Monte-Carlo Game Tree Search:
Basic Techniques

Tsan-sheng Hsu

2Nk B
TR s/ 7

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/ tshsu

Abstract

Introducing the original ideas of using Monte-Carlo simulation

in computer Go.
o Pure Monte-Carlo simulation.
e Using UCB scores.
e In-cooperate with Mini-Max tree search.
o Using UCT tree expansion.
> Best first tree growing.

Introduce only sequential implementation here.
o Parallel implementation will be introduced later if time allows.

Conclusion:

e A new search technique that proves to be very useful in solving selective
games including computer Go.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 2

Basics of Go (1/2)

Black first, a player can pass anytime.
The game ends when both players pass in consecutive turns.
intersection: a cell where a stone can be placed or is placed.

two intersections are connected if they are either adjacent
vertically or horizontally, i.e., 4-neighbors.

string: a connected, i.e., vertically or horizontally, set of stones
of one color.

liberty: the number of connected empty intersections.
e Usually we calculate the amount of liberties for a string.
e A string with no liberty is captured.

eye:
o Exact definition: very difficult to be understood and implemented.
o Approximated definition:

> An empty intersection surrounded by outside boarders or stones of one
color with two liberties or more.

> An empty intersection surrounded by outside boarders or stones be-
longing to the same string.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 3

Basics of Go (2/2)

()
/
()
-/

A black string with 3 liberties.

A black string with 2 eyes.

e A string with two eyes cannot be captured by the opponent unless you
fill in one of the two eyes yourself first.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 4

Atari

A string with liberty = 1 is in danger and is called atari.
o Placing a white stone at the intersection 1 threatens the black string.
o The black string is in danger.
o The intersection at 2 is now critical.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 5

Legal ply

Place your stone in an empty intersection, not causing suicide
or KoLl

o Black cannot place a black stone at the intersection 1.
o This is called a suicide ply?.

Ko will be defined later.
2More discussion of suicide plys will be given later.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 6

The rule of Ko

Use the rule of Ko to avoid endless repeated plys.

e Place a

white

()

}%‘
.1'
O®

e Place a

black

OCNDO
%’

stone at 1, a black stone is captured.

stone at 2, a white stone is captured.

o This can go on forever and thus is forbidden (to the black).

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©)

Ko fight

Usually Ko happens in a critical area.
e The one takes the control has advantage in that are.
o Ko fight means the process of using means to have a win in this area.

By the rule of Ko, a player cannot create a Ko, so the one
reacts to a Ko has to find other places to place, namely Ko
threat, hopping the opponent responses.

When a player finds a Ko threat, then it becomes the burden
of his opponent to find another Ko threat. This goes on again
and again.

The one who cannot find a Ko threat loses the Ko fight, and
the area around the Ko.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 8

General rules of Go

Black plays first.
A string without liberty is removed.

You cannot place a stone and results in a position that is 2-plys

ago after the removing of strings without liberty.
e You cannot create a loop.

> Note: exact rules for avoiding loops are very complicated and have
many different definitions.

You can pass, namely forfeit the right to play.
o A self-suicide ply is one that causes the stone played, and this stone
only, being removed immediately which is equivalent to a pass.

> In most rules, you cannot place a stone to cause more than one of your
stones, including the one just played, being removed.

> You can place a stone in an intersection without liberty if as a result
you can capture opponent’s stones.

When both players pass in consecutive plys, the game ends.

The one with more stones and eyes wins at the end of the
game after discounting Komi.

> Other scoring rules exists such as counting the number of stones captured as
well.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 9

More examples

If black plays 1, then it is equivalent to a pass.
.)

1;
G J

lllegal move (suicide) at 1 for black for most rules unless it is

\\ J

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 10

Komi

When calculating the final score, the black side, namely the
first player, has a penalty of k& stones, which is set by what is

called Komi.
o To offset the initiative.
e When £ is an integer, you may draw a game.

> It is possible to drawﬁ a Go game by entering a loop whose length is
more than 4 plys.

Go has different very subtle rules with different versions which
set the value of Komi differently.

e The value of Komi changes over the time.

o For 9 by 9 Go, currently it is 7.

> It is possible to draw even no loop is involved!

e For 19 by 19 Go, it is either 6.5 or 7.5.

> No draw by score!
> May be draw by entering a loop whose length is more than 4.

3Some rules disallow the creation of any loop.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 1].

Ranking system

Dan-kyu system: from good to bad in the order of
o Professional level: dan.
> 9,8,..., 2,1

e Amateur level: dan.

> 9,8, ...,2 1

> usually no more than 6
o Kyu:

> 1,2, 3,4, ...

A higher ranked player has a better chance of winning, but not
a sure win, against a lower ranked player.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 12

Elo system

Elo: assign a numerical score to a player so that the larger the
score, the better a player is.

o Usually between 100 to 3000+.

o Time dependent.

e More details in later lectures.

Human: www.goratings.org

o > 2940: professional 9 dan
o ~ 2820: professional 5 dan
e Human history high
> Nov. 2019: 3692.33 (Shin, Jinseo).
Nov. 2020: 3909.94 (!!) (Shin, Jinseo).
Nov. 2021: 3828 (Shin, Jinseo).
Nov. 2022: 3839 (Shin, Jinseo).
Oct. 2023: 3865 (Shin, Jinseo).
> Oct. 2024: 3854 (Shin, Jinseo).

o Alpha Go has an impact on human players. Whoever can make use of
it for training can improve better than those who cannot.

v VvV VvV Vv

*https: / /www.goratings.org/en/

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 13

Why Alpha-Beta cut won’t work on Go?

Alpha-beta based searching has been used since the dawn of
CS.

o Effective when a good evaluation function can be designed manually
by human and computed efficiently by computers.
> Evaluation functions do not need to be designed purely by human any-
more.
> One can use machine learning techniques as well.

> Example: the development of GNU Go before 2004 using manually
designed heuristics, and the development of Alpha Go after year 2016

using deep learning.
o Good for games with a not-too-large branching factor, say within 40
and a relative small effective branching factor, say within 5.
> Effective plys mean those that are not obviously bad plys.

Go has a huge branching factor and a not too small effective
branching factor. The evaluation function of Go is also difficult

to be manually designed.
o First Go program is probably written by Albert Zobrist around 1968.

o Until 2004, due to a lack of major break through, the performance of
computer Go programs is around 5 to 8 kyu for a very long time.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 14

Monte-Carlo search: original ideas

Algorithm MCS,,,,.:

e For each child of the root

> Play a large number of almost random games from a position to the
end, and score them.

o Evaluate a child position by computing the average of the scores of
the random games in which it had played.
o Play a move going to the child position with the best score.

‘17 107 4%
s /77, 4
"y i’ry V4
1y i 1y
Tt Wiy Wiy
Wiy Wy Wy
iy 11 iy
111 1y 111y
1) 111 111
111} 111] 111
1y 1y 1y
1y iy 1y
) My
/ / /
AR AL AR
+an1 avg2 avg3

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 15

How scores are calculated

Score of a game: the difference of the total numbers of stones
and eyes for the two sides.

Evaluation of the child positions from the possible next moves:

o Child positions are considered independently.

o Child positions were evaluated according to the average scores of the
games in which they were played, not only at the beginning but at
every stage of the games provided that it was the first time one player
had played at the intersection.

Can use winning rate or non-losing rate as the score.

e For ease of description, we use mostly winning rate in the rest of our
slides here.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 16

How almost random games are played

No filling of the eyes when a random game is drawn.

e The only domain-dependent knowledge used in the original version of
GOBBLE in 1993.

Moves are picked with a chance that is related to the values of

some very simple evaluation functions.
o Example: the “score” of the resulting position after the ply is played.

Ideas from “simulating annealing” can be used to control the

probability that a move could be played out of order.
e The amount of randomness put in the games is controlled by the
controlled by the temperature.
> The temperature was set high in the beginning, and then gradually
decreased.
> For example, the amount of randomness can be a random value drawn
from the interval [e"V/!) — ¢ "W/1) 4] where v(i) is the value after
the ith ply, where c is a positive constant and t(i) is the temperature
at the ith ply.

> Note when t(i) >> 1, then et W/t 5 1,

o Simulating annealing is not required, but was used in the original 1993
version.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (C) 17

Results

Original version: GOBBLE 1993 [Bruegmann’93].

Performance is not good compared to other Go programs of the same
era.

Enhanced versions used after year 2000.

Adding the idea of using new scoring functions.
Using a mini-max tree search.
Using a best first tree growing.
Adding more domain knowledge.
Adding more techniques.
> Much more than what are discussed here.

> In practice, works out well when the game is approaching the end or
when the state-space complexity is not large.

Building theoretical foundations from statistics, and on-line and off-line
learning.
Using techniques from deep learning.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 18

Historical results (1/2)

MoGo (France):

>

Won Computer Olympiad champion of the 19 x 19 version in 2007.

Beat professional 8-dan player Myungwan Kim with a 9-stone handicap at
August 2008 (US Go Congress).

Judged to be in a “professional” level for 9 x 9 Go in 2009.
Very close to professional 1-dan for 19 x 19 Go.

(Japan):
Close to amateur 3-dan in 2011.

Beat a 9-dan professional master with handicaps at March 17, 2012.
First game: Five stone handicap and won by 11 points.
Second game: four stones handicap and won by 20 points.

Add techniques from machine learning.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (C)].9

Historical results (2/2)

AlphaGo Lee: Beat a professional 9-dan at March 2016 with a
record of 4 to 1!

> Using supervised deep learning.
> Elo 3739 ~ 10-dan [Silver et al 2016] vs Sedol Lee (~ Elo 3580)

AlphaGo Zero: An earlier version beat one of the very top
professional players at May 2017 with a record of 3 to 0 !!!

> Using unsupervised learning.
> Elo 5185 !!! ~ (10 4+ xz)-dan [Silver et al 2017] vs Ke, Jie (Elo 3761)

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 20

Problems of MCS,,,.

May spend too much time on hopeless branches.
o In the example below, after some trials on A, it can be concluded that

this branch is hopeless.
e From now on, time should be spent on B and C' to tell their difference

which is currently too close to call.

/ / /
e s 177)
/11 /114 /71y
I I I
Wiy Wiy Wy
Wy Wy Wy
11y 1y 1y
11 111 111
111 111 111
111, /11 111,
i I I
11, 11, (AR
111 111 111}
111 A0 111,
//ﬁ{/ e //////

0 2999/10000

-]

0/10000 3000/100

T 2999/10000 means winning 2,999 times out of 10,000
simulations.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 21

First major refinement

Observations:
o Some moves are obviously bad and do not need further exploring.
e Should spend some time to verify whether a move that is currently
good will remain good or not.
e Need to have a mechanism for moves that are bad so far because of
extremely bad luck to have a chance to be reconsidered later.

Efficient sampling:
e Original: equally distributed among all legal moves.

o Biased sampling

> Sample some moves more often than others.
> Every move has some chance to be sampled from time to time.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 22

Better playout allocation

K-arm bandit problem:
o Assume you have K slot machines each with a different payoff, i.e.,
expected value of returns 1;, and an unknown distribution.
e Assume you can bet on the machines totally V times, what is the best
strategy to get the largest returns?

Ideas:
e Try each machine a few, but enough, times and record their returns.
o For the machines that currently have the best returns, play more often
later on.
e For the machines that currently return poorly, give them a chance from
time to time just in case their distributions are bad for the runs you
have tried so far.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 23

UuCB

UCB: Upper Confidence Bound [Auer et al’02]

e For each child p; of a parent node p, compute its

UCB; = % + C4 /IO]gVN where

W, is the number of win’s for the position p;,
N, is the total number of games played p;,
N = > .. N; is the total number of games played on p, and

c is a positive constant called exploration parameter which controls how
often a slightly bad move be tried.

o Expand a new simulated game for the move with the highest UCB
value.

Note:
o We only compare UCB scores among children of a node.
o It is meaningless to compare scores of nodes that are not siblings when
later on tree search is in-cooperated.

>
>
>
>

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 24

What is guaranteed by using UCB

Theorem |: a non-optimal machine is played only O(In N/A?)
times for N operations where A is the smallest amount of
regret normalized to the range of [0,1] [Auer et al’02].

o regret: the loss due to not picking the true best one.

o the total amount of regrets is O(In N/A).

o If thee is no other information available, this is probably the best you
can do theoretically.

How this helps in doing Monte Carlo simulation?
o Game search problem: finding the best ply among K possible moves.

> FEach possible ply corresponds to a bandit.

> A good ply leads to a position with a better win rate which is a bandit
with a better payoff.

o Most of the time in the course of doing N simulations, except O(K X
In N/A?) of them, the simulation is done on plys with good win rates.

> The optimal machine is played exponentially more number of times
than the non-optimal machines.

o Using the law of large number, you get a better in quality Monte Carlo
simulation if more simulations are done.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 25

How UCB is derived (1/2)

Hoeffding inequality [Hoeffding 1963]:
o Assume X is a Bernoulli random variable in the range of [0, 1] with an
expected value of F(X).
o Let X, be the ith independent sampling of X.

o Let X, = %Zle X; be the average of the first ¢t samplings.
o P(|E(X) =X, >u) < e 2t for u > 0.

> This means the real value E/(X) has a chance of no more than e 2y
to be the observed value X; plus an upper bound of u if u > 0.

It gives an estimation on the difference between the real value

and the observed average value at the time ¢.
o Fixing u, when t increases, the chance of the difference to be > u
decreases exponentially.

High level implications
e In a true random setting, it looks like something is “remembered” in
the long run.
e In observing a long sequence of random events, if the first half is bad,
then the second half is more likely to become better so that overall it
is in the average case.

2

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 26

How UCB is derived (2/2)

Assume we want the chance of failure, i.e., different between
the observed average value and the real value to be > u, to
be exponentially decreasing when the number of total trials

[] [] —%). 2 [] a_
N increases, say in the rate of N~2° where c is a positive

constant.)
o Fix the chance of failure to be the small value of N 2¢ where ¢ > 0.

- 2
o This means the real value has a very small chance, namely N7, to
be > X; +uor <X;—uwhen N is large.
Then

2 2
62tu§N20

[log N
— u < cC n

You may use error functions of forms other than N=2¢ with an

approximation factor different from the one stated in Theorem
l.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (C) 27

Exploitation or Exploration

; log N
UCBZ:%—FC o]%i

In the UCB formula

o tis N, and X, = NZ is the observed value.

V? +c 10]%]\[is the upper bound of E(X) with a good confidence.

Using c to keep a balance between
o Exploitation: exploring the best move so far.
o Exploration: exploring other moves to see if they can be proven to be
better.

No /NV; should be zero.

e Give each child at least some trials.
The theoretical value for c in [Auer et al’02] is

o (/2 ﬁ%ﬁ ~ 1.18 where e is the base of the natural logarithm which is

about 2.718.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 28

Comments

It is worthy to note that Hoeffding’s inequality also states
o P(X,— B(X)>u)<e 2t for u > 0.
This means the lower confidence bound (LCB)

LCB,; = N C\/ TN
Hence if your observation so far from the first N observations is

i, then the real value is between LCB; and UCB; with a high

probability.
LCB,; can be used when you are in great advantage.

The value c can be varied during different phases of a game.

e Q: How to set in the opening?
e Q: How to set in the middle?
e Q: How to set in the endgame?

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 29

lllustration: using UCB scores

Using winning rate, B and C are tied.

Using UCB scores, (' is better than B because C obtained the
score using less trials.

9/50 9/50+x1
A‘é‘ C A‘é‘ C
110 6/30 2/10 1/10+x2 6/30+x3 2/10+x4

exploration score:

X2=x4
X4>X3

+ score = winning rate UCB score

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 30

Other formulas for UCB (1/2)

Other formulas are available from the statistic domain.
o Ease of computing
o Better statistical behaviors
> For example, consider the variance of scores in each branch.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©)

31

Other formulas for UCB (2/2)

Example of UCB using variance: consider the games having
results drawn from Bernoulli random variable in the range of
0, 1].
" Then u; is the expected result of the playouts simulated from this
position.
o Let o7 be the variance of the results of the playouts simulated from
this position.
o Define V; = o7 + clq/lojg\,fN where c; is a constant to be decided by

experiments.
o A revised UCB formula [Auer et al’02] [Gelly et al '06] is

1

log N
MH—C\/ OZ%[min{V;, c2},

where c and c; are both constants to be decided by experiments and

co is used to bound the influence of V.
Note: in [Auer et al'02], ¢; is V2, ¢z is ; and c is 1. However c;
really depends on how large the range of your scores cam be

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 32

Comments

The above revised bound in practice gives a better result, but
no theoretical bound is proved.

1; = 0 and o7 = 0 means a sure to draw situation.
1; = 0 and o7 >> 0 means a tie and not-so-quiescent situation.

If 02 >> 0, then no conclusion should be made, or no final
decision should be made.

Since the numerical value of o7 can be very large, you need to
consider not over using it.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (C) 33

Monte-Carlo search using UCB scores

Doing Monte-Carlo search by first performing z trials on each
child, and then y trials each time on the current best child.

Algorithm MCSy ¢ p(position p, int z, int y):
o Generate all possible children pq, ps, ..., p, of the current position p
e for each child p; do

> Perform x almost random simulations for p;
> Calculate the UCB score for p;

o While there is still time do
> Pick a child p* with the largest UCB score
> Perform y almost random simulations for p*
> Update the UCB score of p* as well as other nodes

e Pick a child with the largest winning rate to play
It is usually the case we pick a child with the largest winning

rate, not with the largest UCB score to play.
o After enough trials, one with the largest winning rate is usually, but
not always, the one with the largest UCB score.
o May consider the idea of “simulating annealing” to use these values as

probabilities of being chosen.

34

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©)

More problems of MCS,,,.

The average score of a branch sometimes does not capture the
essential idea of a mini-max tree search.

MAX

MIN

MAX

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 35

More problem of MCS,,,.

The average score of a branch sometimes does not capture the
essential idea of a mini-max tree search.

MAX mini—-max

MIN

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 36

More problem of MCS,,,.

The average score of a branch sometimes does not capture the
essential idea of a mini-max tree search.

MAX

MIN

MAX

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (C) 37

More problem of MCS,,,.

The average score of a branch sometimes does not capture the
essential idea of a mini-max tree search.

MAX mini—-max

MIN

+ 5 10 3 17

May spend too much time on the wrong branch.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 38

Second major refinement

Intuition:
o Initially, obtain some candidate choices that are needed to be further
investigated.
o Perform some simulations on the leaf at a principal variation (PV)

branch.

> A PV path is a path from the root so that each node in this path has
the best score among all of its siblings.

> Note: In a mini-max tree, “best” means differently for a min or a max
node.

o Update the scores of nodes in the current tree using the mini-max
formula.

e Grow a best leaf at the PV one level.

e Repeat the above process until time runs out.

Best-first tree growing [Coulum’06].

o Keep a partial game tree and use the mini-max formula within the
partial game tree kept.
o Grow the game tree on demand.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 39

Monte-Carlo based tree search

Algorithm MCTS;,,;.(int z): // Monte-Carlo mini-max tree
search

1: Obtain an initial game tree

2: Repeat the following sequence N;,;,; times
e 2.1: Selection

> From the root, pick one path to an “expandable” node with the best
“score” using the mini-max formula.

e 2.2: Expansion

> From the chosen expandable node, expand it by one level using a good
node expansion policy.

e 2.3: Simulation
> For each expanded node, perform x trials (playouts).

o 2.4: Back propagation

> Update the ‘“scores” for expanded nodes bottom up to the root using
a back propagation policy.

Pick a child of the root with the best winning rate as your
move.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 40

Details of the steps

Selection:
o Initially, the tree contains only the root.
o Expandable node: A node in the tree which has some unexpanded
children.

Expansion:

o Original version, called all ends one-at-a-time, expands at most one
child of the chosen expandable node per simulation which is good for
trees with a very high branching factor.

e For games with low to medium branching factors, may consider expand
all children at once which is called all ends at once.

o We will discuss more sophisticated expansion policies later in the next
chapter.

Simulation:
o Original version performs one simulation each time, namely, X = 1.
Only the first ply in the simulation is expanded.
o May set x > 1, and expand all first plys in the playouts.
o May consider expand all children at once and perform x simulations for
each.

Here we expand all children at once.
e Hence only the leaves are expandable.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 41

lllustration: Tree growing using win rate

e

PN

selection

expansion

6/30

|
o

1/10 3/10 2/10

simulation

propagation

9/10 7/10

+

6/30

1/10 3/10 2/10

8/10

1/10 /3/1\ 2/10
O O

o
1/10 /6/35\
O O

2/10 1/10
8/10 9/10

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©)

42

lllustration: Best first tree growing

S -

find the PV from root to an expandable node A
and then expand A

+

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©)

43

Comments (1/2)

In finding the PV path in a Monte-Carlo tree:
e We do this by a top-down fashion.
o From the root, which is a max node, pick a child p; with the largest
possible score and then go one step down.
e From p;, which is a MIN node, pick a child with the smallest score p,
and then go one more step down.
o We keep on doing this until a leaf is reached.

In updating the scores of nodes in a Monte-Carlo tree when
some more simulations are done in a leaf ¢:

e We do this by a bottom-up fashion.

o We first update the score of q.

o Then we update the score of ¢’s parent ¢* by merging the newly

generated statistics of ¢ with the existing statistics of ¢*.

o We keep on doing this until the root is reached.

e This is different from the updating operations done in a mini-max tree.

o The reasons to merge, not to replace, are

> the value is a winning chance from sampling, not really an actual value
obtained from an evaluation function;

> after merging you get a statistical value that is more trustful since the
sample size is increased.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (C) 44

Comments (2/2)

When the number of simulations done on a node is not enough,
the mini-max formula of the scores on the children may not be

a good approximation of the true value of the node.
e For example on a MIN node, if not enough children are probed for

enough number of times, then you may miss a very bad branch.
When the number of simulations done on a node is enough,
the mini-max value is a good approximation of the true value
of the node.

Use a formula to take into the consideration of node counts
so that it will initially act as returning the mean value and
then shift to computing the normal mini-max value [Bouzy’04],

[Coulom’06], [Chaslot et al’06].

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 45

UCT

UCT: Upper Confidence Bound for Tree [Chaslot et al '08]

e Maintain the UCB value for each node in the game tree that is visited
so far.
o Best first tree growing:

> From the root, pick a PVycp path such that each node in this path has
a largest UCB score among all of its siblings.

> Pick the leaf-node in the PV path and has been visited more than a
certain amount of times to expand.

UCT approximates mini-max tree search with cuts on proven
worst portion of trees.

Effective when the “density of goals” is sufficiently large.
e When there is only a unique goal, Monte-Carlo based simulation may
not be efficient.
o The “density” and distribution of the goals may be something to
consider when picking the threshold for the number of playouts needed
to reach a statistical conclusion.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 46

Monte Carol with UCB: MCTS

Algorithm MCTS(int x):
1: Obtain an initial game tree

2: Repeat the following sequence N;,;,; times
e 2.1: Selection

> From the root, pick a PVycp path to an expandable node such that
each node has a best UCB score among its siblings.

> May decide to “trust” the score of a node if it is visited more than a
threshold number of times.

> May decide to “prune” a node if its raw score is too bad to save time.

o 2.2: Expansion

> Expand the chosen node by one level.
> Use some node expansion policy to expand.

e 2.3: Simulation
> For each expanded node, perform x trials (playouts).

o 2.4: Back propagation

> Update the UCB scores for expanded nodes using a back propagation
policy.

Pick a child of the root with the best winning rate as your
move.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (C) 47

Tree growing using UCB scores

e

N

selection

expansion

o

1/10+x2 3/10+x3 2/10+x]

simulation

propagation

6/30+x1

1/10+x2 3/10+x3 2/10+x

+

1/10+x

AN

0+

237&
O

§\3 2/10+x4

6/30+x1

1/10+x2 3740+ 2/10+x4

AN

1/10+x6 ?30\7 2/10+x

2/10+x9 1/10+x10

T

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©)

48

Comments about the UCB value

For node 4, its UCB; = Wi 4 ¢, /%%

What does “winning rate” mean?
e For a MAX node, W; is the number of win’s for the MAX player.
e For a MIN node, W, is the number of win’s for the MIN player.

When N, is approaching log N, then UCB,; is nothing but the

current winning rate plus a constant.
e When N is very large, then the current winning rate is a good
approximation of the real winning rate for this node.
o If you walk down the tree from the root along the path with largest
UCB values, namely PV o, then it is like walking down the traditional
mini-max PV.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 49

Important notes

We only describe some specific implementations of Monte-Carlo
techniques.

o Other implementations exist for say UCB scores.

It is important to know the underling “theory”, not a particular
implementation, that makes a technique work.

Depending on the amount of resources you have, you can
e decide the frequency to update the node information,
o decide the frequency to re-pick PV,

You also need to know the precision and cost of your floating-

point number computation which is the core of calculating UCB
scores.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 50

Implementation for Go

How to partition stones into strings?
e Visit the stones one by one.
o For each unvisited stone

> Do a DF'S to find all stones of the same color that are connected.

e Can use a good data structure to maintain this information when a
stone is placed.

> Example: disjoint union-find.

How to know an empty intersection is a potential eye?
e Check its 4 neighbors.
o Each neighbor must be either

> out of board, or
> it is in the same string with the other neighbors.

How to find out the amount of liberties of a string?
o for each empty intersection, check its 4 neighbors:

> check it is a liberty of the string where its neighbors are in;

> make sure an empty intersection contributes at most 1 in counting the
amount of liberties of a string.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 51

Generating random numbers

The success of MCTS based algorithms depends heavily on
good quality in the pseudo random numbers generated.

e Using a good seed.
e The period of random numbers generated.
e Whether the sequence produced can pass some statistical tests.

Using good third-party pseudo random number generators.
o Some good ones include PCG at https://www.pcg-random.org/index.html.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 52

General implementation hints (1/4)

Each node p;, maintains 3 counters W;, L; and D;, which are
the number of games won, lost, and drawn, respectively, for

playouts simulated starting from this position.
e Note that Nz = Wz + Lz + Dz
o For ease of coding, the numbers are from the view point of the root,
namely MAX, player.

Assume p; 1,p; 2,...,Dpip are the children of p,.
o W, = Z?:l Wi ;
o Li=3"_ L
o D; = 2221 D;

“Winning rate’”:

o For a MAX node, it is W;/N,.
o For a MIN node, it is L;/N;.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 53

General implementation hints (2/4)

Only nodes in the current “partial” tree are maintaining the 3
counters.

Assume p; 1,D; 2, ..., i are the children of p; that are currently
in the “partial”’ tree.
o It is better to maintain a “default” node representing the information
of playouts simulated when p; was a leaf.
When any counter of a node v is updated, it is important to
update the counters of all of its ancestors.
> For example: the winning rates of all v’s ancestors are also changed.

Need efficient data structures and algorithms to maintain the
UCB value of each node.

o When a simulated playout is completed, the UCB scores of all nodes

are changed because the total number of playouts, [V, is increased by
1.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 54

General implementation hints (3/4)

How to incrementally update mean and variance of a node?
o Assume the results of the simulation form the sequence
:1:1,:132,:133,...,xi,xi+1,aj_i+2,... .
o Let var(n) be the variance of the first n elements. Hence

var(n) =+ 3" (x; — p(n))?* where p(n) = 2577 ..
e In each node, we maintain the following data:
> n
> sum2(n) = Z?:l x?
Hence sum2(n + 1) = sum2(n) + xiH
> suml(n) = 2?21 T;
Hence suml(n + 1) = suml(n) + x,41
1

o pu(n) == - suml(n)
var(n) = 1/n-(sum2(n) —2- u(n) - suml(n) +n - u(n)?)
1/n - sum2(n) — 2 - p(n) - p(n) + p(n)*
= 1/n-sum2(n) — pu(n)?

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©)

General implementation hints (4/4)

In general, we do not perform a division operator unless it is
really needed to do so.
suml(n) = sum2(n) if

o the value of a leaf can only be 0 or 1;

If the value of a node can be something else, then suml(n) and

sum2(n) may be different.

o The possible range of the value of a leaf defines how “rich” your
variance can be.

o If the range is too large, then the value of the variance can be very
large.

e Pick a suitable range so that you can better tradeoff the mean and the
variance in computing UCB values using more involved formulas with
the variance.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 56

Hints on updating UCB scores

When r more simulations are done on a node p, then
o the winning rates of p and p’s ancestors may change;
o the exploration scores of p and p’s ancestors decrease;

/log N log N+:c

o the winning rates of the siblings of p and p’s ancestors do not change;
o the exploration scores of the siblings of p and p’s ancestors increases;

> c 10gN /log(N+x) N—I—a:

Calculating log and/or d|V|sion are time consuming, do not do
them unless necessary.

e Assume you have to find the max UCB value among children of a node
with a total of N simulations.

> The value log N needs to be calculated only once among all children.

> Save % and reuse it if it is not changed.

1

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (C) 57

Hints on UCT tree maintaining

After a certain rounds of best-first tree growing as used in UCT
tree growing, the shape of the tree is critical in getting a fast

and correct convergence.
o Shape of the tree can be roughly quantified by
> Total number of nodes: n
> Average depth of leaves: avgd
> Maximum depth: maxd
> Depth of PV: puvd
> Average branching factor: avgb

o If avgd and maxd are about the same, then you do not have a good
direction of searching.

If n is too small, then your code is not efficient.

If n is too large, then your code does not prune enough.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 58

Slow code

long double maxV,Ntotal,N[maxChild],W[maxChild];
int b; // number of children
int 1i;

Ntotal = 0.0;
// compute total number of simulations
// done on children
for (i=0;i<b;i++)
Ntotal += N[i];
maxV = -99999.9; // default for finding the max
// linearly scan and compute
for(i=0;i<b;i++)
if (maxV < W[il/N[i] + ¢ * sqrt(log(Ntotal)/N[il))

maxV = W[i]/N[i] + ¢ * sqrt(log(Ntotal)/N[il]);

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©)

59

Slightly faster code

int Ntotal, // the total value is calculated when it is updated
N [maxChild] ,W[maxChild] ;
int b; // number of children
int 1;
long double maxV, temp,
// precomputed terms used in UCB
CsqrtlogN, // = c * sqrt(log(Ntotal))
sqrtN[maxChild], // = sqrt((long double) N[il)
WR[maxChild]; // winning rate = (long double) W[i]/ (double) N[il

// initial value comes from the first element
maxV = WR[O] + CsqrtlogN/sqrtN[0];
for(i=1;i<b;i++){
// save intermediate result
temp = WR[i] + CsqrtlogN/sqrtN[i];
if (maxV < temp)
maxV = temp;

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 60

Data structure for an UCB-tree

// using arrary instead of pointers to represent the MCTS search tree
struct NODE {

int ply; // the ply from parent to here

int p_id; // parent id, root’s parent is the root

int c_id[MaxChild]; // children id

int depth; // depth, O for the root

int Nchild; // number of children

int Ntotal; // total # of simulations

long double CsqrtlogN; // c*sqrt(log(Ntotal))

long double sqrtN; // sqrt(Ntotal)

int Wins; // number of wins

long double WR; // win rate

} nodes[MaxNodes];

#define parent(ptr) (nodes([ptr].p_id) // id of ptr’s parent
#define child(ptr,i) (nodesl[ptr].c_id[i]) // the ith child of ptr

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 61

Updating from leaf to root

// add deltaN simulations with deltaW wins to the node "id"
void update(int id, int deltaW, int deltal)

{
nodes[id] .Ntotal += deltaN; // additional # of trials
nodes [id] .CsqrtlogN = Cxsqrt(log((long double) nodes[id].Ntotal))
nodes[id] .sqrtN = sqrt((long double) nodes[id].Ntotal);
nodes[id] .Wins += deltaW; // additional # of wins in trials
nodes[id] .WR = (long double) nodes[id].Wins

/ (long double) nodes[id].Ntotal;
+
do{

update (ptr,deltaW,deltaN) ;
ptr = parent(ptr);

}until (ptr == root);

update (root) ;

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 62

Finding PV

// compute the UCB score of nodes[id]
long double UCB(int id)
{
return (nodes[id].depth%2) ? (nodes[id].WR) : (1.0 - nodes[id].WR)
+ nodes[parent(id)].CsqrtlogN/nodes[id] .sqrtN;
¥

PV[0] = ptr = root;
while (nodes[ptr].Nchild > 0){ // while not reaching a leaf
// revise above conditions for an expandable node
maxchild = child(ptr,0); // current index of child with max UCB
maxV = UCB(maxchild); // current max UCB value
for(i=1;i<nodes[ptr].Nchild;i++){
ctemp = child(ptr,i);
temp = UCB(ctemp) ;
if (maxV < temp){ maxV = temp; maxchild = ctemp; }}
PV[nodes[ptr] .depth] = ptr = maxchild; // go deeper in tree

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 63

Advanced data structure

// save computed intermediate values
struct NODE {
int ply; // the ply from parent to here
int p_id; // parent id, root’s parent is the root
int c_id[MaxChild]; // children id
int depth; // depth, O for the root
int Nchild; // number of children
int Ntotal; // total # of simulations
long double CsqrtlogN; // c * sqrt(log(Ntotal))
long double sqrtN; // sqrt(Ntotal)
int suml; // suml: sum of scores
int sum2; // sum2: sum of square of each score
long double Mean; // average score
long double Variance; // variance of score
} nodes[MaxNodes];

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©)

64

Advanced UCB routine

// compute the UCB score of nodes[id]
// for a range of scores [MinS .. MaxS]
long double UCB(int id)
{
long double Range = MaxS - MinS; // can be stored as a constant
// normalized the average score to be between 0 and 1
long double SR = (nodes[id].Mean - MinS) / Range;
return (nodes[id].depth%2) 7 (SR) : (1.0-SR) +
nodes [parent (id)].CsqrtlogN / nodes[id].sqrtN;

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 65

Advanced updating routine

// add deltaN simulations with deltaS additional scores
// and sum of square of scores deltaS2
void updatel(int id, int deltaS, int deltaS2, int deltal)
{
nodes[id] .Ntotal += deltalN; // additional # of trials
nodes[id] .CsqrtlogN =
c * sqrt(log((long double) nodes[id].Ntotal));
nodes[id] .sqrtN = sqrt((long double) nodes[id].Ntotal);
nodes[id] .suml += deltaS; // additional scores in trials
nodes[id] .sum2 += deltaS2;
nodes[id] .Mean = (long double) nodes[id].suml
/ (long double) nodes[id].Ntotal;
nodes[id] .Variance = (long double) nodes[id].sum?2
/ (long double) nodes[id].Ntotal -
nodes[id] .Mean * nodes[id] .Mean;

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©)

Comments (1/2)

Using the idea of sampling to evaluate a position was used
previously for other games such as 6x6 Othello [Abramson’90].

Proven to be successful on a few games.
e Very successful on computer Go.

Not very successful on some games.
e Not currently greatly outperform alpha-beta based programs on Chess
or Chess-like games.
Performance becomes better when the game is going to
converge, namely the endgame phase.

Need a good random playout strategy that can simulate the
average behavior of the current position efficiently.

e On a bad position, do not try to always get the best play.

e On a good position, try to usually get the best play.

It is still an art to find out what coefficients to set.
o Need a theory to efficiently find out the values of the right coefficients.
o It also depends on the speed of your simulation.
o Deep learning based techniques may be helpful in speeding up the fine
tuning the parameters.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (C) 67

Comments (2/2)

The “reliability” of a Monte-Carlo simulation depends on the
number of trials it performs.
e The rate of convergence is important.
e Do enough number of trials, but not too much for the sake of saving
computing time.
Adding more knowledge can slow down each simulation trial.

o There should be a tradeoff between the amount of knowledge added
and the number of trials performed.
o Similar situation in searching based approach:

> How much time should one spent on computing the evaluation function
for the leaf nodes?

> How much time should one spent on searching deeper?

o Another witness on how the art of tradeoff governs the design of a
complex system.

Knowledge, or patterns, about Go can be computed off-lined
using statistical learning or deep learning.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 68

References and further readings (1/3)

* B. Bruegmann. Monte Carlo Go. unpublished manuscript,
1993.

* Browne, Cameron B., et al. " A survey of Monte Carlo tree
search methods.” Computational Intelligence and Al in Games,

IEEE Transactions on 4.1 (2012): 1-43.

* P. Auer, N. Cesa-Bianchi, P. Fischer. Finite-time analysis of
the multi-armed bandit problem. Machine Learning, pages

235-256, 2002.

* Rémi Coulom. Efficient selectivity and backup operators in
Monte-Carlo tree search. In Lecture Notes in Computer
Science 4630: Proceedings of the 5th International Con-

ference on Computers and Games, pages 72—-83. Springer-
Verlag, 2006.

Sylvain Gelly, Yizao Wang, Rémi Munos, Olivier Teytaud.
Modification of UCT with Patterns in Monte-Carlo Go.
[Research Report] 2006. inria-00117266v1

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (©) 69

References and further readings (2/3)

Bruno Bouzy. Associating shallow and selective global
tree search with Monte Carlo for 9x9 Go. In Lecture
Notes in Computer Science 3846: Proceedings of the 4th
International Conference on Computers and Games, pages

67-80, 2004.

Guillaume Chaslot, Jahn Takeshi Saito, Jos W. H. M. Uiterwijk,
Bruno Bouzy, and H. Jaap Herik. Monte-Carlo strategies
for computer Go. In Proceedings of the 18th Benelux

Conference on Artificial Intelligence, pages 83-91, Namur,
Belgium, 2006.

B. Abramson. Expected-outcome: a general model of static
evaluation. |IEEE Transactions on Pattern Analysis and Machine

Intelligence archive Volume 12 Issue 2, February 1990, Pages
182-193.

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (C) 70

References and further readings (3/3)

Chaslot, Guillaume and Bakkes, Sander and Szita, Istvan and
Spronck, Pieter Monte-Carlo Tree Search: A New Framework
for Game Al. Proceedings of the BNAIC 2008, the twentieth
?I?s(l)gigr(;b[gutch Artificial Intelligence Conference, pages 389-

Silver, David, Huang, Aja, Maddison, Chris J, Guez, Arthur,
Sifre, Laurent, Van Den Driessche, George, Schrittwieser,
Julian, Antonoglou, loannis, Panneershelvam, Veda, Lanctot,
Marc, et al. (2016). Mastering the game of Go with deep
neural networks and tree search. Nature, 529(7587):484-489,
2016.

Silver, David, Schrittwieser, Julian, Simonyan, Karen,
Antonoglou, loannis, Huang, Aja, Guez, Arthur, Hubert,
Thomas, Baker, Lucas, Lai, Matthew, Bolton, Adrian, et al.
(2017). Mastering the game of Go without human knowledge.

Nature, 550(7676):354-359, 2017

TCG: Monte-Carlo Game Tree Search: Basics, 20251105, Tsan-sheng Hsu (C) 71

