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Abstract

Introduce heuristics to improve the efficiency of alpha-beta
based searching algorithms.

• Re-using information: Transposition table.
▷ Can also be used in MCTS based searching.

• Adaptive searching window size.
• Better move ordering.
• Dynamically adjusting the searching depth.

▷ Decreasing
▷ Increasing

Study the effect of combining multiple heuristics.
• Each enhancement should not be taken in isolation.
• Try to find a combination that provides the greatest reduction.

Be careful on the game trees to study.
• Artificial game trees.
• Depth, width and leaf-node evaluation time.
• A heuristic that is good on the current experiment setup may not
be good some years in the future because the the same game tree
can be evaluated much deeper under the same timing by using faster
hardware, e.g., CPU.

TCG: Enhancements, 20251127, Tsan-sheng Hsu © 2



Enhancements and heuristics

Always used enhancements
• Alpha-beta, NegaScout or Monte-Carlo search based algorithms
• Iterative deepening
• Transposition table
• Knowledge heuristic: using domain knowledge to enhance the design
of evaluation functions or to make the move ordering better.

Frequently used heuristics
• Aspiration search
• Refutation tables
• Killer heuristic
• History heuristic

Some techniques about aggressive forward pruning
• Null move pruning
• Late move reduction

Search depth extension
• Conditional depth extension: to check doubtful positions.
• Quiescent search: to check forceful variations.
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Transposition tables (TT)

We are searching a game graph, not a game tree.
• Interior nodes of game trees are not necessarily distinct.
• It may be possible to reach the same position by more than one path.

▷ Save information obtained from searching into a transposition table.
▷ When being to search a position, first check whether it has been

searched before or not.
▷ If yes, reuse the information wisely.

Several search engines, such as NegaScout, need to re-search
the same node more than once.

• Anything with interactive deepening also do.
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Usage of TT: Illustration

(1) first visit 
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transposition
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      in TT 
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Usage of TT: Illustration
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(3) finish searching T
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(4) store result
 into TT and return
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Usage of TT: Illustration
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Transposition tables: contents

What are recorded in an entry of a transposition table?
• The position p.

▷ Note: the position also tells who the next player is.

• Searched depth d.
• Best value in this subtree of depth d.

▷ Can be an exact value when the best value is found.
▷ Maybe a value that causes a cutoff.

→ In a MAX node, it says at least v when a beta cut off occurred.
→ In a MIN node, it says at most v when an alpha cut off occurred.

• Best move, or the move caused a cut off, for this position.
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Transposition tables: updating rules

It is usually the case that at most one entry of information for
a position is kept in the transposition table.
When it is decided that we need to record information about a
position p into the transposition table, we may need to consider
the followings.

• If p is not currently recorded, then just store it into the transposition
table.

▷ Be aware of the fact that p’s information may be stored in a place that
previously occupied by another position q and p ̸= q, i.e., hash clash.

▷ In most cases of hash crashes, we simply overwrite.

• If p is currently recorded in the transposition table, then we need a
good updating rule.

▷ Some programs simply overwrite with the latest information.
▷ Some programs compare the depth, and use the one with a deeper

searching depth when the value is exact.
−→ When the searching depths are the same,
one normally favors one with the latest information.

▷ In the case of bounds being stored,
−→ When the searching depths are the same,
one normally use better bounds

TCG: Enhancements, 20251127, Tsan-sheng Hsu © 10



Alpha-beta (Mini-Max) with memory

Algorithm F4.1′(position p, value alpha, value beta, integer
depth) // MAX node

• check whether a value of p has been recorded in the transposition table

• if yes, then TT HITS code!!
•
• · · ·
begin

▷ m := max{m,G4.1′(p1, alpha, beta, depth − 1)} // the first branch
▷ if m ≥ beta then return(m) // beta cut off
▷ for i := 2 to b do
▷ · · · recursive call
▷ 14: if m ≥ beta then { record into the TT as a lower bound m; return

m } // beta cut off

end
• if m > alpha then record into the TT as an exact value m
else record into the TT as an upper bound m;

• return m

TCG: Enhancements, 20251127, Tsan-sheng Hsu © 11



TT hit: discussions

Be careful to check whether the position is exactly the same.
• The turn, or who the current player is, is crucial in deciding whether
the position is exactly the same.

• To make it easy, usually positions to be played by different players are
stored in different tables.

The recorded entry consists of five parts:
• the position p hashed which can be its hash key;
• the value m′;
• the depth depth′ where it was recorded;
• a 3-way flag exact indicating whether it is

▷ an exact value;
▷ a lower bound value causing a beta cut; or
▷ an upper bound value causing an alpha cut;

• the child p′ where m′ comes from or causing a cut to happen.
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TT hit: code

May consider using p′ in the move ordering.
If depth′ < depth, namely, we have searched the tree shallower
before, then normally

▷ cannot use it in the current searching;
▷ may use this information in making the move ordering of p’s parent better.

If depth′ ≥ depth, namely, we have searched the tree not
shallower before.

• It is an exact value.
▷ Immediately return m′ as the search result.

• It is a lower bound.
▷ Raise the alpha value by

alpha = max{alpha,m′}
▷ Check whether this causes a beta cut!

• It is an upper bound.
▷ Lower the beta value by

beta = min{beta,m′}
▷ Check whether this causes an alpha cut!
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TT hit: comments

The above code F4.1′ is the code for the MAX node.
• Need to write similarly for the MIN node G4.1′.
• Need to take care of the NegaMAX version F4.1.

Reasons you need to make “turn” into the TT design.
• Sometimes, it is possible a legal arrangement of pieces on the board
can be reached by both players.

▷ In Go, a player can pass.
▷ In Chinese dark chess, a cannon can capture an opponent piece at a

location whose Manhattan distance is an even number in one ply.

• When you do null move pruning (see later slides for details).
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Comments

Fundamental assumptions:
• Values for positions are history independent.
• The deeper you search, the better result you get.

▷ Better in the sense of shorter in the “distance” to the real value of the
position.

Need to be able to locate a position p in the transposition
table, which is large, efficiently.

• Using a very large transposition table may not be the best.
▷ Only some nodes are re-searched frequently.
▷ Searching in a very large database is time consuming.

• Some kinds of hash is needed for locating p efficiently.
▷ Binary search is normally not fast enough for our purpose.

Need to consider a transposition table aging mechanism.
• Q: Do we really need to reuse information obtained from search a long
time or many plys ago?

• Clear a large transposition table takes time.
• Need to weight between the time used in cleaning the transposition
table and the mis-information obtained from out of dated information.
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Zobrist’s hash function

Find a hash function hash(p) so that with a very high probability
that two distinct positions do not have the same hash value.
Using bit-wise XOR to realize fast computation.
Properties of XOR, which is an operator of a commutative
group in abstract algebra on the domain of binary strings:

• associativity: x XOR (y XOR z) = (x XOR y) XOR z
• commutativity: x XOR y = y XOR x
• identity: x XOR 0 = 0 XOR x = x
• self inverse: x XOR x = 0
• undo: (x XOR y) XOR y = x XOR (y XOR y) = x XOR 0 = x

x XOR y is uniformly random if x and y are also uniformly
random

• A binary string is uniformly random if each bit has an equal chance of
being 0 and 1.

• Not all operators, such as OR and AND, can preserve uniform random-
ness.
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Hash function: design

Assume there are k different pieces and each piece can be
placed into r different locations in a 2-player game with red and
black players.

• Obtain k · r random numbers in the form of s[piece][location]
• Obtain another 2 random numbers called color[red] and color[blk].

Given a position p with next being the color of the next player
that has x pieces where qi is the ith piece and li is the location
of qi.

• hash(p) = color[next] XOR s[q1][l1] XOR · · · XOR s[qx][lx]

Comment: can be extended to games with arbitrary number of
players, kinds of pieces, and number of pieces.
We can also remove color[next] from the hash design and
maintain 2 hash tables, one for each player.

• This version will be used in this lecture from now on.
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Hash function: update (1/2)

hash(p) can be computed incrementally in O(1) time.
• Note that computing hash(p′) from scratch takes time that is linear in
the size of p which is the number of pieces in p.

• Assume p′ = p+m where m is a ply.
• Assume we have computed and store hash(p).
• How to obtain hash(p′) efficiently?

Basic operations:
• If m is to place a new piece qx+1 is placed at location lx+1, then

▷ hash(p′) = hash(p) XOR s[qx+1][lx+1].

• If m is to remove a piece qy from location ly, then
▷ hash(p′) = hash(p) XOR s[qy][ly].

• If m is to change the next player from next to ¬next, namely, pass,
then

▷ Version with color code:
hash(p′) = hash(p) XOR color[next] XOR color[¬next]
first remove the effect of “XOR color[next]” from hash(p), then add
the effect of “XOR color[¬next]”;

▷ Version without the color code: switch to the other hash table.
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Hash function: update (2/2)

Advanced operations:
• A piece qy is moved from location ly to location l′y then

▷ first remove qy from location ly, then place it at location l′y;

▷ hash(p′) = hash(p) XOR s[qy][ly] XOR s[qy][l
′
y].

• A piece qy is moved from location ly to location l′y and captures the
piece q′y at l′y then

▷ first remove qy from location ly, then remove q′y from location l′y, and

finally place qy at location l′y;

▷ hash(p′) = hash(p) XOR s[qy][ly] XOR s[qy][l
′
y] XOR s[q′y][l

′
y].

• · · ·
Can use the above primitives to assembly almost, if not all,
game playing plys.
It is also easy to undo a ply.

• Perform the XOR operations for the ply again to undo it.
• It is needed in a DFS-like search to undo a move when backtracking is
performed.
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Practical issues (1/2)

Normally, design a hash table H of 2n entries, but with a longer
key length of n+m bits.

• That is, color[next] and each s[piece][location] are random values each
of n+m bits.

• Hash key = hash(p) is n+m bits long.
• Hash index = hash(p) mod 2n.
• Store the hash key to compare when there is a hash hit.

▷ Longer hash keys ensure better the chance of finding false positive
entries.

▷ Usually ≥ 64 bits, and better to be ≥ 128 bits.

How to store/update a hash entry?
• Store it when the entry is empty.
• Use a good updating rule to replace an old entry.
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Practical issues (2/2)

How to match an entry?
• First compute hash index i = hash(p) mod 2n

• Compare hash(p) with the stored key in the ith entry H[i].key to decide
whether we have a hit.

• Since the error rate is very small, if m is large enough, there is no need
to store the exact position in making a comparison.

• Sanity check:
▷ Check whether the stored best move is a legal move in the current

position or not.
▷ This will avoid the extreme case of happening of a rare error further

by a minimal cost.
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Clustering of errors

Errors
• Hash collision

▷ Two distinct positions store in the same hash entry, namely have the
same hash index.

• Hash clash
▷ Two distinct positions have the same hash key.

Though the hash codes are uniformly distributed, the idiosyn-
crasies of a particular problem may produce an unusual number
of clashes.

• if hash(p∗) = hash(p+), then
▷ adding the same pieces at the same locations to positions p∗ and p+

produce the same clashes;
▷ removing the same pieces at the same locations from positions p∗ and

p+ produce the same clashes.
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Error rates

Estimation of the error rate:
• Assume this hash function is uniformly distributed.
• The chance of error for hash clash is 1

2n+m.
• Assume during searching, 2w nodes are visited.
• The chance of no clash in these 2w visits is

P = (1− 1

2n+m
)2

w
≃ (

1

e
)2

−(n+m−w)
.

▷ When n + m − w is 5, P ≃ 0.96924.
▷ When n + m − w is 10, P ≃ 0.99901.
▷ When n + m − w is 20, P ≃ 0.99999904632613834096.
▷ When n + m − w is 32, P ≃ 0.99999999976716935638.

• Currently (since 2015):
▷ n ≤ 32, and is hardware dependent
▷ w ≤ 34, and is related to resources used in searching.
▷ n+m = 128 or at least 64 which may not be enough for a large w, and

is also hardware related
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Comments

Zobrist’s hash function is now the standard technique used for
implementing the transposition table.
A very good technique that is used in many applications
including most game playing codes even the ones that use
Monte-Carlo search engines.
Quality of the random keys is crucial in this design. It is
important to spend some efforts to test the quality of the set
of random keys picked.
A must have when you want to efficiently find patterns that
change incrementally.
Can be used in many other applications.

• pattern based with a finite set of basic components
• an upper bound on the area is known in advance
• example: VLSI layout, text documents, line drawings
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Intuitions for possible enhancements

The size of the search tree built by a depth-first alpha-beta
search largely depends on the order in which branches are
considered at interior nodes, namely move ordering.

• It looks good if one can search the best possible subtree first in each
interior node.

• A better move ordering normally means a better way to prune a tree
using alpha-beta search.

Enhancements to the alpha-beta search have been proposed
based on one or more of the following principles:

• knowledge;
• window size;
• better move ordering;
• approximated heuristics:

▷ forward pruning;
▷ dynamic search extension;
▷ · · ·
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Knowledge heuristic

Use game domain specified knowledge to obtain a good
• move ordering;
• evaluation function.

Moves that are normally considered good for chess like games:
• Winning moves
• Moves avoiding losing (unchecking)
• Checking moves
• Capturing/avoid-capturing moves

▷ Favor capturing pieces of important.
▷ Favor capturing pieces using pieces as little as possible for capturing

symmetry games such as chess because any piece moved can be at-
tacked.

▷ Favor capturing pieces using pieces as large as possible for capturing
un-symmetry games such as Chinese dark chess because a large piece
moved is less easy to be attacked.

• Moving of pieces with larger material values.

Search good moves first can find the best move faster in any
search engine based in alpha-beta or MCTS.

• This is also a must have technique.
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Aspiration search

It is seldom the case that you can greatly increase or reduce
your chance of winning by playing only one or two plys.
The normal alpha-beta search usually starts with a (−∞,∞)
search window.
If some idea of the range of the search will fall is available, then
tighter bounds can be placed on the initial window.

• The tighter the bound, the faster the search.
• Some possible guesses:

▷ During iterative deepening, assume the previous best value is x, then
use (x − threshold, x + threshold) as the initial window size where
threshold is a small value.

If the value falls within the window then the original window is
adequate.
Otherwise, one must re-search with a wider window depending
on whether it fails high or fails low.
Reported to be at least 15% faster than the original alpha-beta
search when a good heuristic is used [Schaeffer ’89].
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Aspiration search — Algorithm

Iterative deepening with aspiration search.
• p is the current board
• limit is the limit of searching depth, assume limit > 3
• threshold is the initial window size

Algorithm IDAS(p,limit,threshold)
• best := F4(p,−∞,+∞,3) // initial value
• current depth limit := 4
• while current depth limit <= limit do

▷ m := F4(p,best − threshold,best + threshold,current depth limit)
▷ if m ≤ best − threshold then // failed-low

m := F4(p,−∞,m,current depth limit)
▷ else if m ≥ best + threshold then // failed-high

m := F4(p,m,∞,current depth limit)
▷ endif
▷ endif
▷ best := m // found
▷ if another deeper search cannot be done in the remaining time then

return best
▷ current depth limit := current depth limit + 1

• return best
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IDAS: comments

May want to try incrementally reshaping of window sizes.
• For example, use 2 levels t1 and t2 where t1 < t2.
• try [best− t1, best+ t1] first.
• If the returned value best1 is exact, then use it.
• If failed low, try [best1 − t2, best1].
• If failed high, try [best− 1, best+ t2].
• · · ·
• Need to decide the values of ti’s via experiments.

Aspiration search is better to be used together with a
transposition table so that information from the previous search
can be reused later.
Ideas here may also be helpful in designing a better progressive
pruning policy for Monte-Carlo based search.
Take a tiny effort to implement.
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Iterative deepening: comments

It is better to increase the search depth each time by 2 because
stopping at an odd level is usual too optimistic for the root
player.
Before you start the next round of deeper search, try to
estimate whether you have a chance to finish it in time or not.

• If not, do not waste time for the new round.
• Save the time for future usage.

You may want to use the optimal ply obtained from last
searching as an important reference for move ordering in this
new and deeper search.
Assume you have obtained a value vℓ and a best ply mℓ from
completely searching of depth=ℓ.

• In searching deeper depth of ℓ+ 2, time is running up.
• If none of the branches rooted at the root is completely searched, then
return vℓ and mℓ.

• If you have completely searched some branches of the root, then use
the best value so far obtained from these branches.

• Do not use any value that is obtained from incompletely searching a
branch of the root.
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Better move ordering

Intuition: the game evolves continuously.
• What are considered good or bad in previous few plys cannot be off
too much or too often in this ply.

• If iterative deepening or aspiration search is used, then what are
considered good or bad in the previous iteration cannot be off too
much or too often at this iteration.

Techniques:
• Refutation table.
• Killer heuristic.
• History heuristic.

TCG: Enhancements, 20251127, Tsan-sheng Hsu © 31



What moves are good?

In alpha-beta search, a sufficient, or good, move at an interior
node is defined as

• the one yielding the best minimax score i.e., in PV, or
▷ Example: move from 1 to 1.1.

• the one that is a sibling of the chosen one that yields the best minimax
score and has the same best score, or

• one causes a cutoff.
▷ Remark: this move is potentially good for its parent u, though a cutoff

happens may depend on the values of u’s older siblings.
▷ Example: move from 1.2 to 1.2.1.

1 2

cut

1.1 1.2

1.2.1 1.2.2

V=8

V<=8

V=13

V >= 13

TCG: Enhancements, 20251127, Tsan-sheng Hsu © 32



PV path

For each iteration, the search yields a path for each move
from the root to a leaf node that results in either the correct
minimax value or an upper bound on its value.

• This path is often called principal variation (PV) or principal continua-
tion.

Q: What moves are considered good in the context of
Monte-Carlo simulation?

• Can information in Monte-Carlo search accumulated in the previous
plys be used in searching this ply?
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Refutation tables

Assume using iterative deepening with a current search depth
limit of current depth limit which is bounded by the overall
depth limit limit.

• Store the current best principal variation at Pcurrent depth limit,i for
each depth i at the current depth limit current depth limit.

• PV [i][j] is the jth node on the PV when search limit is i.
The PV path from the current depth limit = d−1 ply search can
be used as the basis for the search to current depth limit = d
ply at the same depth.
Searching the previous iteration’s path or refutation for a move
as the initial path examined for the current iteration will prove
sufficient to refute the move one ply deeper.

• When searching a new node at depth i for the current depth limit
current depth limit,

▷ try the move made by this player at Pcurrent depth limit−1,i first;
▷ then try moves made by this player at Pcurrent depth limit−2,i;
▷ · · ·

• Remark: need to make sure it is a legal move for this node at this
moment.
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How to store the PV path

Algorithm F4.2′(position p, value alpha, value beta, integer
depth)

• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node
· · ·

• then return f(p) else
begin

▷ m := −∞ // m is the current best lower bound; fail soft
m := max{m,G4.2′(p1, alpha, beta, depth − 1)} // the first branch
PV [current depth limit, depth] := p1;
if m is max or m ≥ beta then return(m) // beta cut off

▷ for i := 2 to b do
▷ 9: {t := G4.2′(pi,m,m + 1, depth − 1) // null window search
▷ 10: if t > m then // failed-high

{PV [current depth limit, depth] := pi;
11: if (depth < 3 or t ≥ beta)
12: then m := t
13: else m := G4.2′(pi, t, beta, depth − 1)} // re-search

▷ 14: if m is max or m ≥ beta then return(m)} // beta cut off

end
• return m
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How to use the PV

Use the PV information to do a better move ordering.
• Assume the current depth limit from iteration deepening is
current depth limit.

Algorithm F4.2.1′(position p, value alpha, value beta, integer
depth)

• determine the successor positions p1, . . . , pb
• // get a better move ordering by using information stored in PV
• k = 0;
• for i = current depth limit− 1 downto 1 do

if PV [i, depth] = px and d ≥ x > k, then
▷ swap px and pk; // make this move the kth move to be considered
▷ k := k + 1

• · · ·
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Killer heuristic

A compact refutation table.
Storing at each depth of search the moves which seem to be
causing the most cutoffs, i.e., so called killers.

• Currently, store two most recent best moves at this depth.

The next time the same depth in the tree is reached, the killer
moves are retrieved and used first in searching, if it is valid in
the current position.
Good codes can be written to efficiently maintain the latest
two best moves at depth i in KILLER[i, 0] and KILLER[i, 1].
Comment:

• It is plausible to record more than two killer moves. However, the time
to maintain them may be too much.

• Most search engines now record 2 killer moves.
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Killer heuristic — sample code

The next time the same depth in the tree is reached, the killer
moves are retrieved and used first in searching, if it is valid in
the current position.
Good codes can be written to efficiently maintain the latest
two best moves at depth i in KILLER[i, 0] and KILLER[i, 1].

• Always make sure KILLER[i, 0] occurs before KILLER[i, 1] so that it can
reused effectively.

• Let b be the newly found good move.
• if KILLER[i, 0] is empty then KILLER[i, 0] = b // killers are empty
• else if b == KILLER[i, 0] then

▷ if KILLER[i, 1] is not empty // killer 1 is older //
▷ then swap KILLER[i, 0] and KILLER[i, 1]

• else if b ̸= KILLER[i, 1] then
▷ // flush out killer 0
▷ KILLER[i, 0] = KILLER[i, 1]
▷ KILLER[i, 1] = b
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History heuristic

Intuition:
• A move m is shown to be the best in one position p.
• Later on in the search tree a similar position p′ may occur, perhaps
only differing in the location of one piece.

▷ A position p and a position p′ obtained from p by making one or two
moves are likely to share important features.

• Minor difference between p and p′ may not change the position enough
so that a ply m is best in p, but is very bad in p′.

Recall: In alpha-beta search, a sufficient, or good, move at an
interior node is defined as

• the one yielding the best minimax score, or
• a move that is “equivalent” to the best move in terms of score, or
• one causes a cutoff
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Implementation (1/2)

Keep track of the history on what moves were good before.
• Assume the board has q different locations.
• Assume each time only a piece can be moved.
• There are only q2 possible moves.
• Including more context information, e.g., the piece that is moved, does
not significantly increase performance.

▷ If you carry the idea of including context to the extreme, the result is
a transposition table.

The history table.
• In each entry, use a counter to record the weight or chance that this
entry becomes a good move during searching.

▷ May use different weights for cutoff moves or truly best moves.

• Be careful: a possible counter overflow.
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Implementation (2/2)

Each time when a move is good, increases its counter by a
certain weight.

• During move generation, pick one with the largest counter value.
▷ Need to access the history table and then sort the weights in the move

queue.

• The deeper the subtree searched, the more reliable the minimax value
is, except in pathological trees which are rarely seen in practice.

• The longer the tree searched, and hence larger, the greater the
differences between two arbitrary positions in the tree are, and less
they may have in common.

• By experiment: let weight = 2depth, where depth is the depth of the
subtree searched.

▷ Several other weights, such as 1 and depth, were tried and found to be
experimentally inferior to 2depth.

Killer heuristic is a special case of the history heuristic.
• Killer heuristic only keeps track of one or two successful moves per
depth of search.

• History heuristic maintains good moves for all depths.
History heuristic is very dynamic.
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History heuristic: counter updating

Algorithm F4.3′(position p, value alpha, value beta, integer
depth)

• determine the successor positions p1, . . . , pb
• if b = 0 then return f(p) else// a terminal node
• begin

▷ m := −∞ // m is the current best lower bound; fail soft
m := max{m,G4.3′(p1, alpha, beta, depth − 1)} // the first branch
where := 1; // where is the child best comes from
if m is max or m ≥ beta then { HT [p1] += weight1; return(m)} //
beta cut off

▷ for i := 2 to b do
▷ 9: {t := G4.3′(pi,m,m + 1, depth − 1); // null window search
▷ 10: if t > m then // failed-high

{where := i; // where is the child best comes from
11: if (depth < 3 or t ≥ beta)
12: then m := t
13: else m := G4.3′(pi, t, beta, depth − 1)} // re-search

▷ 14: if m is max or m ≥ beta then {HT [pi] += weight1; return(m)}}
// beta cut off

end
• HT [pwhere] += weight2; return m
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History heuristic: usage of the counter

Algorithm F4.3.1′(position p, value alpha, value beta, integer
depth)

• determine the successor positions p1, . . . , pb
• order the legal moves p1, . . . , pb according to their weights in HT[ ]
• // Good sorting codes are needed here to sort a short list of values.
• · · ·
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Comments: better move ordering

Need a good sorting routine in F4.3.1′ to order the legal moves
according to their history values.

• The number of possible moves is small.
▷ Better sorting methods are known for very small number of objects.

Need to take care of the case for counter overflowing.
• Need to perform counter aging periodically.

▷ That is, discount the value of the current counter as the game goes.
▷ For example after a second has past, HT [i] >>= 1
▷ This also makes sure that the counter value reflects the “current” sit-

uation better, and to make sure it won’t be overflowed.

Ideas here may also be helpful in designing a better node
expansion policy for Monte-Carlo based search.
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Experiments: Setup

Try out all possible combinations of heuristics.
• 6 parameters with 64 different combinations.

▷ Transposition table
▷ Knowledge heuristic
▷ Aspiration search
▷ Refutation tables
▷ Killer heuristic
▷ History heuristic

Searching depth from 2 to 5 for all combinations.
• Applying searching upto the depth of 6 to 8 when a combination
showed significant reductions in search depth of 5.

A total of 2000 VAX11/780 equivalent hours are spent to
perform the experiments [Schaeffer ’89].
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Experiments: Results

Using a single parameter:
▷ History heuristic performs well, but its efficiency appears to drop after depth

7.
▷ Knowledge heuristic adds an additional 5% time, but performs about the same

with the history heuristic.
▷ The effectiveness of transposition tables increases with search depth.
▷ Refutation tables provide constant performance, regardless of depth, and ap-

pear to be worse than transposition tables.
▷ Aspiration and minimal window search provide small benefits.

Using two parameters
▷ Transposition tables plus history heuristic provide the best combination.

Combining three or more heuristics do not provide extra
benefits.
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Comments

Combining two best heuristics may not give you the best.
• This conclusion is implementation and performance dependent.

Need to weight the amount of time spent in realizing a heuristic
and the benefits it can bring.
Need to be very careful in setting up the experiments.
With the ever increasing CPU speed, it may be profitable to
use more than 2 techniques now.
Better tools and techniques, such as hyper parameter optimiza-
tion and gradient descent, are known now from deep learning
studies to fine tune parameters.
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Dynamically adjusting searching depth

Aggressive forward pruning: do not search too deep on branches
that seem to have little chance of being the best.

• Null move pruning
• Late move reduction

Search depth extension: search a branch deeper if a side is in
“danger”.

• Conditional depth extension: to check doubtful positions.
• Quiescent search: to check forceful variations.

Comments:
• Similar ideas are shared by MCTS search by spending less time in
hopeless branches, and more time in hopeful branches.

• Spend at least some time in seems hopeless branches.
• Maybe possible to come out with a hybrid technique.
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Null move pruning — MAX node

In general, if you forfeit the right to move and can still maintain
the current advantage in a small number of plys played later,
then it is usually true you can maintain the advantage in a
larger number of plys later if you do not forfeit the right to
move.
Algorithm:

• It’s your turn to move (MAX node); the searching depth for this node
is depth with a search window of (α, β).

• Make a null move, i.e., assume you do not move and let the opponent
move again.

▷ Perform an null-window [beta − 1, beta] alpha-beta search with a re-
duced depth (depth−R), where R is a constant decided by experiments.

▷ If the returned value v is at least beta, then apply a beta cutoff and
return v as the value.
⇒ Allowing your opponent to move twice does not produce a better,
lower valued score — lower than β, position for him.

▷ If v < beta, namely does not produce a cutoff, then do the normal
alpha-beta search.

Similar ideas work for the case of your opponent’s turn to move.
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Null move pruning — MAX node

Algorithm F4.4′(position p, value alpha, value beta, integer
depth, Boolean in null)

• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node
· · ·

• then return f(p) else begin
▷ If depth ≤ R + 3 or in null or dangerous, then goto Skip;
▷ // null move pruning

▷ null score := G4.4′(p′, beta − 1, beta, depth − R − 1, TRUE) // p′ is
the position obtained by switching the player in p, and R is usually 2

▷ if null score is max or null score ≥ beta return null score // null
move pruning

▷ Skip: // normal alpha-beta search
▷ m := −∞ // m is the current best lower bound; fail soft

▷ m := max{m,G4.4′(p1, alpha, beta, depth − 1, in null)}
▷ if m is max or m ≥ beta then return(m) // beta cut off
▷ for i := 2 to b do
▷ · · ·

end
• return m
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Null move pruning — MAX node illustration
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Null move pruning — MIN node

If your opponent forfeit the right to move and can still maintain
the current advantage in a small number of plys played later,
then it is usually true your opponent can maintain the advantage
in a larger number of plys later if he do not forfeit the right to
move.

• Note that a score that is good to your opponent is bad to you.
Algorithm:

• It’s your opponent’s turn to move; the searching depth for this node is
depth with a search window (α, β).

• Make a null move, i.e., assume your opponent do not move and let
you move again.

▷ Perform an null-window [alpha, ahpha + 1] alpha-beta search with a
reduced depth (depth − R), where R is a constant decided by experi-
ments.

▷ If the returned value v is at most alpha, then apply an alpha cutoff
and return v as the value.
⇒ Allowing you to move twice and you cannot find a better position,
score more than α, then it is no needed to consider this branch.

▷ If v > alpha, namely does not produce a cutoff, then do the normal
alpha-beta search.

TCG: Enhancements, 20251127, Tsan-sheng Hsu © 52



Null move pruning — MIN node algorithm

Algorithm G4.4′(position p, value alpha, value beta, integer
depth, Boolean in null)

• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node
· · ·

• then return f(p) else begin
▷ If depth ≤ R + 3 or in null or dangerous, then goto Skip;
▷ // null move pruning

▷ null score := F4.4′(p′, alpha, alpha+ 1, depth−R− 1, TRUE)// p′ is
the position obtained by switching the player in p, and R is usually 2

▷ if null score is min or null score ≤ alpha return null score // null
move pruning

▷ Skip: // normal alpha-beta search
▷ m := ∞ // m is the current best upper bound; fail soft

▷ m := min{m,F4.4′(p1, alpha, beta, depth − 1, in null)}
▷ if m is min or m ≤ alpha then return(m) // alpha cut off
▷ for i := 2 to b do
▷ · · ·

end
• return m
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Null move pruning — MIN node illustration

alpha−beta prune

1 2V=15

2.2 cut

[15,−−]

2.1

V=9

V <=9

2.3

1 2

cut

null move prune

...

...

R

[15,−−]

V=15

2.1
2.2

2.1’

3

2.3

V’<=15

TCG: Enhancements, 20251127, Tsan-sheng Hsu © 54



Null move pruning: analysis

Assumptions:
• The depth reduced, R, is usually 2 or 3.
• The advantage of doing a null move can offset the errors produced
from doing a shallow search.

• Usually do not apply null move pruning when
▷ your king is in danger, e.g., in check;
▷ when the number of remaining pieces is small;
▷ when there is a chance of Zugzwang;
▷ when the number of remaining depth is small, for example ≤ R + 3.

• It is usually not a good idea to do this recursively, i.e., when in null
flag is true.

Performance is usually good with about 10 to 30 % improve-
ment, but needs to set the parameters right in order not to
prune moves that need deeper search to find out their true
values [Heinz ’00].
Do not store the null move cut off into the transposition table
since it cuts off a node that does not need to be searched by
its parent due to the goodness of an older sibling.
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Late move reduction (LMR)

Assumption:
• Move ordering is relatively good.

▷ Verify this experimentally.

Observation:
• During search, the best move rarely comes from moves that are ordered
very late in the move queue.

How to make use of the observation:
• If the first K, say K = 3 or 4, moves considered do not produce a value
that is better than the current best value, then

▷ consider reducing the depth of the rest of the moves with H, say H = 3.

• If some moves considered with a reduced depth returns a value that is
better than the current best, then

▷ re-search the game tree at a full depth.
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LMR — Algorithm

Algorithm F4.5′(position p, value alpha, value beta, integer
depth, Boolean in lmr)

• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node
• then return f(p) else
begin

▷ m := −∞ // m is the current best lower bound; fail soft
· · ·

▷ for i := 2 to b do
▷ if in lmr or i ≤ K or depth ≤ H + 3 or pi is dangerous,

then {depth′ = depth; flag := in lmr;} //no LMR
else {depth′ := depth − H; flag := true}; //depth reduced

▷ 9: t := G4.5′(pi,m,m + 1, depth′ − 1, flag) // null window search
▷ 10: if t > m then // failed-high

11: if (depth′ < 3 or t ≥ beta)
12: then m := t
13: else m := G4.5′(pi, t, beta, depth − 1, in lmr) // re-search

▷ 14: if m is max or m ≥ beta then return(m) // beta cut off

end
• return m
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LMR — Example
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LMR: analysis

Performance:
• Reduce the effective branching factor to about K.

▷ Effective branching factor is the average number of children considered
in full details.

• Experience: very effective, namely can search 2 levels deeper in the
same time constraint, when move ordering is good.

Usually do not apply this scheme when
• your king is in danger, e.g., in check;
• you or the opponent is making an attack;
• the remaining searching depth is too small, say less than 3;
• it is a node in the PV path.

It is usually not a good idea to do this recursively, i.e., when
in lmr flag is true.
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Comments

Null move pruning and LMR are implemented together with
the usual alpha-beta pruning.

• You first try null move pruning and if it does not work, you re-search
with the usual alpha-beta part with LMR.

• For LMR, you use the normal alpha-beta part for the first few branches.
Then you do extra cutoff on later branches if those branches are not
cut previously.
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Dynamic search extension

Search extensions
• Some nodes need to be explored deeper than the others to avoid the
horizon effect.

▷ Horizon effect is the situation that a stable value cannot be found be-
cause a fixed searching depth is set.

• Needs to be very careful to avoid non-terminating search.
• Examples of conditions that need to extend the search depth.

▷ Extremely low mobility.
▷ In-check.
▷ Last move is capturing.
▷ The current best score is much lower than the value of your last ply.
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Horizon effect

d

horizon
lots of material gains

king is captured!
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Dynamic depth extension — Algorithm

Algorithm F4.6′(position p, value alpha, value beta, integer
depth)

• determine the successor positions p1, . . . , pb
• if b = 0 or depth = 0 · · · // a terminal node
· · ·

• then return f(p) // a terminal node
else begin

▷ if p1 is unstable, then depth′ := depth + 1 else depth′ := depth
▷ m := −∞ // m is the current best lower bound; fail soft

m := max{m,G4.6′(p1, alpha, beta, depth
′ − 1)} // the first branch

if m is max or m ≥ beta then return(m) // beta cut off
▷ for i := 2 to b do
▷ if pi is unstable, then depth′ := depth + 1 else depth′ := depth
▷ 9: t := G4.6′(pi,m,m + 1, depth′ − 1) // null window search
▷ 10: if t > m then // failed-high

11: if (depth < 3 or t ≥ beta)
12: then m := t
13: else m := G4.6′(pi, t, beta, depth

′ − 1) // re-search
▷ 14: if m is max or m ≥ beta then return(m)} // beta cut off

end
• return m

TCG: Enhancements, 20251127, Tsan-sheng Hsu © 63



DSE — Illustration
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Quiescent search (1/2)

Quiescent search: to check further on only forceful variations.
• Invoke your search engine, e.g., alpha-beta search, to only consider
moves that are in-check or capturing.

▷ May also consider checking moves.
▷ May also consider allowing upto a fixed number, say 1, of non-capturing

moves in a search path.

• Watch out of unneeded piece exchanges by checking the Static Ex-
change Evaluation (SEE) value first.
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Quiescent search (2/2)

We invoke a quiescent search so that searching is not stopped in
the middle of a sequence of forced actions and counter-actions
due to a fixed searching depth limit.

• A sequence of checking and unchecking and finally leads to checkmate.
• A sequence of moves with very limited number of choices.
• A sequence of piece exchanges.

▷ It is p’s turns to move, p will carry on the rest of exchanges only if he
will be profitable.
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Illustrations

Example: red pawn will capture black rook if it’s red’s turn, but
black rook will not capture red pawn if it’s black’s turn.
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Dynamic depth extension — Algorithm

Algorithm F4.7′(position p, value alpha, value beta, integer
depth)

• determine the successor positions p1, . . . , pb
• if b = 0 // a terminal node
· · ·

• then return Quiescent F ′(p, alpha, beta)
else

begin
▷ continue to search
▷ · · ·
end

• return m
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Quiescent search algorithm

Algorithm Quiescent F ′(position p, value alpha, value beta)
• generate the successor positions p1, . . . , pb′ such that each p → pi is

▷ capturing,
▷ unchecking, or
▷ checking // may add other types of non-quiescent moves

• if b′ = 0 then return f(p) // a quiescent position
• else m := −∞
• quies := 0; // count the number of quiescent capturing moves
• for i := 1 to b′ do

▷ if p → pi is not a capturing move OR SEE(destination(pi)) > 0
then // not a quiescent position, search deeper

{m := max{m,Quiescent G′(pi,max{m, alpha}, beta)}
if m is max or m ≥ beta then return (m)} // beta cut off

else quies := quies + 1

• if quies = b′ then return f(p) // a quiescent position
else return m;

Can also use NegaScout as the main search engine.
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Algorithm SEE(location)

Assume w.l.o.g. it is red’s turn and there is a black piece bp
at location. Compute the net gain of materials for a fight at
location.
Algorithm SEE(location)

• R := the list of red pieces that can capture a black piece at location.
• if R = ∅, then return 0;
• Sort R according to their material values in non-decreasing order.
• B := the list of black pieces that can capture a red piece at location.
• Sort B according to their material values in non-decreasing order.
• gain := 0; piece := bp;
• While R ̸= ∅ do

▷ capture piece at location using the first element w in R;
▷ remove w from R;
▷ gain := gain + value(piece);
▷ piece := w;
▷ if B ̸= ∅

then { capture piece at location using the first element h in B;
remove h from B; gain := gain − value(piece); piece := h; }

else break;

• return gain //the net gain of material values during the exchange
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Example

Net gain in red’s turn.
• Captured: two black elephants
• Be captured: a red pawn and a red horse.
• Usually, a pawn and a horse are more valuable than two elephants.

▷ Hence this is a Quiescent position for the red side.
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SEE: Comments

We carry out a capturing move in Quiescent search only if the
net gain is positive.
Always use a lower valued piece to capture if there are two
choices for getting the best gain.
SEE is static and imprecise for performance issues.

• Some pieces may capture or not able to capture a piece at a location
because of the exchanges carried out before.

• If SEE considers more dynamic situations, then it costs more time.
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Counter example of SEE

Red cannon attack the location where the black elephant was
at the river after red pawn captures this black elephant, and
then the black elephant captures the red pawn.

• SEE advises RED not to initiate piece exchanges.
• In this case, RED actually needs to do so.
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Comments for SEE implementation

Can store the searched results from applying Quiescent search
or even SEE into a transposition table.
Usually, use separate transposition tables for main search,
Quiescent search and SEE.
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SEE for capturing un-symmetry games and others

The above SEE is mainly for capturing symmetry games such as
Chinese chess where a piece can capture any opponent’s piece.
For Chinese dark chess that is capturing un-symmetry where
the pieces are ranked, a different estimation is needed.

• Assume a black piece at a location can be attacked by a list of red
pieces R and defended by a list of black pieces B.

• If R and B do not contain cannon, then R will start an exchange only
if R’s largest ranked piece cannot be captured by a piece in B.

• If R has a cannon, then consider whether the value of the black piece
captured is more valuable than cannon.

• If B also has a cannon, then re-consider whether it gains to exchange.
• Since the cardinalities of R and B are small, one may want to skip SEE
before invoking quiescent search.

For stochastic games, it takes more efforts to do quiescent
searching.

• CDC: consider among only non-flipping moves.
• EWN: may need to check whether there are possible captur-
ing/checkmating moves for all dice outcomes.
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Concluding comments

There are many more such search enhancements.
• Mainly designed for alpha-beta based searching.
• It is worthy while to think whether techniques designed for one search
method can be adopted to be used in the other search method.

Finding the right coefficients, or parameters, for these tech-
niques can only now be done by experiments.

• Is there any general theory for finding these coefficients faster?
▷ May want to look into hyper-parameter optimization used in machine

learning [Bergstra and Yoshua’12].

• The coefficients need to be re-tuned once the searching behaviors
change.

▷ Changing evaluation functions.
▷ Faster hardware so that the searching depth is increased.
▷ · · ·

Need to consider tradeoff between the time spent and the
amount of improvements obtained.
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