed branching factor b and uniform depth b, the number of nodes
evaluated is Q(b"/?) where (¢ is the depth of the tree.

For TEST to return FALSE for a subtree 7', it needs to evaluate
at least

> one child for a MIN node in T', and
> and all of the children for a MAX node in T'.

> IfT has a fixed branching factor b and uniform depth b, the number of nodes
evaluated is Q(b"/?).

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©) 13

Number of nodes visited (2/4)
- \ O~ - OR

—
§~~
—
—
—

~~

min AND ‘ ’ ‘\

- QQQC\)’OO 5060

min QQQ 0.. Q..
s OOO OOO OOO

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©) 14

Number of nodes visited (3/4)

Assumptions:

e Assume a full complete b-ary tree with depth /.
o The depth of the root, which is a MAX node, is 0.
o Assume / is even in the analysis.

[] [] E P
The total number of nodes in the tree is b;ill.

Hi: the minimum number of nodes visited by TEST when it
returns TRUE.

Hi= 14+14+b+b+b>+b2+b3+b>+ - 46271 4 pt/271 4 pt/2
= 2. (b0 4 b 4 b7 — b

_ 5 . b£/2+i—1 _ pl/2

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©) 15

Number of nodes visited (4/4)

Assumptions:

e Assume a full complete b-ary tree with depth /.
o The depth of the root, which is a MAX node, is 0.
o Assume / is even in the analysis.

Hs: the minimum number of nodes visited by alpha-beta.

H, — S @21 g pli2l)
= i b+ 3T b = e+ 1)
= S b+ Hy — (04 1)
(1+b+b+- -+ 402 402+ Hy — (£ + 1)
(H —14+b*)+ H — (£ +1)
2. Hy + V"% — (£+2)
2-Hyifb>3

'V

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©)

16

Comparisons

When the first branch of a node has the best value, then TEST
scans the tree fast.

e The best value of the first : — 1 branches is used to test whether the
1th branch needs to be searched exactly.

o If the value of the first : — 1 branches of the root is better than the
value of ith branch, then we do not have to evaluate exactly for the
1th branch.

Compared to alpha-beta pruning whose cut off comes from
bounds of search windows.

e It is possible to have some cut-off for alpha-beta pruning as long as
some relative move orderings are “good.”

> The moving orders of your children and the children of your ancestor
who is odd level up “together” decide a cut-off.

e The bounds are updated during searching.

> Sometimes, a deep alpha-beta cut-off occurs because a bound found
from your ancestor a distance away.

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©) 17

Performance of SCOUT (1/3)

A node may be visited more than once.
o First visit is to TEST.
e Second visit is to SCOUT.
> During SCOUT, it may be TESTed with a different value.

e Q: Can information obtained in the first search be used in the second
search?
SCOUT s a recursive procedure.

o For every node v in a branch that is not the first visited child of its
parent with a depthl| of /,

> every ancestor of v may initiate a TEST to visit v.
> It can be visited ¢ times by TEST.

I The depth of the root is defined to be O.

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©) 18

Performance of SCOUT (2/3)

Show great improvements on depth > 3 over brute-force
methods for games with small branching factors.

o It traverses most of the nodes without evaluating them preciously.
o Few subtrees remained to be revisited to compute their exact mini-max

values.
Show good improvement over alpha-beta on game trees with
certain characteristics.

Experimental data on the game of Kalah show [UCLA Tech
Rep UCLA-ENG-80-17, A comparison of the Alpha-Beta and
SCOUT algorithms using the game of Kalah, Noe 1980]:
o SCOUT favors “skinny” game trees, that are game trees with high
depth-to-width ratios.
> Q: why?
o On depth = 5, it saves over 40% of time.

o May not be good for games with large branching factors.
e Move ordering is very important.

> The first branch, if is good, offers a great chance of pruning further
branches.

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©)].9

Performance of SCOUT (3/3)

Comparing alpha-beta pruning and SCOUT [Pearl 1984] on

uniform game trees:
o Alpha-beta is always better than SCOUT in the experiments using
random game trees.

> In theory, when both are in their best cases, SCOUT cuts out more,
but this rarely happens in practice.

o Let 1, 4 = % where N,...: is the nodes searched using SCOUT and

N p is the nodes searched using alpha-beta on depth-d random-valued
game trees with a uniform branching factor of b.

1 < 19 < 1.275 for any positive integers b and d.

Tby,d = Thy,d if b1 < ba: ratio is closer when the branching factor is larger.
Tb,dy = Tb,dy If d1 < do: ratio is closer when the searching depth is larger.
2,20 1.04.

Tp20 ~ 1l: after depth > 20, the two are almost the same.

v VvV VvV VvV V

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©) 20

Comments

Q1:

o Currently, we use a “feasible” test to decide whether we need to search
this branch or not.

> If a new branch has a chance of larger than v, then we explore it in
details. Otherwise, we skip it.

o How about using the idea of “infeasible” test?

> If a new branch has no chance of larger than v, then we do not explore
it in details. Otherwise, we do.

e How about a hybrid approach?

> When to use one instead of the other?

Q2: What can we do with regard to the first branch?

o Can some previous values of some previous positions be used?
o When iterative deepening is used, can we use previous results?

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©) 21

Alpha-beta revisited

In an alpha-beta search with a window (alpha,beta):

o Failed-high means it returns a value that is larger than or equal to its
upper bound beta.

e Failed-low means it returns a value that is smaller than or equal to its
lower bound alpha.

Null or Zero window search:
o Using alpha-beta search with the window (m,m + 1).

> Can never happen in a normal alpha-beta pruning when starts with
(—o0,00).

e The result can be either failed-high or failed-low.
o Failed-high means the return value is at least m + 1.
> Equivalent to TEST- (p,m) is TRUE.

e Failed-low means the return value is at most m.
> Equivalent to TEST- (p,m) is FALSE.

The above argument works for the shallow fail hard (F'1),

general fail hard (F2) and general fail soft (F'3) versions of the
alpha-beta algorithm.

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©) 22

Behaviors of Null window search

When F2(p, m,m + 1,00) returns m + 1:

o for the MAX node p, returns immediately after the first child p;,, namely
the smallest index i, returning a value > m + 1.

o for the MIN node p;, every child p; ; returns a value > m + 1

o for each MAX node p; ;, returns immediately after the first child r; ; 1,
namely the smallest index k, returning a value > m + 1.

o

e Remark: F3(p,m,m + 1,00) returns a value > m + 1 in this case.

Exactly like the OR-AND tree shown in TEST-. when TEST s
passed.

We can observe similar behaviors when [2(p,m,m + 1,00)
returns m as if TEST is failed.
e Remark: F'3(p,m,m + 1,00) returns a value < m in this case.

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©) 23

Alpha-Beta + Scout

Intuition:

o Try to incooperate SCOUT and alpha-beta together.
o The searching window of alpha-beta if properly set can be used as
TEST in SCOUT.

o Using a searching window is better than using a single bound as in
SCOUT.

> TEST replies only on a value from the first branch.

> Using the values from a recursively maintained search window for TEST
can do more cutting.

o Can also apply alpha-beta cut if it applies.
Modifications to the SCOUT algorithm:

o Traverse the tree with two bounds as the alpha-beta procedure does.

> A searching window.
> Use the current best bound to guide the value used in TEST.

o Use a fail soft version to get a better result when the returned value
is out of the window.

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©) 24

The NegaScout Algorithm — Mini-Max (1/2)

Algorithm F'4'(position p, value alpha, value beta, integer depth)

o determine the successor positions p{,...,pp
e if b=0 // a terminal node

or depth =0 // depth is the remaining depth to search

or time is running up // from timing control

or some other constraints are met // apply heuristic here
o then return f(p) else

begin
> m := —oo // m is the current best lower bound; fail soft

m := max{m, G4'(p1, alpha, beta, depth — 1)} // the first branch
if m > beta then return(m) // beta cut off

> for ¢ := 2 to b do
> 9: t:= G4'(p;,m,m + 1,depth — 1) // null window search
> 10: ift > m then // failed-high

11: if (depth < 3 or t > beta)
12: then m :=1
13: else m := G4'(p;, t, beta, depth — 1) // re-search
> 14: if m is max possible or m > beta then return(m) // beta cut off

end
e return m

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©) 25

The NegaScout Algorithm — Mini-Max (2/2)

Algorithm G4'(position p, value alpha, value beta, integer depth)

o determine the successor positions p{,...,pp
e if b=0 // a terminal node

or depth =0 // depth is the remaining depth to search

or time is running up // from timing control

or some other constraints are met // apply heuristic here
o then return f(p) else

begin
> m = oo // m is the current best upper bound; fail soft

m := min{m, F'4'(p1, alpha, beta, depth — 1)} // the first branch
if m < alpha then return(m) // alpha cut off

> for ¢ := 2 to b do
> 9: t:= F4'(p;,m — 1, m,depth — 1) // null window search
> 10: ift < m then // failed-low

11: if (depth < 3 or t < alpha)
12: then m :=1
13: else m := F4'(p;, alpha,t,depth — 1) // re-search
> 14: if m is min possible or m < alpha then return(m)// alpha cut off

end
e return m

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©) 26

NegaScout — Mini-Max version (1/2)
39 ()

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©)

27

NegaScout — Mini-Max version (2/2)
3.9 (

3.9 2

”~
”
”
~”

3.9 4~

~75

C (4’5), 4.5) @ @

i’ \X (re-search)
¥y /15 (4,5)’ I3 \\\\

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©)

28

The NegaScout Algorithm

Use Nega-MAX format.
Algorithm F'4(position p, value alpha, value beta, integer depth)

e determine the successor positions p;,...,pp
e if b=0 // a terminal node

or depth =0 //depth is the remaining depth to search

or time is running up // from timing control

or some other constraints are met // apply heuristic here
o then return h(p) else

> m := —oo // the current lower bound; fail soft

> n := beta // the current upper bound
> for 1 :=1 to b do
> 9: t:= —F4(p;, —m, —max{alpha, m}, depth — 1)
> 10: ift > m then
11: if (n = beta or depth < 3 or t > beta)
12: then m =t
13: else m := — F4(p;, —beta, —t,depth — 1) // re-search

> 14: if m is max possible or m > beta then return(m) // cut off
> 15: n := max{alpha,m} + 1 // set up a null window

e return m

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©) 29

Search behaviors (1/3)

If the depth is enough or it is a terminal position, then stop
searching further.

o Return h(p) as the value computed by an evaluation function.

e Note:

h(p) = f(p) if depth of p is 0 or even
b —f(p) if depth of p is odd

Fail soft version.

Search the first child p; using the normal alpha beta window.
e line 9: normal window for the first child
> the initial value of m is —oo, hence —max{alpha, m} = —alpha
> m is the current best value

> that is, equivalent to
9: t:= —F4(p;, —beta, —alpha, depth — 1)
searching with the normal window (alpha, beta)

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©) 30

Search behaviors (2/3)

For the second child and beyond p;, ¢« > 1, first perform a null
window search for testing whether m is the answer.

e line 9: a null-window of (n — 1,n) searches for the second child and
beyond where n = maz{alpha, m} + 1.
> m is best value obtained so far
> alpha is the previous lower bound
> m’s value will be first set at line 12 because n = beta
> The value of n = max{alpha, m} + 1 is set at line 15.

e line 11:

> If n = beta, we are at the first iteration.

> If depth < 3, we are on a smaller depth subtree, i.e., depth at most 2,
NegaScout always returns the best value.

> Ift > beta, we have obtained a good enough value from the failed-soft
version to guarantee a beta cut.

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©) 31

Search behaviors (3/3)

For the second child and beyond p;, ¢« > 1, first perform a null
window search for testing whether m is the answer.

o line 11: on a smaller depth subtree, i.e., depth at most 2, NegaScout
always returns the best value.

> Normally, no need to do alpha-beta or any enhancement on very small
subtrees.

> The overhead is too large on small subtrees.

o line 13: re-search when the null window search fails high.
> The value of this subtree is at least t.

> This means the best value in this subtree is more than m, the current
best value.

> This subtree must be re-searched with the the window (t, beta).
o line 14: the normal pruning from alpha-beta.

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©) 32

Example for NegaScout

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©)

33

Refinements

When a subtree is re-searched, it is best to use information on
the previous search to speed up the current search.

o Restart from the position that the value ¢ is returned.
Maybe want to re-search using the normal alpha-beta procedure.

F'4 runs much better with a good move ordering and some form
of a transposition table which will be introduced later.

o Order the moves in a priority list.
e Reduce the number of re-searching’s.

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©) 34

Performances

Experiments done on a uniform random game tree [Reinefeld

1983].

e Normally superior to alpha-beta when searching game trees with
branching factors from 20 to 60.
e Shows about 10 to 20% of improvement.

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©) 35

Comments

Incooperating both SCOUT and alpha-beta.
Used in state-of-the-art game search engines.
The first search, though maybe unsuccessful, can provide useful

information in the second search.
¢ Information can be stored and then reused.

Using TEST in SCOUT to do the first search because it has a
chance to visit less nodes than that of ALPHA-BETA.

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©) 36

References and further readings

* J. Pearl. Asymptotic properties of minimax trees and game-
s%ar(():hing procedures. Artificial Intelligence, 14(2):113-138,
1980.

A. Reinefeld. An improvement of the scout tree search
algorithm. ICCA Journal, 6(4):4-14, 1983.

Noe, T. A comparison of the Alpha-Beta and SCOUT algorithms
using the game of Kalah Technical Report UCLA-ENG-80-17,
Cognitive Systems Laboratory, University of California, Los
Angeles, 1980.

Pearl, Judea. Heuristics: intelligent search strategies for

computer problem solving. Addison-Wesley Longman Publishing
Co., Inc., 1984.

TCG: Scout and NegaScout, 20251113, Tsan-sheng Hsu (©) 37

